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Abstract

We consider the pricing and hedging problem for options on stocks whose volatility is a
random process. Traditional approaches, such as that of Hull & White, have been successful in
accounting for the much observed smile curve, and the success of a large class of such models in
this respect is guaranteed by a theorem of Renault & Touzi, for which we present a simplified
proof. Motivated by the robustness of the smile effect to specific modelling of the unobserved
volatility process, we introduce a methodology that does not depend on a particular stochastic
volatility model.

We start with the Black-Scholes pricing PDE with a random volatility coefficient. We identify
and exploit distinct time scales of fluctuation for the stock price and volatility processes yielding
an asymptotic approximation that is a Black-Scholes type price or hedging ratio plus a Gaussian
random variable quantifying the risk from the uncertainty in the volatility. These lead us to
translate volatility risk into pricing and hedging bands for the derivative securities, without
needing to estimate the market’s value of risk or to specify a parametric model for the volatility
process. For some special cases, we can give explicit formulas.

We outline how this method can be used to save on the cost of hedging in a random volatility
environment, and run simulations demonstrating its effectiveness. The theory needs estimation
of a few statistics of the volatility process, and we run experiments to obtain approximations to
these from simulated stock price and smile curve data.
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1 Review

1.1 Introduction

This work presents a new approach to stochastic volatility modelling that can be used for derivative
pricing and hedging, but which does not need specification of a particular parametric model for the
volatility process. We begin with a review of the need for stochastic volatility models and general
results that support their proficiency in describing observed market phenomena. A survey of the
history of specific models motivates the model-free (or nonparametric) analysis that we introduce.

Main Statement

We assume that the spot volatility of a stock price is a random process satisfying certain tech-
nical restrictions listed in Section 3.2.3; we do not specify anything more about its distribution
or evolution. Further, we identify a characteristic time-scale of volatility fluctuations that is short
compared to the duration of the derivative contracts of interest, but not as short as the infinitesimal



time-scale of the Brownian fluctuations driving the stock price process. That is, we incorporate the
observation that volatility is “bursty”!, and does not vary as rapidly as the actual stock price.

Using averaging and central limit theorems for partial differential equations with randomly
varying coefficients, we can characterize derivative prices and their associated hedging deltas by
an asymptotic expansion in the time-scale discrepancy parameter: the first term is a deterministic
Black-Scholes price with an averaged volatility. The next term is random, incorporating uncertainty
about volatility, and is shown to be Gaussian with mean zero and variance that can be calculated
from a correlation statistic of the original volatility process.

Prices and hedging strategies are described by bands which collapse to width zero as the time-
scale of volatility fluctuations approaches zero. Only a few statistics of the unobserved volatility
process are needed and these can be estimated by procedures described in Section 3.4.

Background

Extensions of the Black-Scholes model for option pricing began appearing in the finance literature
not long after publication of the original paper [8] in 1973. For example, Merton [28] generalised
the Black-Scholes formula to account for a deterministic time-dependent rather than constant
volatility later the same year, and in 1976, he incorporated jump diffusion models for the price of
the underlying asset [29]. However, the resulting deviations from the Black-Scholes derivative price
are typically quite small, at the cost of having to estimate more complex parameters (recall that the
Black-Scholes model requires estimation only of a constant volatility parameter corresponding to a
lognormal diffusion model of the underlying’s price process). For this reason, the original form of
the model has remained robust (allowing for modifications for dividend payments and transactions
costs). Even though its limitations are recognised by traders, no simple ‘better’ model has been
universally accepted.

Indeed, there is an almost perverse pressure by practitioners for real prices to conform to those
of the Black-Scholes world as demonstrated by prevalent use of the implied Black-Scholes volatility
measure on market prices. That is, traders are given to buying and selling in units of volatility
corresponding to options prices through the Black-Scholes formula (which is strictly increasing in
the volatility parameter). This is often termed ‘trading the skew’ [39], where skew refers to a
trader’s estimate of future volatility. Empirical studies of implied volatility date back to Latane &
Rendleman [26](1976), and include Beckers [4](1981), Rubinstein [34](1985) and Canina & Figlewski
[9](1993). This measure has been used to express a significant discrepancy between market and
Black-Scholes prices: the implied volatilities of market prices vary with strike price and time-to-
maturity of the options contract whereas, in the Black-Scholes model, the volatility is assumed
constant. In particular, the variation of implied volatility with strike price for options with the
same time-to-maturity is often a U-shaped curve, the smile curve, with minimum at or near the
current asset price.

This particular shortcoming is remedied by stochastic volatility models first studied by Hull
& White [23], Scott [37] and Wiggins [45] in 1987. The underlying asset price is modelled as a
stochastic process which is now driven by a random volatility It6 process that may or may not be
independent. As noted by Taylor [43], there is no economic intuition behind this generalisation,
although Nelson has shown that stochastic volatility arises as the continuous time limit of discrete
statistical models such as ARCHZ, based on time-series analysis of financial data [30]. As a result of
the increase in complexity, estimation of the unobserved volatility process from market data is much
harder than estimation of the constant Black-Scholes volatility. Nonetheless, it is believable that

!We are grateful to a referee for this description.
2 Auto-regressive conditional heteroskedasticity



market volatility (in the intuitive sense of wild price swings) is random, and the fact that stochastic
volatility prices produce the smile curve for any volatility process instantaneously uncorrelated with
the price process, as we shall see in Section 2, gives this extension of Black-Scholes a little more
tractability than earlier ones.

In the spirit of the smile result which is robust to different models of the volatility, we shall
consider in Section 3 the scenario of the volatility process fluctuating on a different time scale to
that of the price process. An asymptotic analysis will yield pricing and hedging bands which are not
sensitive to how the volatility is modelled. In the special Black-Scholes type cases when volatility
does not depend on stock price, we derive explicit formulas for the width of these bands, enabling
a simple modification of the Black-Scholes formula.

We run simulations of stock prices with stochastic volatility and test the effectiveness of our
modified hedging strategy against simple Black-Scholes delta hedging. Finally, we test the ease-
of-use of this model by using simulated smile data to infer estimates of the necessary parameters.
This is seen to work remarkably well.

Our results demonstrate the tools of a separation-of-scales modelling approach that can be
applied to a wide variety of incomplete market problems. This is discussed in the conclusions.

1.2 Literature Survey

We begin with a brief review of the ‘traditional” approach to modelling stochastic volatility that
originates from 1987 (see [23, 37, 45]). The asset price {X;} is taken to be a diffusion process that
is lognormal conditional on the path of a stochastic volatility process {o}:

dXy = pXydt + oy Xy dWy. (11)

Thus X, is driven by the process oy, and is subordinate to it. We shall denote V; = o2, and look at
models for V;; some authors model o;, but there are no real advantages of one or other approach.

The price of a European option {C;,0 < ¢ < T'} is a function of current price and volatility:
Cy = C(Xy, Vi, t). This assumes that we can find the present volatility although it is not directly ob-
servable. Then, the no-arbitrage price of a European call option with strike price K and expiration
date T, in a market with constant spot interest rate r, is given by

Cy = C(Xy, Vi, t) = BEA e 7T0 (X7 — K)7T, (1.2)

where (A7) is an equivalent martingale measure?(under which the prices of the traded assets, bond,
stock and option, are martingales) depending on \? = \(X}, 04, t), the volatility risk premium, or
the market price of risk. The notation E; means the conditional expectation given the past up
to time t: Ey(-) = E(:|F;), with F; the o-algebra of events generated by {(Xs,05) : s < t}.
The presence of a second non-traded factor that the derivative price depends upon, the stochastic
volatility, gives rise to an incomplete market in which the risk inherent in holding an option cannot
be completely hedged by trading in just the underlying asset. Thus there must be a parameter \?
which represents how the market values the unhedged risk, and this too must be estimated from
data once the model is put into practice. The appearance of this parameter will be more apparent
in the derivation of the next section.

The pricing formula (1.2) can be simplified under the following assumptions: if A7 = A(oy, t),
(independent of X;), and oy is uncorrelated with X;, then by iterated expectations,

C(Xy, Vi t) = EZV[CPS (VV)), (1.3)

®Details of the theory of pricing by equivalent martingale measures in the standard Black-Scholes complete markets
case can be found in [20] or [12, Chapter 6].



where

V—L/T 2d (1.4)
=T7-1), ogas, .

and CP%(0) denotes the standard Black-Scholes formula written as a function of the volatility
parameter o. Thus VV is the root-mean-square time average of o(-) over the remaining trajectory
of each realisation. This is a generalisation of the Hull-White formula [23] which originally assumed
that A = 0, meaning that the risk from the volatility process is non-compensated (or can be
diversified away). In that case, the pricing measure is just that defined by the volatility process
with no modification, and the formula is C(X;, V;,t) = E{CBS(VV)}.

