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Abstract

Oil prices remained relatively low but volatile in the 2015-17 period, largely due to declin-
ing and uncertain demand from China. This follows a prolonged decline from around $110 per
barrel in June 2014 to below $30 in January 2016, due in large part to increased supply of shale
oil in the US, which was spurred by the development of fracking technology. Most dynamic
Cournot models focus on supply-side factors, such as increased shale oil, and random discov-
eries. However, uncertain demand is a major factor driving oil price volatility. This motivates
the study of Cournot games in a stochastic demand environment. We present analytic and nu-
merical results, as well as a modified Hotelling’s rule for games with stochastic demand. We
highlight how lower demand forces out higher cost producers from producing, and how such
changing market structure can induce price volatility.

1 Introduction

Dramatic oil prices fluctuations since 2002 have been not just in response to global economic or
political events, but also reactions to more traditional supply competitions in the face of uncertain
demand. As shown in Figure 1, the West Texas Intermediate (WTI) spot price has ranged from
under $20 per barrel to over $140 per barrel in the last fifteen years. Recently, the spot price
has collapsed from $110 per barrel in mid-2014 to below $30 per barrel in April 2016. Oil price
returns volatility, which is also plotted in Figure 1, has been high, particularly from early 2015 to
mid-2016. Until recently, high volatility was largely attributed to the supply side of the market.
More recent research, however, has emphasized the importance of demand uncertainty, and has
shown that oil price movements are still not well understood. This, combined with decreasing
levels of easily accessible oil reserves and the environmental damage caused by burning fossil
fuels, makes studying game-theoretic models of energy and oil markets especially relevant.

Oil prices increased in the early and mid-2000s, as Chinese demand grew and increases in
global crude oil production slowed. According to data from the World Bank, Chinese real GDP
grew by almost 6 times between 2003 and 2013 and China accounted for 45% of the total growth
in world oil demand. Total world crude oil production increased from 62 million barrels per day
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Figure 1: Historical oil price & volatility.

1995 to 73 million barrels per day in 2004. Between 2004 and 2011, however, growth stalled and
production remained between 72 and 75 million barrels per day, as measured by the U.S. Energy
Information Administration. Increasing world demand for energy, together with tapering supply,
led to high prices.

The 2008 recession caused a global drop in the demand for oil, sending prices plummeting, but
prices rebounded quickly, as demand from developing countries continued to expand. This price
rally ended in 2014, as oil production began to accelerate again and growth in Chinese demand
began to taper. The high prices in the mid-2000s led new producers to enter the market, utilizing
updated technologies, such as fracking and slant drilling. These technologies expanded total energy
reserves, making use of energy stores that were previously inaccessible, but were more expensive
than traditional oil fields. The United States’ oil output, which was predicted to have peaked in
2008, has almost doubled since then. At some times in recent years, the United States has had over
500 million barrels in inventory, which is a month’s worth of supply for the country.

This global growth in supply was strengthened by the strategic decision of the Organization of
the Petroleum Exporting Countries (OPEC) to maintain (until late 2016) high levels of oil produc-
tion and the increase in supply from Iran due to the lifting of sanctions after the 2015 nuclear deal.
Total world oil production rose to 80 million barrels per day in 2015 from its plateau of 75 million
barrels between 2004 and 2011.

On the demand side, Chinese GDP grew by 7.3% in 2015, which was its slowest growth rate
since 1990. Expectations of future demand for oil, especially from China, decreased dramatically
during 2015 due to continued signs of global economic weakness and new regulations of carbon
emissions. Since the initial decline in prices, total world oil production has grown by about 2
million barrels per day, while world demand has grown by less than 1.5 million barrels.

Understanding supply and demand dynamics of oil markets is key, as the price of oil and its
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volatility have significant effects on the economy. Consumers spend large portions of their budgets
on energy, so high oil prices lead to a reduction in demand for other goods and services. James
Hamilton [Ham83, Ham85] noticed in the 1980s that business cycle peaks were correlated with
oil price increases and that most of these increases arose from supply shocks outside the United
States economy. This led to a focus on researching supply shocks, based on a long-held belief that
supply shocks had a significant negative effect on the economy. More recent research, such as that
by Kilian and Park [KP09], however, suggests that the effects of oil prices shocks are primarily
transmitted through precautionary demand, driven by changes in expectations of future supply or
demand. For example, political disturbances in the Middle East often cause price increases, even
though these events rarely lead to immediate decreases in supply, as growing uncertainty about
future oil supply shortfalls drives up demand and prices. Using our models, we look at the relative
effects of changes in supply and demand on oil prices and oil price volatility.

The recent price drop indicates that we still are not able to anticipate even broadly either swings
in oil prices or longer-term price trends. In mid-2014, Hamilton [Ham14] predicted that $100 oil
was here to stay. More than three years later, a common view is that oil prices will take many
years to reach $100 again. Ed Morse, the global head of commodities at Citi Research, made
an optimistic prediction in late 2015 that oil would return to $70 a barrel by the end of 2016,
while Mohamed El-Erian, Chief Economic Adviser at Allianz, said that $40 oil is here to stay.
The International Energy Agency (IEA) does not expect crude oil to rebound to $80 a barrel until
after 2020, predicting instead that oil demand growth will be extremely slow over the next 25
years, while supply will remain strong. Such widely-varying expert predictions highlight the vast
stochasticity underlying oil price dynamics.

Dynamic Cournot game-theoretic models have been developed with energy production as an
application, initiated (in continuous time) by Hotelling’s model of a monopolist with exhaustible
resources [Hot31]. Recent multi-player versions, describing the competition between energy pro-
ducers of various (heterogeneous) sources such as oil and solar include [HHS10, LS12] and [LS11b],
and a survey article is [LS15]. Mean field game models, where there is a continuum of producers,
in this context are studied in [GLL10, CS17]. However, in all of these, the inverse demand (or
pricing function) function is fixed. The uncertain nature of energy demand, as described above,
motivates us to analyze these dynamic Cournot games in a random demand environment.

Here we present analytical and numerical results on Cournot games under stochastic demand.
A monopoly model with Markov chain stochastic demand was studied by numerical and asymp-
totic methods in [LY 14]. Motivation for models with stochastic volatility of demand is discussed
in the book [Pir12]. In addition we present some new results on deterministic games which are
by-products of the stochastic analysis. Section 2 introduces the Cournot models and gives results
for existence and uniqueness of Nash equilibrium in the static game. Then we study the monop-
olist’s exhaustible resources problem under stochastic demand in Section 3, giving a stochastic
Hotelling’s rule among other results. In Section 4, we present new extensions of the classical
Hotelling’s rule, for deterministic demand, and for both monopolies and games. We return to
games with stochastic demand in Section 5, with numerical solutions of the HIB PDEs. Finally
in Section 6, we try to address the short term volatility of oil by removing the exhaustibility con-
straint, but allowing for a large number of players (individual producers) who enter and exit the
market as demand fluctuates.



2 Price Function & Static Games

In a Cournot market with N > 1 producers, the price of a good is determined by aggregate quantity
produced and brought to market. We summarize some results of a static (one-period) competition,
whose notation will be used later in the dynamic models. Each player i chooses a quantity g; > 0 to
produce and sell, and has fixed per-unit cost of production ¢; > 0. The market price is determined
by the aggregate quantity produced Q = Y~ | ¢;, and a given pricing (or inverse-demand) function
P(Q,Y). Here Y is a demand factor which will be a stochastic process in later sections, but for now
is simply a constant.
‘We will use the notations R, = [0, o0) and R, = (0, 00).