1.3 Partial Differential Equation for Option Price

An alternative characterisation of the option price is available when the stochastic volatility is

also an Itd process, namely as the solution of a parabolic partial differential equation similar to

the Black-Scholes pricing PDE, but with an extra dimension representing the dependence on the

volatility process. It is often described as a special case of the general asset pricing PDE presented

by Garman [19]. We give here a direct derivation which demonstrates how the market price of risk

function arises naturally, as well as the breakdown of the hedged and unhedged portions of the risk.
We suppose that the asset price {X;} satisfies

dX; = pXdt + /V, X, dWy, (1.5)

where the square of the volatility process V; = o7 is a continuous solution of

dVy = a(Vy, t)dt + B(Vy, t)dZ,. (1.6)

The Brownian motions W; and Z; have constant correlation p € [—1,1]: d < W, Z >;= pdt. Then
we look for the option price as a smooth function C(Xy,V;,t) by trying to construct a hedged
portfolio of assets which can be priced by the no-arbitrage principle. Unlike the Black-Scholes case,
it is not sufficient to hedge solely with the underlying asset, since the dW; term can be balanced,
but the dZ; term cannot. Thus we try and hedge with the underlying asset and another option
which has a different expiration date.

Let C(")(z,v,t) be the price of an option with expiration date T}, and try to find processes
{at, by, ¢} such that

Cf) = ar, Xr, + b Bry + o1, CFY, (1.7)

where Bt is the price of a riskless bond under the prevailing short-term constant interest rate r, and
Ct(2) is the price of a European option with the same strike price as C1), but different expiration
date Ty > T} > t. In other words, the right-hand side of (1.7) is a portfolio whose payoff at time
T, equals almost surely the payoff of C(1). In addition, the portfolio is to be self-financing so that

dC™V = a,dX, + bidBy + cidC. (1.8)
If such a portfolio can be found, for there to be no arbitrage opportunities, it must be that
Ct(l) = a; Xy + by + CtCt(2)a (1.9)
for all t < Ty. Expanding (1.8) by Itd’s formula,
oCcW ac ac
(1) X 1.1
( It +L,C dt + o7 dX; + o dVy (1.10)

(2) (2) R
= (g +¢ o¢ dX, + ¢ 90 dv, + [ct (2 + £1> c® 4+ btrﬁt] dt,
ox ov ot



where
1, 02
Ly := 3V 55 + pz /B (v, t)
and C(D, C@) and its derivatives are evaluated at (Xt, Vi, t). The risk from the dZ; terms can be
eliminated by balancing the dV; terms, which gives

82
pa— 2—
(/U, t) a/UQ 3

M /o
= 1.11
Ct 80(2)/6’0’ ( )
and to eliminate the dW; terms associated with dX;, we must have
ac) o012
at = — Ct . (112)

ox ox

Substituting for a;, ¢; and b, = (Ct(l) —a Xy — ctCt ) /ﬁt and comparing dt terms in (1.10) gives

ocM\ ! oc@\ !
< - ) LoCV (X, Vi, t) = - LoCP (X, Vi), (1.13)
where 5 p
£2 = a—i-ﬁl +7"(.’L‘a—— )

That is, L5 is the standard Black-Scholes differential operator with volatility parameter /v, plus
second-order terms from the V; diffusion process. Now, the left-hand side of (1.13) contains terms
depending on T} but not T5 and wvice versa for the right-hand side. Thus both sides must be equal to
a function that does not depend on expiration date. Denoting this function A(z,v,t)5(v,t)—a(v,t),
the pricing function C(z,v,t), with the dependence on expiry date supressed, must satisfy the PDE

9 | LoeCy, + pz/0B(v,1)Cyyy + ﬁQ(v t)Cy
+(a(v,t) — Mz, v,t)B(v,t))Cy —i—r(mCx C) = 0. (1.14)

For a call option, the terminal condition is C(z,v,T) = (z — K)* and C(0,v,t) = 0, C ~ x —
Ke 7Tt as x — oo. The v—boundary conditions depend on the specifics of the process {V;}.
The function A is termed the market price of volatility risk because

dC( X, Vi, t) = [(p — r) Xy Cp + MNB(Vi, £)Cy + rCl dt + 0y X1 CopdWy + (Vi t)CydZy.

From this expression, we see that an infinitesimal fractional increase in the volatility risk § increases
the infinitesimal rate of return on the option by A times that fraction.

The equation (1.14) can be considered as the Feynman-Kac PDE associated with the expectation
in (1.2) when the volatility is an It6 process. In particular, the transformation of the measure is
seen explicitly in the transformed drift coefficient in front of the C,, term.

A summary of specific volatility models proposed in the literature is given in the following
table?.

10U denotes an Ornstein-Uhlenbeck process, that is one satisfying a stochastic differential equation of the form
dYy = (aY: + b) dt + kdZ,.



Authors Correlation | Risk Premium | Volatility Process

Hull-White [23] p=0 A=0 dV; = aVidt + £VidZy, lognormal
Scott [37] p=0 A=0 log o4 is mean-reverting OU
Stein-Stein [42] p=0 A =const. ot is modulus of a mean-reverting OU
Ball-Roma, [3] p=0 A=0 dVy, = a(m — V;)dt + (/VidZ,

Heston [21] p#£0 A= v dVy = a(m — V;)dt + (/V,dZ;

There is little intuition behind these volatility models, beyond the need to enforce positivity and,
sometimes, mean-reverting behaviour for the process. This and the fact that a whole unknown and
utterly unobservable function A(z,v,t) has to be estimated in general in order to price consistently
with this theory, has led us and other researchers [1, 15, 24] to new approaches to translating
uncertain volatility risk into price. We address this in Section 3.

2 Smile Curve

Definition Given a price C(K,7) for a European option with time-to-maturity 7 = T — ¢ and
strike price K (from, say, market data or a different pricing model), we can calculate the implied
Black-Scholes volatility I(K;z,7), such that CP%(z,7;1,K) = C(K,7) where z is the present
(time t) price of the underlying asset. It can be found uniquely because of the monotonicity of the
Black-Scholes formula in the volatility parameter: dC2° /9o > 0.

The most quoted phenomenon testifying to the limitations of the standard Black-Scholes model
is the smile effect: that implied volatilities of market prices are not constant across the range of
options, but vary with strike price and time-to-maturity of the contract. In particular, the graph of
I(K, 1) against K for fixed 7 obtained from market options prices is often observed to be U—shaped
with minimum at or near the money (K, = x). This is called the smile curve. Empirical evidence
for this observation can be found, for example, in [9, 11].

In this section, we show that under certain conditions, stochastic volatility models do give prices
whose Black-Scholes implied volatilities plotted against strike price form a smile curve. The first
is a simplified proof of a global result originally due to Renault & Touzi [32] which gives existence
of a smile locally centred around the current forward price of the stock ze"T=%. Then we derive
new asymptotic results that are valid when the volatility process has a small stochastic component.
These give more detailed information about the geometry of the smile curve in cases where the
volatility of the volatility is small, and this can be used for estimation purposes when callibrating
specific models from market data as we shall outline below. In addition, the more difficult correlated
case (p # 0), for which a global result about the shape of implied volatility curves is not known,
can be tackled by asymptotic methods.

2.1 Analytical Results

Theorem 1 (Renault-Touzi) In a stochastic volatility model defined by (1.5), where Z and W are
independent Brownian motions, suppose the risk premium process is a function of V; and t but not
of Xi: A\ = X(Vi,t). Then provided V defined by (1.4) is an L? random variable, the implied
volatility curve I(K,T) for fized T is a smile, that is, it is locally convex around the minimum
Kin = ze™, which is the forward price of the stock.

Proof Let us fix t and T and start with V' being a Bernoulli random variable

V = oy with probability o



o9 with probability 1 — a,

under the measure Q(\?). Then provided the assumptions listed hold, the Hull-White formula
(1.3) applies:
CB5(I(a, K); K) = aCP%(01; K) + (1 — @)CP%(09; K), (2.15)

where OB denotes the standard Black-Scholes formula, and below we give only its volatility
argument. We have written I = I(a, K) to stress the dependence on o and K with = and 7 fixed.
Differentiating (2.15) with respect to K gives

Cy (I, K));—II( + O (I(a, K)) = aCi®(01) + (1 — @) 0K (02),

so that o1
sign <8—K> = sign(f(a)),
where, for fixed K,
f@) = aCR®(01) + (1 — @) CR® (02) — CR® (I(ev, K)),

because CP5 > 0. Clearly if & = 0,1 then I = 09,0, respectively, so f(0) = f(1) = 0. The key
(and somewhat surprising) step is to now differentiate f and (2.15) with respect to «
flla) = Cg%(o1) = C(02) — CRG(I(a, K)) o,
CB5(I(a, K))I, = CP%(0y) — CB%(0y), (2.16)

—~

from which we can obtain an expression for I,. Differentiating f again and substituting directly
from the Black-Scholes formula then gives

LI,

["(@) = 2[CP%(01) = CP*(02)] 73

where L = log(xe’™/K). Assuming, without loss of generality, that o1 < o2, monotonicity of CB3
in the volatility parameter gives CB%(ay) < CP%(03) and I, < 0 from (2.16). Since I > 0, we
conclude that sign(f”(a)) = sign(L). Thus for K < K, := z€"™, L > 0 and f can only achieve a
minimum in [0, 1], implying that f < 0 for 0 < a < 1. Hence I /0K < 0. Similarly for K > K;n,
0I/OK > 0, and 0I/OK = 0 at K = K. The implied volatility curve is locally convex around
Kmin- .

This can be extended by induction on the number of possible values that V' can take, and this
step is given in Appendix A. The result then holds for all distributions of V that are the limit
of finite state distributions, as the number of states goes to infinity. This includes all L? (square
integrable) random variables.

Numerical computations show that as expiration is approached, the region of concavity around
ze'” shrinks, and the curve becomes flat outside this region - the smile becomes a very sharp
downward spike. This is illustrated in Figure 1. To our knowledge, there has been no discussion in
the empirical literature as to how the smile curve evolves in time: it would be interesting to see if
it does indeed become convex nearer to the money as t — T (from real data).

Asymptotically, with V' the Bernoulli distribution above, we can show that I — max{oy, 09}
as t T T, provided |fj| = |log(ze""/K)| > VT —t. At Knin (I~J =0), I - aoy + (1 — @)os < omax,
so the narrow spike behaviour is confirmed analytically. Note that I is not defined when ¢t = T
because any value I matches the terminal payoff.
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Figure 1: The implied volatility smile curves become spikier as ¢ — T. Here, V is Bernoulli with
a = 0.2, 01 = 0.2 and 09 = 0.3. The shifting base of the smile curve with time has been removed
by the ze" T~ scaling.

2.2 Asymptotic Smile

We utilise two approaches to demonstrate the smile effect when the random component of the
volatility process is small. For the uncorrelated case, a direct asymptotic expansion of the Hull-
White formula is simplest. Similar Taylor series expansions were presented in [23, 3], but these
are not generally valid without an asymptotic approximation. When p # 0, where the result is
far more complex, we construct an asymptotic solution of the PDE satisfied by the stochastic
volatility option pricing function. As described by Black [7], one often finds that p < 0 (rising
volatility pushes stock prices down), so the latter is an important case.

2.3 Uncorrelated Case

Suppose o°(t) = og + €z(t) for e << 1 where z(t) is some process with first and second moments.
In this subsection, we shall assume for simplicity that volatility risk is non-compensated so that
A = 0 and the measure Q()) is denoted just (). Then we can expand pathwise

[N

V- lﬁ /tT (0°(s))? ds] = o0+ eH(LET) + G (ET) + -, (2.17)

where
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G(t:T) :Eakélf?@@—mm}

We look for an asymptotic expansion of the implied volatility I¢ defined by CB%(I¢) = EtQ [C’BS (V VE)]

of the form I® = g¢ + eI} + €I, + - - - . Expanding and comparing powers of € reveals
I = E}[HHT),
1 CBS5(00) g
L = §vart[H(t T =%—— CBS (o) + EZ[G(tT)]

BGHT)] - ——van(H (1)) [ Lotr — L

= ;T — —v ; —O{T — ——

t ' 200 " ’ 470 o3t )’

and so the plot of I¢ against K deviates from a flat line at O(¢2) with a minimum at L = 0 (that
is, K = ze""), and the smile becomes steeper as ¢ 1 T'( i.e. 7] 0). Provided the expansion (2.17) is
valid, which depends on 7 and the process z(-), the expansion for I¢ as a function of K is asymptotic

in the region
"T(1—o00y/7/e) < K <z’ (1 4+ 0g4/7/€),

that is, when L2 /ot is smaller than 1/¢. This is clearly a large region of strike prices around the
current stock price until very close to the expiration date. It remains convex, in this approximation,
for K < ze'™H1/(ov7),

Thus the asymptotic analysis gives detailed information about the geometry of the smile curve
when the stochastic component of the volatility is small, which is not available in the global result.
For example, we see that a larger volatility of volatility will increase var,[H (¢;T')], which produces
a smile with steeper sides.

A similar calculation will be presented in section (3.3) when the volatility is oscillating on a time
scale that is short compared to the length of the derivative contract. This case will be important in
connecting the traditional approach to stochastic volatility with the approach presented in Section
3.

In addition, the expansion shows that such stochastic volatility models do not all display the
same time-to-maturity effect as they do the smile effect. To see this, we consider the variation of
I¢ with T for fixed ¢, and as

orr 1
or T-—t
it is clear that the variation of implied volatility with time-to-maturity will depend on the statistics

of the volatility process. This is consistent with Rubinstein [34] who found different time-to-
maturity effects in different time periods and for different moneyness ratios.

BP {«(T) - HtT)},

2.4 Correlated Case

When {V;} is an It6 process as in section (1.3), we model the small randomness of volatility by
supposing that
AVE = ca(VE, t)dt + EB(VE. )7

for some € << 1, so that the option pricing function C*(x,v,t) satisfies

C; + lfum Cs, + VeprJuB(v, t)CS, + sﬁQ(v t)C; (2.18)
+ (ea(v,t) + Ved(v,t)) C; + r(mCi - Cg) = 0, (2.19)

10



with appropriate terminal and boundary conditions. We have assumed that A is independent of z
and defined d(v,t) = —A(v,t)B(v,1).

When e = 0, (2.19) reduces to the Black-Scholes PDE with volatility parameter /v; the solution
is CP9(y/v). Constructing an asymptotic solution

C = CPY(Vv) + eCl +eC? + - - -,

we find

£rs(V)C! = ~gpa(oCES (V) ~ G2 CES (),

where Lpg(o)u := uy + %021‘ Ugz +7(zuy —u), and C! has zero terminal and boundary conditions.
Because v is essentially a parameter in this equation, we can construct a solution of the form

C' = A(Vo,t)zCH5 (V) + B(v,1)CP5 (V).

For simplicity, suppose «, 6 and A do not explicitly depend on ¢. Then

2

Alot) = pBlo®)(T 1) (2.20)
0.2
B(o,t) = %(T—t).

In any case, the first-order correction to the implied volatility I = /v + \/2I' 4+ eI? + - - - is given
by N

I' = B(/v,t) + A(\/v,1) <1 - #> (2.21)

' ’ 2 w(T-1t))’

and there is no dependence on the drift «(v,t) of the volatility process to this order. Since A
vanishes when p = 0, and B does not depend on p, the implied volatility is still flat to O(\/€) in
the uncorrelated case, as was shown in the previous section. When p # 0, I¢ is linear to first-order
in L, so there is no apparent local minimum. In the case of ¢-independent coefficients, if p <0,
then A < 0 and 9I'/OK < 0, so I* increases slowly downwards as K increases, within the region
of validity L = O(1).

This ties in with the empirical observations of Rubinstein [34] and MacBeth & Merville [27]
where monotonic implied volatility curves were reported: sometimes I was seen to increase with
K and in other time periods decrease with K. Hull & White and Wiggins [45], from numerical
experiments, related the slope of 91 /0K to the sign of the correlation p, and this is confirmed by the
analytical formulas (2.20,2.21). However, as they noted, it is not clear why the correlation should
change sign in different time periods. This behaviour holds independently of specific volatility
modelling and choice of A(v,t), and the formulas (2.20-2.21) can be used to fit smile data and
suggest tractable volatility models.

We can further construct C2, and much calculation reveals that it is a quartic in L if p # 0 and
a quadratic in L with minimum at L = 0 if p = 0, which is expected from the previous section’s
result.

It is worth noting that if o, § or A depend on z, it will not in general be possible to construct
asymptotic solutions from the Black-Scholes formula and its derivatives.

3 Time Scales and Asymptotics

We now take a somewhat different approach to the traditional view of stochastic volatility consid-
ered above. The various models of the volatility process in the literature exhibit differing degrees
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of success that might seem to commend or condemn them. For example, with Hull-White’s log-
normal model, the volatility stays positive, but it can grow unboundedly with time which does
not reflect true behaviour. The square-root process of Heston [21] and Ball-Roma [3] also remains
positive and reflects an intuitively appealing idea of volatility being mean-reverting; in addition,
the option price has a closed-form solution, up to calculation of Fourier integrals. The same is also
true for Stein’s model [42]. What they all have in common is that they give prices that are slightly
different from Black-Scholes prices®, and that these prices always show the smile effect® (when the
correlation is zero). The models can then be callibrated from market prices (for example by the
method of moments outlined by Scott) at some expense. At the very least, two model-describing
parameters plus the correlation p, today’s value of the volatility and the market price of risk have to
be estimated, so the complexity over Black-Scholes is considerably greater while the pricing biases
are small. This at least suggests that we might take the random volatility to be something simpler
than a continuous It6 process: if o, a two-state Markov chain gives the smile, why model it with a
far more complicated process?

New approaches to modelling uncertain volatility have been initiated by Avellaneda et al. [1, 2]
who construct worst case hedging strategies for complex portfolios of options assuming volatility
lies in a known band, and Fournié et al.[18], who suggest simple, rapidly fluctuating volatility
processes.