Assumption 2.1. The price function P : R,, X R,, — R is smooth in both arguments (Q,Y),
decreasing in quantity Q and increasing in demand level Y.

Each producer faces a trade-off between producing more to sell and lowering the market price
received by doing so. The highest possible price (for a fixed Y) is when Q approaches zero, and
is known as the choke price. We will distinguish two types of price functions, those whose choke
price is finite: P(0, Y) < co, and those with infinite choke price: P(0*,Y) = co.

In the static competition, if each player produces ¢; > 0, his profit, adjusting for costs, is
qi(P(Q,Y) — c;) where by convention we define 0 x P(0,Y) = 0, so if all players produce nothing
and the choke price is infinite, they gain zero revenue. A Nash equilibrium for the static game is a
vector (¢}, 45, -+ »¢q}) € RY such that, for all i,

q: € argmaxgq,; (P(q; + O, Y) —¢), Q' = Z q;-

gi=0 J#i

That is, each player’s equilibrium quantity g* maximizes his profit when all the other players play
their equilibrium quantities.
We shall assume that the players are, without loss of generality, labeled in order of increasing
costs
0<ci £ <--- <y <.

As discussed in [HHS10], it is convenient to define the relative prudence

_ Poo
p(Q7Y)__ P_a Q9Y>Oa (1)
0
where subscripts denote partial derivatives, and, for fixed Y,

p = supp(Q, ).
0>0

The following existence and uniqueness result is given in [HHS10].

Theorem 2.2. For pricing functions with p < 2, there is a unique Nash equilibrium to the static
game, which can be constructed as follows. There is a unique Q) > 0 that satisfies

n

Q;Po(Q;, Y) +nP(Q;,Y) = C,, where C,= > c;,

i=1



foreachn=1,--- ,N. Let Q* = max{Q | 1 <n < N}. Then the unique Nash equilibrium is given
by

P(O",Y) —c;
qf(c,Y):max(L,O), 1<i<N, 2)

—Po(0*,Y)
where ¢ = (cy,¢a,- -+ ,cN) IS the vector of costs. In particular, players i = 1,---,n" are active
with g7 > 0, while the remaining players i = n* + 1,--- ,N are blockaded with g} = 0, where

n* = min{n | Q) = Q*}. The equilibrium profits are given by
Me.Y) = g/ V)(PQ" V) ~c;), 1<i<N. 3)

In Theorem 2.2, the sufficient condition for existence of a unique Nash equilibrium is that
(for fixed Y) the prudence p(Q, Y) never exceeds two. There is a convenient family of power-type
pricing functions for which this condition can be weakened considerably, depending on the number
of players. In this family the prudence is constant: p(Q, Y) = p.

Definition 2.3. Pricing functions of power-type are defined by

1—
P(Q,Y)={ %(1‘(%) p)’ p#l @)
Y(logY —logQ), p=1,

where p is the constant prudence.

For p < 1, there is a finite choke price P(0,Y) = Y/(1 — p), and the choke price is infinite for
p > 1. Within this family, there is a unique Nash equilibrium as long as the number of players
N > p — 1, as shown in the following result from [HHS10] (given there for Y = 1). We use |p] to
denote the largest integer less than or equal to p.

Theorem 2.4. Let n, = max(l,|pl), and suppose that p < N + 1. Then there is a unique Nash
equilibrium in the Cournot game with power type pricing function with constant prudence p given
as follows. Let

Y+C,

P=min{P,|n, <n <N}, where P,=—",
n+1l-p

n,<n<N, &)

and 1

o= Y(I-0-pF)7 ip=1,
Yexp(—P/Y) ifp=1.

Then the unique Nash equilibrium is given by
g;(c,Y) = O°max{P —¢;,0}, 1<i<N,
with corresponding profits
i(c,Y)=q;(c, )(P-¢), 1<i<N.
The number of active players is

n* =min{n|n, <n<N,P,=P}.
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Note that, depending on the costs c, the number of players who are active (¢; > 0) is guaranteed
to be at least n,, which is at least bigger than one for p > 1, in which case an infinite choke price
guarantees at least player 1 will be active at any (finite) cost c;.

Throughout the paper, we will assume the conditions that guarantee existence of a unique Nash
equilibrium in the static Cournot N-player game:

Assumption 2.5. The price function P has, for all Y > 0, maximal relative prudence p < 2; or P
is of power type, as given in Definition 2.3, with constant relative prudence p < N + 1.

3 Dynamic Monopolies with Exhaustible Resource

We first consider a single-player market for a commodity, and the effect of a stochastic demand
factor on production and price in the face of an exhaustible resource. Let X; denote the amount
of resource left at time ¢, from which the monopolist extracts at rate ¢, > 0, so its depletion is
described by

X, = —q,:ﬂ_{xp()} dt.

The pricing function P(Q,Y) is driven by a continuous non-negative stochastic demand factor
(Y0 defined on a probability space (Q2, 7, P), and we denote by (7;)»o the filtration generated
by Y. We assume, for simplicity, that the producer has zero cost of production, and at time zero,
observing Xy = x > 0 and ¥, =y > 0, is faced with the stochastic control problem

v= sup E f e "q,P(q, Y, dt, 6)
GEA(X,Y) 0

where r > 0 is a constant discount rate, and 7, is the time at which the monopolist exhausts his
resources, which may be infinite:

7, =inf{t > 0| X, = 0}.

A strategy ¢ is in the set of admissible strategies A(x, y) if it is continuous, non-negative, adapted

to (F,), and
f q:dt < x, as.
0

We recall that P is a pricing function satisfying Assumption 2.1, and with maximal prudence p < 2
for all Y > 0 (Assumption 2.5). For the monopoly problem, when N = 1, we will denote the static
‘game’ optimal strategy in (2) and profit in (3) simply by ¢* and I respectively.

3.1 Finiteness of Monopolist’s Value
We give two conditions on the demand factor that guarantee a finite monopoly value.

Proposition 3.1. If the demand factor Y satisfies
E{T1(0, Y))} < K,e”, Vt>0, (7)

for some constants K, and B < r, then the value v in (6) is finite and bounded in x.
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Proof. For any admissible strategy g € A(x,y), we have

Ef e "q,P(q,, Y,)dtsEf e "sup q,P(q;, Y, dt
0 0

q:20

= f‘x’ e "E{T1(0, Y,)} dt
0

0 K
< f Kye_(r_ﬂ)tdt = - < 00,
0 r—p

Hence the value v is bounded independently of x. O

Example 3.2. If the demand factor is a geometric Brownian motion driven by a Brownian motion
w:
dY, = pY,dt + oY, dw,, (8)

and if P is a power-type pricing function as in Definition 2.3 with p < 2, then a straightforward
calculation shows that I1(0, ;) = kY,2 for some constant k£ (depending on p), and so condition (7)
is equivalent to

2u+o<r.

So a geometrically growing stochastic demand factor still has a finite monopoly value as long as u
and o are not too large compared to r.

Proposition 3.3. Suppose that the pricing function P has finite choke price P(0,Y) for all Y > 0,
and that the demand factor satisfies

E{e PO, Y,)} < K, ©)
for any stopping time T and for some constant K. Then the value v in (6) is finite.