The approach we propose is to suppose that uncertainty in the volatility leads to uncertainty
in the option price. Since the volatility cannot be directly observed and modelled, we shall restrict
ourselves to finding pricing bands rather than exact prices, and hedging strategies that account for
the risk inherent in a randomly fluctuating volatility environment, without assuming knowledge of
the exact distribution. Furthermore, we shall exploit the fact that the asset price and its volatility
may fluctuate on different time scales. The price is modelled as an It6 process as usual, whose
driving Brownian motion oscillates on a scale that is “infinitely fast”. Now, if we suppose the
volatility is stochastic, to account for the smile effect, it is intuitive to expect that its time scale
of variation is small compared with the lifetime of the derivative contract we are interested in
(typically many months), but not as small as the infinitesimal scale of the Brownian motion. Thus
the fastest random fluctuations of price are picked up by the Wiener process, and intermediate
fluctuations by the volatility process. For example, it is reasonable that asset price variations
are on the scale of minutes while volatility fluctuations are daily, which is small compared to a
nine-month options contract.

Over the longer O(T) time scale, the fast fluctuations of the volatility give the appearance
of a constant (in time) volatility function which would correspond to a Black-Scholes price; the
randomness of the volatility would manifest itself as confidence bands around this price whose
width can be calculated. Thus the fact that stock price and volatility change on different time
scales allows us to develop an asymptotic pricing theory around Black-Scholes. The law of large
numbers and the central limit theorem remove the dependence on the specifics of the volatility
process, reflecting the robustness of this method.

5Tt is not obvious what the Black-Scholes price is in the context of a stochastic volatility model: Hull-White use
E(V) as the volatility (squared) parameter in the Black-Scholes formula, and Stein-Stein use the mean that o; reverts
to in their model. But both of these, which are used to describe pricing biases of the new models from Black-Scholes
are really measuring errors in approximating stochastic volatility options prices with Black-Scholes prices by adjusting
the volatility parameter - it is like trying to guess the implied volatility curve and then inferring biases from the errors
of the guess. A more logical measure would be to assume volatility is stochastic according to the models, simulate
the asset price, and then calculate a historical Black-Scholes volatility parameter by fitting the generated data to a
lognormal process.

5We shall loosely refer to the smile effect as meaning any non-constant variation of Black-Scholes implied volatility
with strike price.
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3.1 Model

The generalised Black-Scholes analysis tells us that the price C(7,z) of a European option on a
stock whose price is modelled as the It6 process

dX, = p(t, Xy)dt + 3(t, X,)dW,

satisfies the PDE .
C, = 522(7, 1)Coy +r(x2Cy — C), (3.22)

where 7 = T — ¢ is the time to expiration of the contract’, and X(r,z) := (T — 7,2) is a
deterministic function called the volatility. If we now suppose the volatility is random and rapidly
varying in time, so that it is given by o°(7,2) = o(Z,z), where o(7,z) = 6(T — 7,z) for some
stochastic process {(¢,z),t > 0}® that stays positive, taking values in a function space, and some
small € > 0, then we define the associated stochastic option price C¢(7,z) as the solution of the
stochastic PDE )
with initial condition C¢(0,z) = (z — K)* for a call option. We have allowed the volatility to
depend on the stock price, but our results will not depend on specific modelling of such a function
space valued process.

We are interested in the asymptotic behaviour of C® as € | 0: this approximation will tell us
how to deal with the risk from the randomness of the volatility.

o’ (%, 2)05, + r(aC; - C7), (3.23)

3.2 Results
3.2.1 Pricing

Suppose that o (7, z) is an ergodic Markov process and that o%(7, z) is stationary. For the moment,
we shall restrict admissible processes to be bounded and continuous almost surely. Then, under
further technical assumptions given in Appendix B?, and with ||-|| denoting the space-time sup-norm
defined there in (B.49), we have that as ¢ | 0,

P(lc=-Cll>s) =0,

for any 6 > 0 and each 0 < 7 < T, where C(1, ; Vo? (z)) denotes the solution to the generalised
Black-Scholes PDE (3.22) with diffusion coefficient'® 02(z) = E{o?(r,z)} which does not depend
on 7 by the stationarity assumption. This result is an averaging principle and will be derived in
Appendix B by multiple scales and the ergodic theorem. It is analogous to the law of large numbers,
and says that C° converges in probability to the Black-Scholes price with an averaged volatility
function.

In the special case when the volatility process is separable in 7 and z, o(7,2) = ¢(7)z, where
{q(-)} is an ergodic Markov real-valued process with ¢%(-) stationary, the ergodic theorem implies

ha
o 7 =1 [ (1) ds o7 = i) (3.20

T

"We have changed time variable from ¢ to 7 so as to deal with forward problems for which ‘forward-pointing’ It6
integrals are well-defined.

8The process 6(t,z) defines an increasing filtration F; C F, for t < s

9The necessary smoothing of the initial data for options is dealt with there.

10The diffusion coefficient is the coefficient in front of the second-derivative term.
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as € | 0 with probability 1, and so, by change of time variable,

Cé(z,v,7) = CBS(T,.’L‘; VVE) - C(r,2;7 ?) (3.25)

in probability. Thus only the statistical average of the stationary process is needed, rather than
the path average.
We define the (scaled) error Z¢ in approximating C* by C' by the following expression:

Cé(1,z) = C(1, ; \/E(m)) +VeZe(r,z), (3.26)

and consider the statistics of this fluctuation around the Black-Scholes average: the quantification
of the stochastic volatility risk will be in this term. From the stochastic PDE (3.23) and the

Black-Scholes PDE (3.22) satisfied by C(7,z; Vo2(x)), Z° satisfies

e _ 1 2, T 5 £ £ 1 U2(§ax) —?(,’E) -
Z: = 29 (g,m)me +r(zZ; — Z°) + 3 < N Cra- (3.27)

Writing this in time-integrated form, we can use the central limit theorem for Markov processes:

7 [ (P C =P0ugt) s = [ (s, (5.)). (3.28)

as ¢ | 0 where (-,-) denotes the L?(R") inner product and convergence is in the sense of distributions
for all test functions g(7,-) € S(R™), the Schwarz space of rapidly decreasing C*°(R™) functions.
Here W (7, z) is a Brownian motion!! with covariance function (=, y) defined by

Yz, y) = 2/000R(s,m,y)ds, (3.29)
R(si = saolwy) = E{(0%(s1,2) = 0%(2))(0*(s2,9) — 7°(y)) } (3.30)

Applying this to (3.27) tells us that the fluctuation Z° converges weakly to a process Z(7, x) which
satisfies

1— 1— ~
dZ = [502(37)2:(::(: +r(zZ, — Z)dr + §Cde’ (3.31)

and Z(0,z) = 0. Further details are given in Appendix B. This is a linear stochastic PDE, and
so Z(t,x) is Gaussian with mean zero and covariance U(7, z,y) := E{Z(1,2)Z(7,y)} that satisfies
the following (Lyapunov) partial differential equation:

1— 1— 1 —
Ur = 502($)Um + EUQ(y)Uyy +r(zUsz + yUy — 2U) + Zcm(Ta 2)7* (2, 9)Ca (T, y), (3.32)
with U(0,z,y) = 0. It gives the pricing bands or confidence intervals accounting for the unhedged

volatility risk: for example,
Clr,2;\ 0%(x)) £ 2y/e((7, z),

where ((7,z) = E{Z*(r,7)} = U(7,z,z). Pricing within two standard deviations of the appropriate
Black-Scholes mean provides roughly 95% protection against volatility fluctuations. These bands
could, for example, be utilised to quote a bid-ask spread.

1 Again, we mean that W evolves forward with natural time and is evaluated at 7.
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When o (7, x) = zq(7), corresponding to the ‘traditional’ separable stochastic volatility situation
of X; lognormal driven by the process {q(-)},

. a 2
((r,z) = T _K :1 exp (—l/T — 7[10g (x_/K)] > , (3.33)
2/2rq2 7 2¢%T

where a = r/q? —1/2, v = /2 + ¢2/8 + r?/2¢2, and 4? is the integral of the correlation time (or
power spectral density) for ¢*:

¥ =2 /000 E{(¢*(s) — ¢*)(¢*(0) — ¢?) }ds.

The formula (3.33) is calculated using the Green’s function for the standard Black-Scholes PDE
(see Appendix C). A plot of the pricing band width relative to the first Black-Scholes term!'? C is
shown in Figure 2, with /% taken to be 0.001. The relative bandwidth is monotonically decreasing,
so the greatest uncertainty about the option price arising from uncertainty about the volatility is
far out-of-the-money. For a call option, one can be confident of deep in-the-money Black-Scholes
prices, as long as the correct averaged volatility is used.

0.08
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Relative pricing bandwidth
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0.01

80 85 90 95 100 105 110 115 120
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Figure 2: Relative pricing bandwidth 4+/¢¢(0.5,z)/C(0.5,z) for call option with strike price K =
100 as a function of present stock price z with 7 = 0.5 (six months to expiration). Here /ey = 0.001

and \/q:2 =0.2.

12This nondimensional measure was suggested by a referee.
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3.2.2 Hedging

We now address the problem of hedging the risk of having written an option on the stock, which
is an important issue for large trading institutions. In the standard Black-Scholes case, a perfect
hedge can be achieved by holding AP = 9CPB®/0z shares of the underlying to eliminate the
risk from the Brownian fluctuations. The feedback effect of a significant amount of such hedging
strategies on market volatility was studied in [41].