Proof. For any admissible strategy g € A(x,y), we have
f e "qP(q;, Y,)dt < f e "q.P0,Y,) = f e "q,P(0,Y,)dQ(1),
0 0 0

where we define Q(1) = fot gy ds.We have that lim,_,., Q(f) = x, and that, for any ¢ > 0, Q"!(¢) =
7(q) is a stopping time defined by 7(g) = inf{r > 0 | Q(¢) > g}. Therefore, we have

E f e "q,P(q,,Y,)dt <E f E{e”™P(0, Yy)} dg < Kyx < 0,
0 0

and the conclusion follows. m]

Example 3.4. Suppose as in Example 3.2 that Y is a geometric Brownian motion and P is of power
type with constant prudence p < 1. Then we have that P(0, Y;) = Y,/(1 — p) and so, by the optional
stopping theorem, condition (9) is equivalent to u < r.

Example 3.5. Suppose Y is an ergodic process with a unique invariant distribution @, and that
f (0, y)®(dy) < oo.

Then by the ergodic theorem, fooo e "E{I1(0, Y;)} dt < oo, and following the proof of Proposition
3.1, the value v is finite. When P is a power-type pricing function with constant prudence p < 2,
I1(0, Y) is proportional to Y2, so the value is finite as long as f y*D(dy) < oo.
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3.2 Markov Demand, HJB Equation & Demand Blockading

When demand is fluctuating randomly, there is the possibility, even in a monopoly, that the pro-
ducer will, at times, halt production and wait for demand to rise, which we will refer to as demand
blockading. We provide a condition on the demand model under which this scenario is eliminated.
We denote explicitly the dependence of the producer’s value on the initial conditions:

v(x,y) = sup E{ f e"q,P(q,, Y dt | Xo = x, Yo = y}. (10)
GEA(X,Y) 0
Lemma 3.6. For x,y > 0, we have
v v(x,y)
ox X

Proof. For ¢ > 1, we have

v(x,y)= sup E {f e "oq,P(q, Y)dt | Xo = x,Yy = y}
0

GEA(X,Y)

> sup E{ f e""pqP(pq, Y dt | Xo = x, Y = y}
0

GEA(X,Y)

sup E {f e "q:P(q, Y dt | Xo = px, Yo = y} = v(epx, y).
qeA(pxy) 0
Then
_ L+ 2)v(x,y) = v(x,y)
ov _ by vy L (1+) vy

ox 10 h nl0 h T x

O

Assumption 3.7. We suppose now that the demand factor Y is a continuous Markov process with
infinitesimal generator L. In particular, let us assume it is a positive time-homogeneous diffusion
process driven by a Brownian motion W, defined starting from Y, =y as the unique strong solution
of the SDE:

1 0? 0
dy, = u(Y)dt + o(Y,)dW,, andso L, = EO'Z(Y)G—yZ +,U(Y)a—y-

We will work with the Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) as-
sociated with the value function v in (10). Assuming sufficient regularity, a standard verification
argument shows that v(x, y) solves the PDE problem

rv =sup(gP(q,y) —vy) + Ly, x,y>0, v(0,y) =0, (11)
q>0

where subscripts on v denote partial derivatives. The internal optimization problem is simply the
static monopoly problem with v, playing the role of a shadow cost, or scarcity. The optimizer is
q*(vy,y), with profit I1(v,, y), as given in Theorem 2.2, which gives the PDE

rv =1I(v,,y) + Lyv. (12)
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Proposition 3.8. Suppose the price function P has finite choke price P(0,Y) for all Y > 0. Then
there is no demand blockading (that is q; > 0) if and only if (e7"P(0,Y))),, is a nonnegative
supermartingale.

Proof. Suppose that P (0, Y;)e™" is a nonnegative continuous supermartingale. We have that:

(o9

v(x,y)= sup E fth (g, Y)e"dt | Xo=x,Yy=y

qreA(x,y)
[e9)

sup E fq,P 0,Y)e™dt | Xo=x,Yy =y
qi€A(xy)

=: u(x,y). (13)

Note that u(x,y) is the monopolist’s value function in a market without impact on price by the
producer’s quantity. Since fooo q:dt > 0 for x > 0, we know that the inequality is strict, i.e. that
v(x,y) < u(x,y) when x > 0. This is because any positive g in the function P(X, g) results in a
strictly lower price than P(X,0). For any strategy g, that is admissible with X, = x, the strategy
aq,, for any a > 0, is admissible with X, = ax. As a result we have that:

IA

u(ax,y)= sup E fozq,P 0,Y)e™"dt | Xg=x,Yy =y
GrEA(xy)

=a sup E fth(O, Yye "dt | Xo=x,Yy=y
GEA(x,Y)

= au(x,y).

Having thus shown that u(x, y) is linear in x we can take u(x,y) = U(y)x, where U(y) = u(1,y).

Now we turn to the problem of showing that U(y) < P (0, y). First we remark that we consider
only admissible strategies in which fooo q:dt = 1, since without loss of generality any other strategy
can be scaled by a constant factor to satisfy this condition without reducing the expected payout.
For every admissible strategy (g,), we define the process Q(r) = fot g, ds. For each continuous path
of Y, we have that Q(¢) is a continuous nondecreasing function with lim,_,., Q(¢#) = 1 and % = q;.
We have:

E f%P(O,Yt)e_"df | Xo=xYo=y; =E fP(O,Y,)e_”dQ(t) | Xo=x,Yo=y¢,
0 0

where the right-hand side is a Stieltjes integral in which the function Q() is the cumulative density
function of a measure with density ¢, on [0, o). Since Q(¢) is nondecreasing it has a generalized
inverse Q~'(g). Since Q'(g) is monotonic there are at most finitely many points of discontinuity,
i.e. where the inverse is not explicitly defined. As a result we can write:

0o 1

E f P0,Y)e"dO®) | Xo=x,Yy=yt=E P(o, YT(q))e_”(‘” dg | Xo=x,Yy =y},
0 0



where 7(q) = O"'(g) = min {t >0 ‘ fot qsds > q}. In addition to being the generalized inverse each

7(q) 1s a stopping time which represents the point in time at which ¢ units of inventory have been
sold, with 1 — g remaining. We can write:

1 1

E f P(0.Yp)e ™ dg | Xo=x.Yo =y} = f E{P(0,Yp)e™ | Xo = x.Y =} dg.
0 0

The exchange in the order of integration is permitted by Tonelli’s theorem since we have assumed
that the integrand is nonnegative. Since P (0, Y;)e™" is a nonnegative continuous supermartingale
we can apply the optional stopping theorem, as given in [RY 13, Theorem 3.3]. In particular, this
variant of the optional stopping theorem does not require the stopping times 7(g) to have finite
expectation. This yields:

1 1

fE (0. Yrig)) €™ | Xo = x, Yo = y} qufP(O,y) dq =P (0,y).
0 0

Therefore U(y) < P (0,y) and we have u(x,y) < P(0,y) x. From Lemma 3.6 we have:

v _vxy) _uxy) POyx
0x X X X

=P(0,y).

We also know that this inequality is strict when x > 0, since v(x, y) < u(x, y) in that case. From PDE
(11) we know that the optimal quantity g; is given by the solution to the maximization problem:

ov
sup g (P (g, YD) - Fp (X, Yt)) , (14)
q=0 X

which is only ever equal to O if the choke price P (0, ¥;) is less than the marginal cost %. Since we
showed that this is not true we know that g; > 0 whenever X, > 0 and ¥, > 0.

Now suppose that P (0, Y;)e™ is a nonnegative continuous stochastic process which is not a
supermartingale. Then it must be the case that for some times #, > t;, demand level y; > 0 and
€ > 0, that we have:

E{P(0,Y,)e ™ | Y, =y;)=P@0,y)e’ +e

Since P (0, Y;)e™ is a continuous stochastic process we can also find some t3 > #, and § > 0 so
that for every 7 € [,,#3] we have:

E{P@S,Y)e™" | Y, =yi) = PO, y)e”™ + g

Suppose that a monopolist has reserves at time #; of X;,, = x < d(f3 — #,). Then using a strategy
of selling nothing from time #; until #,, and then at rate ¢’ := x/(t; — t,) during the interval [1,, 13],
which exhausts his remaining reserves x, gives the following lower bound:

13
v(x,y1) > E f(i'P (6,Y)e " dr | X, =xY,=y|= x(P 0,y1) + g), 0<x<do(t; —1).

5]
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We can use this to bound the partial derivative:

x(PO.y)+5)-0

ov . €
a(O,yl) > }333 =P,y + 5

Then since % is continuous in x we know that for some x > 0, a—;(x, y1) > P(0, y,) and consequently

the optimal strategy in (11) is g* = 0, and so demand blockading can occur. m|

Example 3.9. Suppose that P(Q, Y) is a constant relative prudence price function given by (2.3).
We know that any geometric Brownian motion (GBM) is a nonnegative supermartingale if and
only if its growth rate is zero or negative. If Y is a GBM described by the SDE (8), then for any
p < 1, the price process P (0, Y,)e™ = ¢7""Y,/(1 —p) is a nonnegative supermartingale if and only if
u < r. If this condition holds then the producer is never demand blockaded. Indeed, in this model,
if we have the reverse, then the producer is always demand blockaded since it is always better to
wait and sell later. This makes the problem degenerate because there is never any selling activity,
but the monopolist’s value function is infinite.

Common nonnegative mean-reverting processes do not satisfy the conditions of Proposition
3.8, because any sizeable upward drift when Y; is low will violate supermartingality after discount-
ing.

Example 3.10. Suppose that P(Q, Y) is a constant relative prudence price function given by (2.3).
The SDE for an exponential Ornstein-Uhlenbeck (expOU) processes is given by:

dYt = a(m - 10g YZ) Yt dt + O-Yt dWI,
and so P(0,Y,)e™ = ¢7""Y,/(1 — p) is a nonnegative supermartingale if and only
a(m-1logY)<r, VY, >0,

which is not true because —log Y; is unbounded. Therefore with an OU process there is demand
blockading for small enough demand Y.

Remark 3.11. If the choke price P(0*,Y) = oo, then there will never be demand blockading of
a monopolist, that is there will be no states in which X, > 0 and q; = 0. We can show this by
observing that there is always some q > 0 so that P(q,Y) > g—;.

3.3 Stochastic Hotelling’s Rule

In this section, we derive the analog of Hotelling’s rule for the monopolist under stochastic demand.
We first note that in the static game of Section 2, when there is a finite choke price, the monopolist
will be blockaded for ¢ large enough or Y small enough, that is g*(c,Y) = 0 for ¢ > P(0,Y). In
our static monopoly problem, for ¢ < P(0*,Y), ¢*(c,Y) is the unique solution to the first order
condition

qgP G, Y)+Pq,Y)—c=0, and Il(c,Y)=q"(P(g",Y)-o). (15)

Clearly, by an implicit function theorem, g* is continuous (and differentiable) in ¢, and in the cases
of a finite choke price, ¢* = 0 when ¢ = P(0, Y). Therefore ¢* is a continuous function of ¢ for all
¢ > 0. Next, for ¢ < P(0*,Y), we have

II. =q.(¢"P'(¢".Y)+ P(¢",Y)-¢c)—q" = —q", (16)
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using the first order condition (15). Therefore II is continuously differentiable in ¢ for all ¢ > 0,
and the formula (16) for I1. applies also when ¢g* = 0.
The optimal extraction path is the solution to the equation

dX, = —q" (v(X,, Y, Y)dt, Xo,=x.

Proposition 3.12. The marginal value function v.(X,, Y;) along the optimal extraction path follows
the dynamics
dv (X, Y,) = rvi(X,, Y, dt + O'(Yt)vxy(Xt, Y)dw,. (17)

Proof. Applying It6’s formula to v,(X;, Y;), we have

dvy = v dX, + vy, dY, + %a(Y,)ZvW dt
= (=q"vix + Lyv) dt + o(Y)v,, dW,. (18)
Next, differentiating the PDE (12) and using the expression (16) for the derivative of II (which
applies whether the player is blockaded or not), gives
vy = =q (V(X, ), Y)Vix + Ly (19)
Substituting (19) into (18) gives the conclusion. O

Remark 3.13. When Y is a constant, and the value function v = v(x), this is the classical Hotelling
rule [Hot31]

d ’ _ ’
7" (x(0) = rv'(x(1)).

Proposition 3.12 shows (under reasonable regularity) that the discounted marginal value function
process (e7"'v (X, Y;))=0 is a martingale. Similar stochastic Hotelling results, where the random-
ness comes from uncertain discoveries, rather than uncertain demand as here, have been found
for instance in [DP83] and [LS11b]. In the deterministic case, V' satisfies an autonomous linear
ODE and v'(x(t)) = v'(x(0))e". In the stochastic case (17) is not an autonomous equation since
the volatility coefficient depends on vy.

In the case of power-type pricing functions given in (4), with p < 2 for monopoly N = 1, the
price, from Theorem 2.4, is given by

. Y, +v.(X,, Y))
P(q (vx(Xl‘a Yl)’ Yl) = %7
-p
and so is linear in v,. If we define the demand-adjusted price process by
Y,

Pt = P(q*(Vx(Xt’ Y)Y — > s
-p

then it follows from the stochastic Hotelling SDE (17) that

dP, = rP,dt + ( )O'(Y,)vxy(X,, Y,) dW,.

2-p
So, the adjusted price grows on average at the discount rate r, and its volatility is amplified by a
factor that is large the closer p is to two in the infinite choke price models.
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3.4 Variable Reduction in Monopoly with GBM Demand

In the case of linear demand (constant prudence p = 0 in (4)): P(Q,Y) = Y — Q and GBM demand,
there is a dimension reduction possible in the two-dimensional PDE (12).

Proposition 3.14. Suppose that we have a stochastic demand model in which Y, is a GBM (8) with
< rand2u+c? <r, and where P(Q,Y) = Y — Q. Then we can write v(x,y) = y*W (x/y), where
W(¢) is a function satisfying the ODE:

1 1
(r=2u=c?)W =2 (1= W) = (u+ )W + 50°8W", (20)
4 2
with W(0) = 0 and W’ (c0) = 0.