In the traditional stochastic volatility case, the procedure is less clear. For a perfect hedge,
another derivative security on the same stock is needed and hedging ratios are given by formulas
like (1.11,1.12) when, for example, an option with a later expiration date is used. This is known as
A-Y hedging (because the original notation had A of the underlying and ¥ of the other derivative
defining the strategy), but is often regarded as unsatisfactory because of the transaction costs
involved in purchasing the other derivative. Romano & Touzi [33] looked for an optimal second
option strike price to hedge with to lower such costs, and Renault & Touzi [32] studied the effects
of just hedging with the underlying stock.

Another line of research by Follmer & Sondermann [15] and Schweizer [36] tackles the implicit
uncertainty of how to hedge represented by the dependence of the pricing measure (A7) on the
volatility risk parameter \° (see expression (1.2)) by choosing the measure that minimises the
expected variance of the cost of hedging with just the underlying. Solving this stochastic least-
squares problem defines a so-called minimal equivalent martingale measure that characterises the
risk preference of the investor, and yields a hedging strategy that is self-financing on the average.
The analysis for a more general market model (in which, for example, the volatility process can also
depend on the stock price as we have allowed in this section) is presented in Hofmann et al.[22].

In this vein, we are interested in hedging strategies that can be adapted to the amount of
volatility risk each investor will permit him or herself to be exposed to. This is characterised by
hedging confidence intervals. In the generalised Black-Scholes case, the hedging ratio A = 0C/dz
gives the number of shares of the underlying stock that an option writer should buy to entirely
hedge away the risk from the randomness in the stock price. It satisfies the PDE

A, = 322(T,$)me + <7’$ + % [EQ(T,LE)] > A,

with initial condition A(0,z) = H(x — K) for a call option'®. When the volatility is stochastic, we
define the stochastic hedging ratio A®(7,z) as the solution of the corresponding stochastic PDE

1 5 7 1 T
85 = 5t Ca)as, + (ro+ 5 |o*(Ca)

) Al (3.34)

where we have assumed that o(7, ) is restricted to a space of admissible processes that are smooth
enough that o, (7, z) exists almost surely. As ¢ | 0,

P (la* = 3] > 8) o0,

for any § > 0 and each 0 < 7 < T, where A(7, ) satisfies the averaged hedging PDE

A, = %O‘Q(,’E)me + <7’$ + %E(m)) A,

with a(r,z) := [0?(7,z)] , and @(z) := E{a(r,z)}. We assume the technical restrictions of Appen-
dix B on the process a(7, ).

13Here, H(z) denotes the Heaviside function (H(z) =0 if z < 0 and H(z) = 1 if z > 0)
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Thus the fluctuation Y¢(r,z) defined by
Af(1,2) = AT, 2) + VeYe(T,2),

1 T 1 T
Y: = 502 <g,x> Yo+ <7‘:v+ 2@ <g,x>> Y,

1[0%(Z,2) —02(z)]| 1{a(Z,z)—a(z) |~
[Flen=Tta s et st

Under our regularity assumptions, a central limit theorem of the form (3.28) holds for a(7, x)
1 /7 S T ~
— 5y —a( )Y ds — ), dB(s,- 3.35
7= [ (o= a6 ) ds = [ (ofe).dB(s.) (3.39
where B(r,z) is a Brownian motion with covariance I'%(z,y) defined by
Py = 2 Risoy)ds (3.36)
0

R(js1 = sol,z,y) = E(a(s1,z) —a(z))(a(s2,y) —a(y))}. (3.37)

The Brownian motion B(r,z) is related to W (r, ), the driving Brownian in the limit process for
o?(7,z) in (3.28), by

B{ [0t (s ) s, aB s} = [ [ [ ol 0w )l (o5, p)dodyds.

Hence Y* converges weakly to a process {Y (7, z)} satisfying the linear stochastic PDE

satisfies

1— 1 1 /— = — =
dy = [50—2@)1/“ + <r:v + Ea(w)) Ym} dr + 3 (Ade + AmdB) : (3.38)

As we did with the stochastic price, we characterise the confidence bands for the hedging strategy
taking into account the randomness of the volatility by the variance of the limiting fluctuation
process, Y(7,z) := E{Y?(r,7)}. In general, the covariance function V (7, z,y) := E{Y (7,2)Y (1,y)}
will satisfy the following (Lyapunov) PDE,

1— — 1 1
Vy = 50%@)Vas + 502 0)Vay + [0+ 50V + [y + 5aW)]Vy + M(r,2,9),

where

M(T,ZB,y) = me(T,{IE)’}/2(ZB,y)me(T, y)

1
4
+ B (7, ) (5, 9)T (5, 9) B (7,9) + BT, 2)T2(,9) Ba(7, )
with V(0,z,y) = 0.

In the ‘traditional’ separable case, we find, using the Green’s function for the standard Black-
Scholes hedging PDE (see Appendix C), that

\/m __7 (g)aﬂ ( log <%>]2 + (27’ + 3?) 7') exp <—I/T - M) , (3.39)

21/67¢2 2¢°7

where a and v are as defined after (3.33). The relative risk bandwidth 4+/eY (7, z)/A(7, z) for
7 = 0.5 is shown in Figure 3. Agin, it is decreasing in the stock price z.

The results of this section depend only on the statistics 02(x),a(z), v(z,y), ['(z, y) of the process
o(7,z) in the most general case, and so are not sensitive to specific modelling of the volatility. This

will be important for estimation.
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Figure 3: Relative hedging bandwidth 4+/eY(0.5,7)/A(0.5,z) for the parameter values given in
Figure 2.

3.2.3 Technical Assumptions
We give here for reference the restrictions on (¢, ) assumed throughout this chapter.
1. Wide-sense stationary.
2. Ergodic.
3. Markov.
4. Uncorrelated with W (t), the Brownian driving the stock price.
5. 6(t,z)/z > 0 in z > 0 almost surely.
6. 6(t,z)/z has four uniformly bounded and continuous derivatives in z for z > 0.

Points (2) and (3) are also assumed for the process a(t,z) := [6%(t, )], and (6) for a(t,z)/=.

In addition, the derivative contract payoff function, say h(z) in general, is supposed to have
four bounded continuous derivatives for the pricing theory and five for the hedging theory. This
may entail some smoothing of kinks in option-type payoff functions, but this can be designed to
have little effect in practice at times not close to expiration. We do not pursue a detailed study of
the effect of smoothing or the necessity of these conditions for the theory to hold.
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3.2.4 Numerical Simulations

We simulate a stock price trajectory that is conditionally lognormal, driven by a rapidly fluctuating
two-state Markov chain volatility process'*, and compare three hedging strategies, one with the
averaged volatility, corresponding approximately to the traditional approach (through the ergodic
theorem (3.24)), one at the top edge of the hedging band described above and one at the bottom
edge of the band.

Thus the asset price follows

t
dX: = pXidt +q ( ) XedW, (3.40)

€
and our hedging strategies against the risk of having sold a call option are
acBS —
AV = <\/ 2) 3.41
am q 7 ( )

Af = o0 <\/q:2) + 2V, (3.42)

oz
BS , —
AG = agm <\/q72> _oVeY (3.43)

The second strategy costs more than the first since it involves holding more of the underlying, but as
it is at the top edge of the band, the ‘perfect’ hedging strategy will lie below (and thus be cheaper)
95% of the time. The third strategy costs less than the other two, but the ‘perfect’ replicating
strategy now lies above it most of the time, so there is likely to be more to pay up at expiration.

All three sell the option initially for CB° (0, X (0); \/ q_2> We assume for this experiment that the

interest rate r = 0.

In Figure 4 we show the stock, volatility and hedging processes along a typical realization,
and in Figure 5 we show profit-loss histograms of 1000 runs implementing the strategies over the
length of a twelve month contract (7" = 1) with 200 equally spaced re-hedgings and the asset price
beginning at 90% of the strike price. The three strategies seem to give similarly distributed profits
(calculated as the price of the option minus the hedging costs minus any payout at maturity of the
option), roughly bell-shaped around zero.

However in Figure 6 we show the differences in the profits for the three strategies: the top of
the band strategy does slightly better on average than the middle of the band strategy which in
turn does slightly better than the bottom of the band strategy. This is reflected by the bias to the
positive side of each of these three histograms. Over the 1000 experiments, the top strategy had
a mean profit of $0.03 (per contract) over the middle one, and the middle a mean profit of $0.03
over the bottom.

The interpretation is as follows: if a trader pursues the top of the band strategy, he or she is
being more risk averse than those hedging lower in the band. The volatility fluctuations will be
such that this trader is over-hedging (relative to the ‘perfect’ hedge) 95% of the time. Thus he pays
more to hedge by following a near-worst-case strategy. A trader pursuing a middle of the band
Black-Scholes strategy will equally likely over-hedge or under-hedge and those pursuing bottom of
the band strategies are most likely under-hedging, but saving on the cost.

The simulation demonstrates how the information content of the bands can be utilized for risk
management.