Proof. When Y, is a GBM with growth rate u < r we know from Example 3.9 that the monopolist
is never demand blockaded, so we can write HIB equation (40) as:

1 v\ v 1, ,0%
L LN N L 21
v 4(y 8x) +uy0y+20yay2 2D
Let £ = x/y and consider the substitution
v(x,y) = yZW(f) :
y
We obtain the following partial derivatives:
0 0 i 2 2
D oyw, Dooyw—xw, 2 —ow-Zw s Ly,
Ox dy 0y? y ¥
Substituting into equation (21) yields:
1 \2 / 1 2 ’ 2Yx77
W= 2 (L= W) +p QW - W) + o (2w - 26w’ + £W7), (22)

which can be simplified to (20), which is a second order nonlinear ordinary differential equation
in W(¢). For boundary conditions, we clearly have W(0) = 0 since v(0,y) = 0, and lim,_,, v, =0
implies lim;_,., W' (&) = 0. ]

Clearly reduction to an ODE make computations simpler, and the optimal quantity ¢* and
market price P(g;, Y,) are recovered from the formulas

.1 X, . 1 X,
q; = EY,(I - W(;)) P(q;.Y) = EY,(l + W(;))

4 Deterministic Games with Renewables

We now introduce competition into the Cournot market, in the form of other energy producers with
inexhaustible (or renewable) resources, but higher production costs. These could be solar or wind
power compared to the effective lower cost of traditional fossil fuels, or production from a more

13



plentiful and costlier technology such as shale oil from fracking. Such models have been studied
in various (mostly deterministic) settings such as [HHS10, LS12, DS14] and [CS17], and a survey
article is [LS15]. We first present some new results for deterministic games and then discuss games
of this type in a stochastic demand environment.

In a deterministic setting, we will suppress dependence on the demand factor Y, which is just a
constant here. Analogous to Section 2, we have Cournot market with price function P(Q), which
is smooth and decreasing, and we define the relative prudence

P(Q) __
Py MM PR

p(Q) = -0

4.1 Deterministic Monopoly

When there is a single player in a Cournot market, we can obtain explicit expressions for the value
function and resource dynamics. The producer extracts his resource x(¢) and rate g;:

dx
i =41 Lix)>0), x(0) = x,
and his value function is
v(x) = sup f e "q,P(q,) dt, 7, = inf{r > 0| x(r) = 0}. 23)
geA(x) JO

We use the notations ¢*(c) and I1(c) for the optimal quantity and profit in the static monopoly as a
function of the player’s marginal cost ¢ < P(0*), where ¢* is the unique solution of the first order
condition

g P'(g)+P(@)-c=0 and I(c) = g (P(q") - ©).

Then the Hamilton-Jacobi equation for v is

rv=T1(v"), x>0, v(0) = 0. (24)
Lemma 4.1. Let u(x) solve the ODE problem

ru=gu') x>0, u(0) = 0,

for some constant r > 0 and non-negative, strictly decreasing continuously differentiable function
8. Then u can be expressed as

1 74 ’
u(x) = ~g (K (0)).  where  h(z) = f &) . (25)
r 2 1(0) w
Proof. From the ODE ' = g~'(ru) and so
‘O dii
X
fo g ! (rit)
Making the change of variable w = g~!(rii) gives
1 g’l(ru(x)) ’
1 f gw) . N
r 2 1(0) w
and the formula (25) follows. O

14



The profit function I(c) is strictly decreasing in the player’s cost ¢, and is continuously differ-
entiable following the argument leading to (16). Using Lemma 4.1 with g = II, the solution of the

ODE (24) for the value function is

V(x) = %H(h_l(rx)), where  h(z) = f T Iw

1-1(0) w

Proposition 4.2. The optimal strategy is given by
g; = I (b (rx(0)),
and the optimal extraction path is
1 rty,—1
x(t) = —h (e"h7 (rx(0))).
r

The time to exhaustion starting from x(0) > 0 is given by

P(0%) )

1
7(x(0)) = - log (m

dw. (26)

(27)

(28)

(29)

and so it is finite when the choke price is finite, and infinite when the choke price is infinite.

Proof. From (16), we have g*(c) = —II'(¢), and so g; = ¢"(v'(x(¢))) = =II'(v/(x(¥))). But

v(x) =7 () = T (T (77 () = A7 (),

and so (27) follows. Then from % = —q;, we have

fx@ dx _,
w0 I ('rR)

With & = h™!(r%), we have

G LR, ) [d ]
f T () rf me“=r) €T

£,

using, from (26), that A’'(¢) = II'(§)/&é. Thus (28) follows. Finally x(z) = O at time 7 defined by

h™1(0) = ¢"h~'(rx(0)). But ~1(0) = IT"'(0) = P(0%), which leads to (29).

O

In the case of power-type pricing functions given in Definition 2.3, we have semi-explicit ex-

pressions for the value function.

Definition 4.3. The exponential integral Ei(z) is defined as the following definite integral:

P
Ei() = — f GTdt.
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Definition 4.4. The hypergeometric function ,F (a, b; c; 7) is defined as the following series:

2Fi(a,b;c;2) = Z (@), (b)ni

"
(o), n!

where (g),, is a rising Pochhammer symbol, which is defined by:

n=1
(@, = :
qg+1)..(g+n—-1) n>0

Proposition 4.5. Suppose that P(Q) is a constant relative prudence price function given by equa-
tion (4). Then the value function (23) is given by v(x) = g (h‘1 (rx)), and the monopolist’s inventory

is given by x(t) = %h (e”h‘1 (rx(O))), where when p # 1 the functions g(z) and h(z) are given by:

g(z) = max {O’ Ylpfp (M)IP} ,
2-p

1
h(Z):maX O,(p_l)Y% 1_pY_(1_p)Z 1_l72I7l 1 5 1 s p 5 YZ )
2-pYzrl+p-1 p—1p=-1p-1"1-p

and when p = 1
g =Ye ', h(z) =Ye 'Ei(-2).

Proof. The result follows from (26) and Proposition 4.2 using the specific formulas in Theorem
2.4. m]

In the case p = 0, the linear price function, these quantities can be expressed in terms of the
Lambert-W function, as found in [HHS10, LS12].

Definition 4.6. The Lambert-W function W(x) is the inverse function of f(z) = ze®, namely the
real-valued solution to the relation x = W(x)e"™. Since ze* is not injective, the inverse is multi-
valued for z € [e‘l, O). The branch chosen here to represent the Lambert-W function is the unique

branch that is continuous on [e‘l, 00), as opposed to the second branch which is defined only on

[e‘l, 0).
Then with p = 0, we have

YZ 2 —-1-2rx/Y Y Y rt
v(ix) = — (1 +W0x)", 6(x)=-—e , x(t) = x(0) — =t + —(1 = "HYW(O(x).
4r 2 2r

Remark 4.7. If P(Q) is a constant relative prudence price function with p > 1, then from Propo-
sition 4.5 we can immediately determine that the monopolist’s effective marginal cost % is un-
bounded. That is:

limV'(x) = oo.

x—0

This follows from the fact that v(0) = 0 requires having g (v') = O.

Remark 4.7 shows an important distinction between finite choke price models and infinite
choke price models, namely that since price is unbounded in the latter, the monopolist’s marginal
value will rise to infinity as the commodity becomes exhausted, and, as we saw in Proposition 4.2,
that infinite choke price also means that inventory reserves never reach 0.
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4.2 Deterministic Game

We now move to a game model with multiple players. Games with more than one exhaustible
producers, with each player’s reserves level being a state variable, lead to strongly coupled systems
of nonlinear PDE which are difficult to handle, even numerically. See, for instance, [HHS10] in the
context of nonzero sum stochastic differential Cournot games, or [LS11a] for dynamic Bertrand
games. A workaround, at least in models with substitutable goods is approximation by continuum
mean field games. See [CS14] and [CS17], again in the Cournot and Bertrand contexts. However
games with many renewable players competing amongst themselves and with one player with finite
reserves, can be handled.

There is a single exhaustible producer, player 0, whose reserves at time ¢ are x(¢), and his
production rate is qfo) >0: % = —qﬁo)ﬂ{»o}. His cost of production is assumed zero (for simplicity).
In addition there are N — 1 players with inexhaustible (or renewable) resources, but they have
potentially higher costs c;, where

0<ci<cp <+ <cyg <o

They produce at rates qfi), and the market price is P(Q(¢)), where Q(¢) = f\;{)l qfi). In the dynamic
Cournot game, where the exhaustible player has initial reserves x(0) = x > 0, the value functions
of the exhaustible player v, and of the renewable players w; are:

v(x) = sup f gV PQ)) dt, (30)
qVeA(x) JO
Ty ) 1
w;(x) = sup f g (P(Q(0) = ¢;) dt + —e ™ TI(c), i=1,---,N—1. (31)
>0 Jo r

The second term in (31) reflects that after the exhaustible player runs out of resource and exits
the market at time 7, (possibly infinite), the remaining N — 1 firms accrue profits at rate I1;(c),
discounted at rate r.

For the linear pricing function P = 1—(, this game can be solved explicitly as was done for one
exhaustible competitor (N = 2) in [HHS10], and for general N in [LS12]. In the latter, a key issue is
finding the blockading points, where the market price has increased sufficiently (due to oil running
out) for each most costly player to enter, and a modified Hotelling rule in this non-monopoly game
framework.

The HJ ODEs associated with the value functions v(x) and w;(x) are

N-1
rv = sup qo [P [qo + Z qj] — v'] , v(0) = 0,
=1

q0=0

-1
1
”Wi:suPQi(P(%"' Z Qj']_ci], W[(O):—Hi(C), I = 19 ’N_I’
. r

4i=0 J=0,j#i

and so the internal Nash equilibrium problem is the static N-player game of Section 2 with cost
vector (V',cy,- -+ ,cy-1). Therefore, we have

rv=T10"¢), x>0, v(0) =0, (32)
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where T1(V', ¢) is the profit function IT; of the first player in Theorem 2.2, evaluated at cost vector
(', ¢y, -+ ,cn-1), and we have suppressed notational dependence on the demand factor Y in this
deterministic case.

The equilibrium extraction rates are given by the static Nash equilibrium quantities (2) evalu-
ated at cost vector (V',cy, -+ ,cy-1). In particular, these depend only on V', and not on the w;, so
it is sufficient just to solve the ODE (32). The aggregate production is given by Q(f) = Z?’:_Ol qgj)*
and the market price by P(Q(#)). As time advances and x(7) declines, the price goes up and higher
cost producers who were hitherto blockaded may enter. In particular when, ¢,_; < P(Q(?)) < ¢,,
renewable players 1,--- ,n — 1 are producing in addition to player zero, and so n < N players are
active. The transition points can be found by solving (32) analytically or numerically.

We denote by C,_; = ;‘;} cj.

Proposition 4.8. When there are exactly 1 < n < N active players, the marginal value function for
the exhaustible player along the equilibrium extraction path v'(x(t)) solves the modified Hotelling
rule:

d
d—tV'(X(t)) = H(' (x())rv' (x(1)), (33)

where the pre-factor H is given by
) n+1-p(Q,) Dy = P =V )

= 2n=20(0,) + p(O)D()’ T aP(Q) - (V4 Cy)’

and Q, = Q,(V") is the solution of
QnP’(Qn) + nP(Qn) =V + Ch-i, (35)

whose existence and uniqueness is guaranteed by Theorem 2.2. The equilibrium production of the
exhaustible player is qﬁo)* = go(V'(x(1)), where we define

go(v') = ©(V) Q. (v),

so @ is the fraction of total output that he produces. Moreover, whenn = 1, H = 1, and forn > 2,
0<HZ<I

Proof. From Theorem 2.2, when exactly n players are active, the ODE (32) applies, with

= 1 7\2
IMT=- P n) — ’
g P@) =)
where Q,(v’) solves (35). Then, differentiating the ODE (32) gives
P// .\
r = gov’ (Q,'1 [ZP'(Qn) —(P(Q,) =) %] - 2) . (36)

Differentiating (35) with respect to V' gives

0,P'(Qn) + P"(0)0, 0, + nP' (00, = 1,

from which {

T PO+ 1-p(Qn)
18
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Then as %v’(x(t)) = —qgo(V'(x(1)))v"(x()), substituting for gov"” from (36) gives (33)-(34).

Note that when only players 0,1,--- ,n — 1 are active, the market price is P(Q,) satisfying
P(Q,) 2V and P(Q,) 2 ¢j, j=1,--- ,n—1, from which it follows that ®(v") given in (34) satisfies
0<®()<1.Whenn=1,C,.; =0andso ¢ = 1, which leads to H = 1, the classical monopoly
Hotelling’s rule. The bounds on H for n > 2 follow from p < p < 2 (or, in the case of constant
p < N + 1, that, from Theorem 2.4, that there will always be n > |p] players active). O

Remark 4.9. In the case p = 0, which corresponds to any linear pricing function such as P(Q) =
1 — Q, we have that H is constant (depending on n but not v'):

I 1
H=—-+—,
2 2n
as was found in [LS12]. In general, as H < 1 for n > 2, competition slows the growth of the

exhaustible player’s marginal value function below the monopoly Hotelling rate €.

Expressions for the optimal strategy, extraction path and exhaustion time, such as in Proposition
4.2 for the monopoly, can be given, but they are more complicated and not very informative, so we
do not give them here. In practice, the ODEs are easily solved numerically, or analytically in the
linear demand case.

5 Game with Stochastic Demand

In the stochastic demand version of the game introduced in Section 4.2, we replace the price
function P by P(Q, Y), which satisfies Assumption 2.1 and also the following.

Assumption 5.1. The price function P(Q,Y) has maximal relative prudence p < 2 for all Y > 0;
or P is of power type, as given in Definition 2.3, with constant relative prudence p < N + 1 for all
Y > 0.

We shall assume the demand factor Y is a one-dimensional diffusion satisfying Assumption
3.7.

The single exhaustible producer, player 0, whose reserves at time ¢ are X;, chooses a production
rate is ¢'” > 0 so we have

X, = =" 1 ix0)-
His cost of production is assumed zero (for simplicity). In addition there are N — 1 players with
inexhaustible (or renewable) resources, but they have potentially higher costs c;, where
0<ci<cp <+ <cyg <o

They produce at rates qgi), and the market price is P(Q(?), Y;), where Q(¢t) = Zﬁgl qﬁi). Analogous to
(31), the value functions for the stochastic game starting at resource level X, = x > 0 and demand
factor Yy =y > 0 are

v(x,y)= sup E f "¢V P(Q(r), Y,) dt, (37)
0

qOeA(x,y)

wi(x,y) = supE{ f e g (PO, Y,) - ¢i) di + f e "i(c, Y,)dr}, i=1,---,N-1,
0 Tx

4020

where 7, = inf{t > 0 | X, = 0}, and II; is given in Theorem 2.2, with ¢ = (¢, -+ ,cy-1)-
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Assumption 5.2. We will assume that the demand factor Y and discount rate r are such that, even
if all the renewable players have zero cost, namely c; =0 fori=1,--- ,N — 1, then

f e "EIT,(0, Y;) dt < oo, (38)
0
so even after the exhaustible player runs out, every remaining player’s value function (which are

equal under identical zero cost) remains finite.