14We do not propose this as a realistic model of volatility, but use it here to illustrate features of the theory.
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Typical Realization
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Figure 4: Stock price, Volatility and hedging strategies when ¢ = 0.0005, K = 100,7 = 1. In the
last, the solid curve is AV, the dotted curve is A7 up to first-order, and ¢ is exaggerated in the
plot to show the difference. The strategy A$ lies similarly above the solid curve and is not shown
here.

3.3 Connection with Smile Curve

We detail here the connection between rapidly fluctuating volatility processes, traditional stochastic
volatility models and the smile curve. In particular, this will show that the stochastic option price
C¢ for the special separable volatility case gives the smile on average, and that we can obtain
expressions for the geometry of the implied volatility curve by asymptotic methods combining the
averaging techniques of section (3.2.1) and the calculations of section (2.3).

Thus we look at o(7,z) = zq(t) where ¢?(7) is a stationary ergodic stochastic process. The
stock price X*(-) satisfies

AXE (1) = pX= (1)t + g (?) XE (1) dW (£).

Then recall that the ‘traditional’ stochastic volatility price C°V (X¢(7),q(7),7) of a European call
option is defined to be

OV = B{CP (VT ()},

where we assume the market price of volatility A = 0, and V" (7) is defined in (3.24). We now use the
following well-known result that is the averaging and central limit theorem for finite-dimensional
processes to construct an asymptotic expansion for C°V (see, for example, [31]).

Theorem 2 Finite-dimensional averaging Under the conditions on q(-) stated above, V' (T) con-
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Figure 5: Profit-loss statistics after 1000 runs of hedging against having sold a call option struck
at K =100 with T'= 1.

verges strongly to the average ¢2 in the sense that

limP{ sup V(1) —¢?| > 5} =0,
0 Lo<r<t

for any 6 > 0 and T < co. In addition, the appropriately scaled error process in the approzimation
of VE(7) by 2, also referred to as the fluctuation and defined by R*(7) := (V" (1)—q2)/ /€, converges
weakly to a Gaussian random variable Ry v with mean zero™®.

To derive the asymptotic smile arising from the rapidly fluctuating volatility process, we write

V(1) = ¢2 + /eR*(7), and expand

CSV — CBS(\/qZQ) + \/ECUBS(\/q_;)Et{RE} +g C(TB(TS(\/q;) o CUBS(\/q;) Et{(Ra)Q}

M a2 q_2 —2%
G ()

Equating this with C?°(I¢) where I¢ = \/q:2 + Vel +ely + O(e%/?), we find

E R
n - Elfarl t_’T] =0, (3.44)
24/
158pecifically, we could write Ry 7 = —% ftT dB(s), where {B(-)} is a standard Brownian motion adapted to the

filtration F; from §(¢).

21



m@_ﬂlﬂﬂﬂﬁo_% L HHM [} |
Al 1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
Middle — Bottom

””@@HHHH e a—— HH HHHHOHQHH””W

Top - Bottom

Figure 6: Differences in profit-loss statistics from the experiments of Figure 5. The top graph is
the top of the band strategy profits less the middle of the band strategy profits, and similarly the
other two graphs, as labeled. The distributions are bell-shaped but biased to the positive side.
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where we have replaced Z¢(7) by its weak Gaussian mean zero limit in the expectations and
variance. As in section (2.3), these expressions give the asymptotic geometry of the smile curve
arising from a rapidly fluctuating volatility process.

The connection with the stochastic volatility model for derivative prices introduced in section
(3.1) is clear. When the process o(7,z) is separable as ¢(7)z, the stochastic option price is

Ce(r,z) = CBI(\V (7)),
as can be shown by the usual change of time variable in the stochastic PDE (3.23). Thus
C%V(z,q,7) = E{C*(1,2)|q(T — 7) = q} and so, the averaged stochastic option price gives the
asymptotic smile curve.

3.4 Estimation issues

Traditionally, the approach to the estimation aspect of implementing stochastic volatility models
has been to write down a specific model of the volatility process (as in the table at the end of
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section (1.3)), and then use historical stock price data to identify the relevant parameters using
the method of moments. Furthermore, it is necessary to assume a priori a specific functional form
for the volatility risk premium as explained in Wiggins [45], who derives his )\ using a market
equilibrium argument for investors with log utility functions.

Scott [38] assumes A is a constant and estimates it and today’s value of volatility as minimizers of
the squared discrepancy between observed and model options prices. Renault & Touzi [32] suggest
using implied volatilities to obtain the stochastic volatility parameters from a maximum likelihood
estimator. In this manner, we plan to use observed smile curves to estimate the parameters needed
to calculate the pricing and hedging bands from our rapidly fluctuating volatility theory. Since
traditional models coupled with estimation themselves lead to confidence intervals for predicted
prices (because of the uncertainty in the parameter identification process), our seeking of model-
independent bands in the first place might not be too great a weakening of the goals of stochastic
volatility theory in practice.

Use of implied volatility or option price data from European options for market analysis purposes
has been reported recently by Shimko [39], Dupire [14], Derman & Kani [11] and Rubinstein
[35], who all sought a deterministic term-structure of volatility (analogous to X(7,z) in (3.22))
and a corresponding risk-neutral probability density for the asset price. The first three exploit
the Breeden-Litzenberger formula relating the density function to the option price convexity in
strike price, C}’(bf(, using interpolation or binomial trees. Rubinstein uses an optimization scheme
to find the probability density values (at the nodes of a binomial tree) that are least-squares
closest to lognormal risk-neutral probabilities, and allow expected stock and option prices to lie
in the observed bid-ask spreads. His results indicate greater skew and kurtosis than lognormal
distributions from data after the 1987 crash. However, the extraction of such detailed information
about the market’s view of volatility risk from today’s data has poor predictive ability - tomorrow’s
estimate of the term-structure will likely be different from today’s. This problem of consistency
over time is further discussed in Dumas et al. [13]. Of course, since we take the view that volatility
is genuinely stochastic (rather than just as a function of the stock price 3(¢, X (¢))), we do not seek
the whole term-structure, but a few (model-independent) statistics.

We outline a simple procedure for the separable volatility case for which we have explicit
(asymptotic) formulas. Suppose that at discrete times ¢, we observe the stock price z,, and a set
of implied volatilities 1°%%(z,,, tp; K;;,T;) from options with expiration dates T; and strike prices
K;;, and that for each Tj;, the interpolated points seem to form a shallow smile as a function of K.
Then, for our theory, we need to estimate ¢, ¢? and % for use in (3.33) or (3.39).

We could view each observed smile curve as an approximation to the average smile curve I°
coming from E{C¢} = CP%(I¢). By a suitable best-fit of the implied volatility data to curves de-

scribed explicitly by I¢ = \/q:2 +¢eIy and (3.45), we can obtain estimates for ¢, ¢2 and var,, [Ry, 7).
It remains to relate vary, [R;, 7,] to 4. This is trivial in the separable case by the representation
Riyr = —Ti_t ftT dB(s), and vary, [Ry, 1.] = 4%/(T; — t»). Thus in fact we shall end up estimating
the product €42, but it is exactly the square root of this that is needed in the confidence band
formulas. What we have assumed is that the market through its trading of options comes to some
‘average’ view of volatility risk, and that this is reflected in market prices. Thus we want to infer
the market’s quantification of this risk contained in the observed smile curves, and from this obtain
a first-pass approximation to our parameters. More precise information will come from historical
stock price data as described in Section 3.4.2. Our taking actual market prices to produce bands is
consistent with the philosophy given by Wilmott [46] who writes: “If we drop the assumption that
markets are always correct and that financial modelling is at best an approzimate science, then there

16The formula tells us we should fit each strike time’s data to a quadratic curve in L.

23



is no such thing as risk-free hedging ---. [An] alternative approach assumes uncertain volatility:
if volatility is so difficult to measure, why not accept this situation and instead work on volatility
ranges? A consequence is that there is no such thing as a single fair value for an option, all prices
within a given range are possible.”

3.4.1 Numerical Simulation of Smile Fitting

To demonstrate how smile data can be used to infer ¢2 and €42, we ran the following experiment
using generated stock and options prices. We assumed that prices for options with 10 evenly
distributed strike prices between $90 and $110 all with the same expiration date T = 1 were
observed at times 0 < t, <t; =0.025 < T, where ¢, = nAt,n =0,---, N and At = 0.005.

1. Simulate a realisation of the stock price X¢(¢) at discrete times t,, n = 0,---, N, using a
realisation of ¢(t/¢), a rapidly fluctuating two-state Markov chain. We chose £ = 0.0005 and
a volatility ¢(-) taking values 0.1 or 0.4 with power spectral density 5 = 1.

2. At each time-step n, generate Cg”’f corresponding to strike price K; (i = 1,---,I) by running

5000 realizations of {¢°(t1),t, < tx < T}, calculating V° = ¥ ,[¢°(t;)]? and then averaging
CBS(v Ve K;) over the 5000 paths. The C°* produced this way display a shallow smile as
required for the experiment, because they are an approximation to E{C®} to O(1//5000 =~
1072).

3. Calculate the observed implied volatility curves I°%(z,,,t,; K;,T) by numerically inverting
the Black-Scholes formula.