Remark 5.3. In the case of constant prudence pricing functions given in (4), we have from Theo-
rem 2.4 that T1; = kY>** when all the costs are zero, for some constant k. Therefore condition (38)
becomes

f e"BYF dt < oo.
0

When Y is a GBM (8), this condition becomes
1,
2+p) ,u+§0' 1+p)|<r

5.1 HJB Equations & Stochastic Hotelling Rule for Games

The value functions in (37) have have associated HIB PDEs

4020

N-1
rv = sup g {P(qo £ q;,y) - vx} + Ly, 0.3 =0, (39)
J=1

N-1 o
rw; = sup g; {P(qi + Z ‘Ijs)’) - Ci} + Lyw;, wi(0,y) = f e "Elli(c,Y)dt, i=1,--- ,N—-1,
0

4:20 Jj=0,j#i

and the boundary conditions for w; are finite under our Assumption 5.2. The internal Nash equi-
librium problem in the system (39) is the static N-player game of Section 2 with cost vector
(Vx> €1, -+ ,Cn—1)- As is typical in these problems, the marginal value v, plays the role of a shadow
(or scarcity) cost for the exhaustible player. Therefore, we have

rv =T([vy; cl,y) + Ly, x>0, v(0,y) =0, (40)

where I1(v,, ¢) is the profit function IT; of the first player in Theorem 2.2, evaluated at cost vector
[vy; €] := (vy, 1, -+, cy-1). We note that the dynamic equilibrium strategies are given in terms of
the static Nash equilibrium quantities ¢}, defined in (2), by

qgl)* = Q?([VX(XZ, Yt); C]9 Yl‘)’ l = 0’ 19 e ’N - 1’

and only depend on v, but not the w;. Therefore, we focus on the v PDE henceforth.
First, we have the stochastic demand analogue of Proposition 4.8, Hotelling’s rule for the game.
We recall the relative prudence p(Q, Y) defined in (1).
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Proposition 5.4. The marginal value function v,(X,, Y;) along the optimal extraction path follows
the dynamics
dv, = (HOv Y)rv, + (1= Huy, Y))Lyv,) dt + o(Y)v,y dW,, (41)

where the pre-factor H is

n+1 _p(me) P(Qn’y) — Vx

H(vy,y) = s Py, y) = ; (42)
Y 2= 20(00 ) + Q0 D) YT AP(Q0y) — (v + Co)
and Q, = Q,(v,,V) is the solution of
QnPQ(Qna y) + nP(Qn, )’) =ve+Cyy, (43)
whose existence and uniqueness is guaranteed by Theorem 2.2.
Proof. Applying It6’s formula to v, (X, Y;), we have
1
dv, = v dX; + vy, dY, + Ea(msz dt
= (=qoVxx + Lyvy) dt + o (Y, dW,. (44)

Next, differentiating the PDE (40) and using the computations in the proof of Proposition 4.8 gives

B 1
H(v,,y)

Substituting for —ggv., into (44) gives (41). O

rvy

(_qzﬁ)vxx) + -Eyvx-

As in the monopoly case in Proposition 3.12, the stochastic Hotelling rule for the game is not
an autonomous SDE as it involves v,, and v,,,. The drift is a linear combination of Hrv, as in the
deterministic game (Proposition 4.8) and (1 — H).L,v,.

5.2 Demand Factor Models

We will consider two main diffusion models for the demand factor Y. If we think of the factor as
being a proxy for global demand, or business income levels which drive demand for a commodity
such as oil, a natural first choice is one that is mean-reverting, representing business cycles. A
standard example is the exponential Ornstein-Uhlenbeck (expOU) process, which is positive and

defined by the SDE

dy,
7’ =a(m—logY,) dt + o dW,, a,0 > 0. 45)

t
Here, log Y, is an OU process.

However, while there is a clear business cycle pattern in the real world, it is not as regular or as
‘predictable’ as an expOU process. For example, Japan grew rapidly until the 1990s, becoming the
second largest economy in the world, but has since stalled and only achieved minimal growth in
the last 25 years. Further, [Chi13] found that oil prices exhibited mean-reverting behavior up until
1995, but since then have not been mean-reverting. Moreover, as we found in the monopoly with
stochastic demand in Section 3.2, Example 3.10, the zero cost exhaustible producer may become
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demand blockaded in the expOU model, which seems rather unrealistic. As such, we conclude
explicit mean-reversion induces too much “freeze production and wait for better”, for even a zero
cost monopolist, which is implausible in oil markets.

Therefore, for numerical and other examples, we will largely focus on the case where Y is a
GBM (8), where as per Example 3.9, there is no monopoly demand blockading if ¢ < r, as we
shall assume. Indeed, if one thinks of Y as expected future demand (for instance from China), then
it is reasonable to model Y as a conditional expectation Y, = E{Dy | ,} for (uncertain) demand
D at some future time 7" > ¢ and filtration (7;), and therefore as a martingale (u = 0). Another
possible model is a martingale bounded below by, for instance 1:

dYt = O-(Yt - 1)th

Remark 5.5. It is also possible to obtain an explicit approximation to the value function in the
fast mean-reverting limit. This is done when the demand factor Y is a two-state Markov chain in
[LY14], and when Y is a continuous expOU process in [Funl7, Section 2.2.8] for the monopoly
problem under linear demand. In this regime, demand blockading may occur infinitely often, while
the exhaustion time goes to infinity. We do not pursue this approximation method here.

5.3 Numerical Results

We present some numerical results when the demand factor is a GBM or an expOU process, and
the pricing function is of power type. These are obtained from a finite difference approximation of
the PDE (40). We do not give details of the numerical implementation here, but these can be found
in [Brol6, Section 4.4.3] and [Fun17, Section 2.3.4]. In our examples, we have a duopoly between
a zero cost exhaustible producer, and a renewable source with higher cost ¢; > 0.

Figure 2 shows the result of our numerical method for approximating v(x, y) for a linear stochas-
tic demand pricing function. The blue region represents the states where the renewable producer
is blockaded, while the red region represents the states where both players are active. We observe
that the exhaustible producer is never demand blockaded for these parameters, and that the value
function is always concave in reserves.

For our second numerical example, in Figure 3, we use a constant relative prudence price
function with p = 1.5, so the choke price is infinite. Once again the blue region is where the
renewable producer is blockaded and the red region is where both players are active. Since we
chose p < 2 there will still be states in which the renewable producer is blockaded, but in contrast
to Figure 2, they cannot occur at x = 0, since at that point the renewable producer has a monopoly
and the choke price is infinite. Indeed, we see that the blockading region pulls away from 0 much
more sharply, though the resolution provided by the numerical PDE solution does not allow us to
see that it never touches 0. While it does never reach 0, we see that the blockading region becomes
arbitrarily close, as for very small values of Y, the exhaustible producer’s production at almost any
x > 0 will cause the renewable producer to become blockaded.