4. Set-up I x (N + 1) least-squares equations to fit I°** to the formula (3.45) for I°. In our
case, I =10 and N = 5. This is effectively an interpolation of the smile data simultaneously
in K — t space to functions that are quadratic in log K and linear in ¢. Such basis functions
arise naturally from the theory and suggest an improvement to the aribitrary quadratic-in- K
basis used by Shimko [39] to find the term-structure of volatility.

5. The first-order equations for the least-squares problem give a 2 X 2 nonlinear system of

equations for \/¢2 and €4? that is easily solved by Newton-Raphson since the Jacobian can
be calculated explicitly.

We ran this simulation and inversion algorithm 100 times (so that each time, the realised asset

price path is different). Most of the time (94%), we obtained a good estimate of \/q:2 within 3% of
the theoretical value!” of 0.2915 and an estimate of 42 that was of the right order of magnitude
(10~%), but inaccurate by up to 26%. On other runs, the estimate of 4% was negative (4%), or
the algorithm did not converge (2%). These preliminary findings from a simple fitting procedure
indicate that a first-pass extraction of the necessary parameters can be obtained from smile data
alone, before even looking at historical stock price data for further accuracy. In particular, the
potential problem of 42 being estimated as negative can be fixed by constraining it to be positive.
We defer further improvements of the algorithm until we use real market data, which will be tackled
in future work. Furthermore, empirical work [9] suggests that implied volatility from options prices
is not a good forecaster of future realised volatility, and that historical volatility estimates from
stock price data are superior in this sense. Thus it is crucial to employ a detailed analysis of past
stock prices to extract a good estimate of e92 and ¢2.

1"This is the theoretical value if C°®* were computed by averaging over all volatility paths, whereas we generate
our data from an average over only 5000 paths
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3.4.2 Estimation of Power Spectral Density

We now present a simple algorithm to estimate ¢2 and £42 using long-run historical stock price data.
The method exploits the conditional lognormal distribution of X¢(¢) in the separable stochastic
volatility model (3.40). The increments of the logarithm of the observed stock prices are Gaussian
with respect to the randomness from the Brownian motion.

Suppose we have discrete observations X*(t,) of the stock price at evenly-spaced times ¢, =
nAt,n=20,---,N. Then, as Y*(t) := log X*(t) satisfies

dY*(t) = <,u — %q2 <£>> dt +q (é) dWy,

the discrete increments of the logs of the observations satisfy
t 1, [ty
D, =Y,—-Y,1=¢q . AW, + N_Eq " At,

where AW, is a N(0, At) random variable.
Then the quantities

1 N—k
2
Mk = N—_k Z (Dn _Dn+k) s
n=1
for k=1,---,N — 1, can be used to estimate ¢2 because

B{M,} = 2@2At + O (At3/2) ,

where we have used the stationarity of ¢2(-).
Similarly, the quantities

1 N—k
Te= 35— > DIDZ,,
n=1
can be used to estimate the (non-centred) autocorrelation of g because
A
BTy} = E {q2 <ﬂ> q2(0)} AP 10 (AFF2),
€

where we have used the fact that E{q?(t + h)q*(t)} depends only on h (second-order stationarity).
From our observations, we calculate the empirical autocorrelation

11 ’
Ti— 3 (EZM1> ] :
I=1
The expected value of each R, approximates the autocorrelation:
kAt —\2
Elf (— 20}— 2)" 40 (Atl?
{q ( . )q (0) (q) + ( )
kAt — —
{(q =) —a (¢%0) = @) { + 0O (ae'?)

1

Rei= R

E{Ry}

Then as



by a change of variable, it follows that the area under the curve obtained by interpolating the
empirical autocorrelation { Ry} is an estimate of £52.

However, given a finite set of data {X¢(t,)}2_,, as k increases, the number of components in
the sums defining T} and M} decreases and the influence of an artificial boundary imposed by
the finiteness of the data set is felt on the accuracy of the estimates. In particular, the empirical
autocorrelation typically becomes negative when k reaches approximately 5 — 10% of N, and the
estimates from Ry for larger k are likely to be even more untrustworthy. This is illustrated in
Figure 7.
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Figure 7: Empirical autocorrelation from discrete observations of stock price X¢(¢,) with a two-
state Markov chain volatility process when ¢ = A¢ = 0.0001 and N = 20,000. Here Ry first
becomes negative when k = 647. Afterwards, we see oscillations about zero that become wilder as

the boundary of the data set is approached. The bottom graph shows the running estimate of 1/¢2
from the M;ps.

To get around this problem, we use the data {Ry} only up to the value kpax just before it
becomes negative. Then we fit this data to a decreasing exponential function ae ##2* for some
a,3 > 0: when ¢(-) is a Markov process, it can be shown that the autocorrelation can always be
written in this form. Thus, given {Rk}],z‘;‘i", we solve

kmax

mip 3, (ae - o)

The estimate for €42 is then 2a*/3* from integration of the exponential function.
The results for ¢(-) a two-state Markov chain are shown in Figure 8. The parameters of the

process are chosen so that 4 = 1 and \/¢2 = 0.2236. Figure 9 shows the accuracy of the estimation
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Figure 8: Least-squares fit of decreasing exponential curve to empirical autocorrelation data up to
the point that it becomes negative. Here ¢ = At = 0.0001 and N = 10,000. The dashed curve
shows the theoretical autocorrelation function.

algorithm when the experiment is carried out 1000 times. We see that the simple procedure is
successful in obtaining reasonable estimates of €42 and ¢2 from a single realisation of the stock
price. The necessary computations are not much more complex than those needed to estimate the
constant historical volatility for the Black-Scholes model.

4 Conclusions

We have studied the pricing and hedging problem for options (and by extension, other European-
style derivative securities) on stocks whose price volatility is stochastic, motivated by the success
of such models in accounting for the frequently observed smile curve. New asymptotic formulas,
valid when volatility has a small stochastic component or fluctuates on a distinct time scale give
detailed description of the geometry of implied volatility curves and are effective for interpolation
of observed implied volatilities, or as a tool for parameter identification.

The usefulness of separating the time scales on which the separate price and volatility processes
fluctuate enables us to present a new approach to stochastic volatility modelling starting with the
Black-Scholes option pricing PDE with a random volatility coefficient. This leads to an approxi-
mation that is the Black-Scholes price plus a Gaussian random variable quantifying the risk from
the uncertain volatility. In particular, we characterise the risk by pricing and hedging bands which
satisfy a PDE and depend only on the average and power spectral density of the volatility process.
This robustness to different models of the volatility is in the spirit of the global smile result.

In a special (separable) case, we have explicit formulas for the bands that can be combined
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Figure 9: The top graph shows a histogram of the percentage relative error in the estimates of
e4? from a single realisation of the stock price with the fitting carried out 1000 times for different
realisations, and the parameters of Figure 8. Most of the time the important order of magnitude
is correctly estimated. The second graph is a histogram of kpnax when N = 10,000, showing when
the empirical autocorrelation goes negative. The third graph is the percentage relative error in the

estimate of \/¢2.

with the Black-Scholes formula. The explicit representation of the average asymptotic smile curve
provides a simple method for obtaining a first-pass approximation to the statistics of the volatility
process that are needed, and these can be obtained more accurately from historical stock price
data.

We address estimation with real market data in [17], and plan to look at the extension of this
approach to American securities for which there is little stochastic volatility literature at present.

In broad terms, we have presented a set of tools that can be used to quantify risk in an incomplete
markets setting where the modelling identifies distinct time-scales of fluctuation between stochastic
state variables. The methodology, which is easily extendable to derivative securities on n > 2
underlying assets and factors (such as volatility), is an alternative to the general pricing PDE
of Garman [19] which needs estimation of an unseen market-price-of-risk-type function for each
untradeable state factor, and whose solution will be specific to models of these factors.

The separation-of-scales technique values the contribution to the derivative price from the hedge-
able factors classically (no arbitrage) and quantifies the risk from the untradeable factors as pricing
bands. Thus there is no longer one number known as the price, but there is no dependence on unob-
servable market risk premium factors or specific models of the non-traded factors. In addition, this
approach evaluates the risk for the investor of hedging with just the tradeable underlyings, which
is preferable to hedging with other derivatives in view of transaction costs. The Garman approach
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would give a theoretically perfect hedge, but with hedging strategies involving other derivatives.
See [40] for details.

The new methodology presents a wide variety of challenging modelling and estimation problems
for future work on pricing and hedging in incomplete markets. In [16], we analyse models in which
volatility is mean-reverting on a scale which is fast compared to the life of an options contract, but
slow compared to the time scale of stock price fluctuations. The asymptotic simplification is then
used for S&P500 data analysis and parameter estimation in [17].
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A Induction step

Suppose V is an n-state random variable taking values oy < 09 < --- < 0, with probabilities
ai,- -+, ap respectively. Analogous to the case n = 2, we are interested in sign(f(a(™)) where

Fa™) = 3" 0,05 (07) — OB (1™, K)),

=1

o™ is the vector of probabilities and I(a™, K) is defined by

B (1(a™, K)) = zn:aiCBS(Ui).

i=1
Differentiating these with respect to o for j =1,---,n —1 and using a, =1 — (a1 + -+ + ap—1),
we find
1,,CE5(1(a™, K)) = CP%(0;) — CP5(0n) < 0,
and -
LI
fajak = 2[CBS(Oj) - CBS(OTL)] Igi_k ;

so that I, < 0 and sign(fa;a,) = sign(L) for j = 1,---,n — 1. Finally, we write f(a() =
f(@®™ Y a,) with a®) denoting the vector of the first n — 1 probabilities, and suppose (for
induction) that sign(f(e™1,0) = sign(L) on the hyperplane a; + --- + a1 = 1. This is the
n — 1 result. This implies that f(1,0) = 0, and we also know that f(0,1) = 0. Since f can only
achieve one type of extremum given the sign of L, it follows that f is of one sign in the region
0 <ap+-+ap,1 <1, provided oo, = 1 — (g + -+ + an_1), which is the desired result for
n-states.

B Proofs of stochastic averaging and CLT
Averaging

The averaging problem for deterministic parabolic PDEs with rapidly varying coefficients is consid-
ered in Bensoussan et al.[5], and Watanabe [44] presents results for the case when the coefficients are
stochastic, under assumptions of stationarity and strong regularity of coefficients. Similar results
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are given by Dawson and Kouritzin [10] under less stringent regularity. The coefficients also need
not be stationary, but must satisfy a weak law of large numbers and a weak invariance principle
pointwise in z and ¢. The basic method of the proofs, in which an ‘extra’ term of the asymptotic
series representation of the series is taken and the error shown to be small, is due to Khas’minskii
[25].

We first use a multiple scales analysis to motivate the approximation of C¢(7,z) in (3.23) by
O(r, z; Vo2 (). Considering the fast time scale as an independent variable s := 7/¢, we look for a
solution of the form

Cé(r,2) = CO(r,8,2) + eCV(7,8,2) + - --.

Substituting into (3.23) with the formal replacement

99 10
or or  eds’
and comparing powers of ¢ gives cf = 0, from the O(1/¢) term, so that C(©) = CO)(r,z). The
O(1) terms then give
CO = —5[CO -7 (20 — )] + %c@) / o2(s', z)ds' . (B.46)
0

T rx
Now as € | 0, s — oo, and the integral in the second term behaves like so2(x) by the ergodic
theorem. Hence this expression for CV) is non-asymptotic on average unless the right-hand side
has mean zero:

1
~0 + 202 (@)CL) + v (20— CO) = 0. (B.47)
Thus C©) (7, z) = C(7, ; Vo2(z)). We now make this approximation concrete by showing the error
is small. We shall need the following result and then explain how it can be used in the problem at
hand.

Theorem 3 Infinite-dimensional averaging Consider the PDE for u®(7,y) : [0,T] x R" — R,
ou® 0%uf " ou®

n
- asi(r, + 3 b () B.48

u(0,7) = h(y),

where the coefficients ai; = a;;(Z,y), b5 = bj(Z,y) are random on a probability space (0, F,P),
>0 and T < oco. Assume the following conditions hold

1. a;j(1,y,w), bj(T,y,w) are measurable functions of (7,y,w) € [0,T] x R™ x €.

2. The coefficients {a;;} are uniformly elliptic:

n

n n
C1 Z 63 < Z aij(Ta Y, w)glgj < Z 5127
i=1 ij=1 i=1

for some 0 < ¢ < co with probability 1.

3. The {ai;j(7,-)} and {bj(7,-)} are stationary ergodic processes with at least four uniformly
bounded and continuous spatial derivatives:
|
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where

i . ol ’
T

for |B] < 4, with probability 1. The norm is defined by

| fIl == sup sup f(7,y). (B.49)
0<7<T yeR™

1B = Br+ - P,

4. The initial data has at least four bounded and continuous derivatives: sup |D5h(y)| < ¢4 for
18] < 4.

Then
P (Ju® —al| > §) = 0,

as € L 0 for each § > 0, where u(,y) satisfies

ou " 0%u

5 = 2 mj(y)ay-ayj +0i(y) 5 (B.50)
=1 i

and a;;(y) = E{ay(,y)}, bj(y) = E{bj(1,y)}.

Proof We present the calculation for n = 1 for simplicity of notation; the higher dimensional
case goes through analogously. Let

xiGy) = [ lalsy) — a)ds'
xals.y) = [ (') = B)ds'

and define H%(7,y) by

_ T _ T _
UE(Ta y) = U(Ta y) + 6X1(g7 y)uyy + EXQ(ga y)uy + Hg(Ta y) (B51)

Then from (B.48) and (B.50), H¢ satisfies

HE = o (r,y) HS,, + b (r,y) H + R (7, ), (B.52)

T

with zero initial data where

€ 582 Ea T - T m
R =¢ aa—y2+ba_y X1 g,y uyy+X2 gay Uy | -

We have used the assumed smoothness of the coefficients and initial data which guarantees four
derivatives (in space) on the solution w(7,y) of (B.50), so that R® is well-defined. Now, by the
boundedness of the coefficients and the ergodic theorem:

£

DgXLQ <£,y) H — 0, wp.laselO,
for |B| < 2, we have that ||R°|| — 0 almost surely. Thus by the maximum principle for (B.52),
||[H®|| — 0. This gives weak convergence of u° to @ from (B.51); convergence in probability follows

from the fact that 7 is deterministic (see [6], for example).

Remarks
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1. For our application, we shall assume that we can write o(7,x) = o(7, )z with (7, ) having
four continuous bounded derivatives almost surely. A logarithmic transformation (y = log )
reduces (3.23) to the case above.

2. The payoff function must be four times continuously differentiable. For call and put options,
this means that some slight artificial smoothing will be required at the kink at z = K, but
this can be designed to have relatively small consequences for the pricing and hedging bands
some time away from expiration (7 >> 0).

CLT for Fluctuation

The statistics of the fluctuation of the stochastic option price and hedging ratio about the Black-
Scholes average are deduced from the following result, similar versions of which can be found in
[10, 44].

Theorem 4 Infinite-dimensional fluctuation theory We assume that the coefficients satisfy a weak
tmvariance principle

‘f/ 5,), 055 )—Eij(-)>d$—/07<g(s,-),dW1'j(s,-)) 50 ase 0,

with convergence in the sense of distributions on the probability space. Here the Brownian motions
{Wi;(s,-)} have covariance functions

2 o0
[7%($,y)] = 2/0 E{[aij(s,7) — @ij(z)][aij(0,y) — @ij(y)] }ds,

with z,y € R™, g(s,-) € S(R™), the space of Schwarz distributions, and (-,-) denotes integration
over R". Similar is assumed to hold for the b;’s with corresponding 'y;-’(m,y) and {W;(s,-)}. Then
the fluctuation

S(r,y) = (u(r,y) —A(r.y))/Ve

converges weakly to a process S(t,y) satisfying

n 828 n _ a n —
ds = | 3 @miy) g =+ > bi)3 Z dWm 7.9)
L~ 0y;i0y; ;0
t,j=1 Jj=1 1,j=
n a_
+ 0 S dW(r,y). (B.53)
—1 9yj

Proof Again we work with n = 1 for simplicity. By (B.48) and (B.50), S¢(7,y) satisfies

a®—a\ _ b —b) _

Let S°(7,y) satisfy

e @—a\_ (¥ -F\_
N e C e

Then we can write S*(7,y) = I(7,y) + I2(7,y) where

I = /OT /O:o GE’E(y,'n,T,s) (MVE_EW) ﬂyy(san)dnds,
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and similarly I>. Here G_ is the Green’s function associated with the averaged coefficients. Under
the prevailing assumptlons the invariance principles of the coefficients apply and we see that
Se(7,y) converges weakly to S(7,y) defined by (B.53). Finally, we can write the equation satisfied
by (8¢ — 5¢) and conclude

73(||SE—,§’5||>5) —0asel0,

by the maximum principle.

C Standard Black-Scholes with stochastic volatility coefficient

Here, we briefly give details of the special case at the end of section (3.2.1) where the covariance
¢(r,x) is calculated for o(7,z) = 2q(7). The Green’s function for the standard Black-Scholes PDE
with constant volatility o is given by

2! [log (z/¢)]*
_ _ —g) = o .54
G(x,f, 7—7 S) 690'0 27‘(‘ (7_ — S) eXp < 14 (T S) 20_8 (7_ _ 8) ’ (C 5 )
where
3 T
0 = 5 - 0—3,
S S S
T2 80 202

Thus the price of a put option P(7,x), for example, can be written
(e.0)
Plr.a) = [~ Gla&m0)(K - ¢)tde.
0

Then the solution Z(7,z) of (3.31) is

2(r2) = 5 [ (G679 Cru(5,€).aW (5,0))

Finally, {(7,z) is calculated from the expression

e = 52 [T [ 0o, 16T (s, ] s,

because the covariance function is y%(z,y) = 4?z%y?, which gives (3.33).
The Green’s function for the standard Black-Scholes hedging PDE is identical to (C.54) with 6
replaced by 6 — 1. This is used in the calculation in section (3.2.2).
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