In our third example, demand is an expOU process as in (45). Figure 4 shows the numeri-
cal value function for linear pricing. The blue region represents the states where the renewable
producer is blockaded, the red region represents the states where both players are active, and the
yellow region represents the states in which the exhaustible producer is blockaded. The latter
shows demand blockading, where the upward drift from mean reversion gives the exhaustible pro-
ducer an incentive to wait out a period of low demand. Within this region there are some states
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Exhaustible Producer Walue vix,y)

" 20

Demand factor y 0 g Rasamnve level x

Figure 2: Value function v(x,y) for exhaustible player with one renewable competitor with cost
¢y =0.6. Priceis P(Q,Y) =Y — Q and Y is GBM with u = 0,0 = 0.2. Discount rate r = 0.1.

Exhaustible Producer Value v(x,y)

60

Demand factor y Reserve level x

Figure 3: Value function v(x,y) for exhaustible player with one renewable competitor with cost
cy = 2.5. Price is as (4) with p = 1.5, and Y is GBM with u = 0,0 = 0.2. Discount rate r = 0.1.
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Exhaustible Producer Value vix,y)

Demand factor y

a Inventory x

Figure 4: Value function v(x,y) for exhaustible player with one renewable competitor with cost
c; =0.6. Priceis P(Q,Y) =Y — Qand Y is expOU as (45) with @ = 0.5,m = 0,0 = 0.5. Discount
rate r = 0.1.

in which the renewable producer is blockaded and some in which they are active, depending on
whether the choke price Y, exceeds their marginal cost.

We compare now with a constant relative prudence price function with p = 1.5 and maintain
expOU demand. We make the same modifications as we did in Figure 3 including an increase to
the renewable competitor’s cost. Figure 5 shows the resulting value function. As in the previous
example, we see that the blockading region for the renewable producer does not extend to x = 0
as it does in Figure 3, because for any fixed value of the demand Y, there will be some X, > 0
for which the price is higher than the renewable producer’s marginal cost ¢;. The yellow region
is no longer visible but it is still possible in theory for the exhaustible producer to be blockaded
when saturation demand is very low, since the renewable producer’s production will create a kind
of finite choke price. Since there is a minimum level of total production equal to the renewable
producer’s strategy when ¢@* = 0, we find that Remark 3.11, which states that infinite choke
price models never result in demand blockading in a monopoly, does not translate to the Cournot
competition with N > 1 players.

6 Dynamic Game with Inexhaustible Players

With the aim of better understanding short term oil price volatility, as shown in Figure 1, we
consider dynamic games between many producers without the constraint of limited resources.
This game again represents competition in oil markets in the short run, where the exhaustibility of
reserves is not a constraint. We explore sample paths of the model, looking at the blockading of
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Figure 5: Value function v(x,y) for exhaustible player with one renewable competitor with cost
c; = 0.6. Price is as (4) with p = 1.5, and Y is expOU as (45) with @ = 0.5,m = 0,0 = 0.5.
Discount rate r = 0.1.

firms, and examine price volatility and how blockading impacts it when there are many players.

6.1 Inexhaustible Game with Stochastic Demand

Without the concern of finite resources, the value functions of the N players ordered by marginal
costs ¢y < ¢ < --- < ¢y are given by

vi(y) = supE f gV (P(Q(),Y)—c)dt, i=1,---,N,
0

q(i)
where Y, = y. They satisfy the system of ODEs
rvi = (e, y) + Lyvi,

where I1; are the static Nash equilibrium profits from Theorems 2.2 or 2.4, and c is the vector of
costs. Consequently

vily) = f e "EI(c,Y)dr, and ¢ = gi(c, Y,
0
so each player’s dynamic equilibrium strategy is simply to play the static strategy with the current

level of the demand factor Y;. The statistics of the ¥ process affect the value functions, but not the
strategies, which in this sense can be described as myopic.
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In this section, we will work with the stochastic linear inverse-demand curve
N
PQ,Y)=Y=0, Q=) 4,
i=1

and where Y, is a GBM with the dynamics from equation (8). Then, from Theorem 2.4 with p = 0,
the market price is given by

Y, +C, . Y, +C, -
P, = , n; = arg min , C,= Z C;.
n, + 1 1<n<N n + 1 =1

Here n, is the number of active players at time ¢, with the remaining being blockaded. When Y

reaches the threshold where, say, player 7 joins the first n — 1 players in producing, we have
Y_+C,_ Y+C, Y, +C,1+c,

I el B ¢, = P = t _ 1y 1 TC

P_ =
! n n+1 n+1

= Cp,

and so P,_ = P,, using also the continuity of Y. So the change in the number of producers does not
introduce discontinuity in the price process, but we will see how it affects volatility. The production
rates of the players when n, of them are active are given by

1 <
% _ -
= Y, —nc; + E cil, i=1,---,n,
qt n+1 ! i J !

oL

and zero for i > n,.

6.2 Illustration of Sample Paths
We start with a dynamic stochastic inexhaustible 1000-player model with the parameters
c1 = 0,c; = 0.000004, c;3 = 0.000008, - - - , cjp00 = 0.004, r=05,u=0,0=0.52,y=1.

The left plot of Figure 6 illustrates the costs of the players. We use such small costs because we
want to maintain an initial value of the demand factor of one. If the costs were larger with this
initial value of the demand factor, most of the players would be blockaded at the start of the game.
With these costs, 707 firms produce at the initial value of the demand factor and all firms produce
at a demand factor of two. Figure 7 shows the number of producing firms at a given level of the
demand factor for these costs. The higher the demand factor, the greater the number of producing
firms. This is because as the demand factor rises, the price rises and higher cost players enter as
they can produce profitably. The growth in the number of producing firms slows, as the demand
factor gets large. The growth slows because the price rises at a slower rate as more firms enter the
market and it becomes more competitive.

Figure 8 shows a sample path for this game over a two year period. In this simulation, the
demand factor falls over the two year time period, which leads to a decrease in price, production
levels and the number of firms producing. Rather than thinking of the players as industries, here
we think of them as individual companies. The higher cost players produce less and the highest
cost players are blockaded. As the bottom right plot of Figure 8 shows, there are originally just
over 700 firms producing, but this number falls with the demand factor, until only about 450 firms
are producing at the end of the second year.
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Figure 6: Costs of the players for the sample paths of the dynamic game with 1,000 players.

Number of Firms Producing at a Given Level of the Demand Factor
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Figure 7: The number of firms producing at a given level of the demand factor in the dynamic
game with 1,000 players. The costs illustrated here are ¢; = 0, ¢; = 0.000004, c¢3 = 0.000008, ...,
C1000 = 0.004.
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Figure 8: Sample path of the dynamic inexhaustible stochastic model with 1,000 players. The
parameters illustrated here are ¢; = 0, ¢, = 0.000004, c; = 0.000008, ..., cigo0 = 0.004, r = 0.5,
u=0,0=052andy=1.

6.3 Investigation of Volatility

Figure 9 shows a sample path of the number of firms producing and demand factor and price return
volatility. In the figure, the number of firms producing varies from 450 to almost 900, but the price
return volatility barely reaches 30% one time, even with demand factor volatility of 52%. The
effect of the blockading here, however, is much harder to observe as the costs of the players are
close together. Further, blockading’s effect on price volatility is disguised because the number of
firms is changing relatively slowly, and only hits the extremes for short periods of time.

In order to see more clearly the potential effect of blockading on price volatility, we adjust the
costs of the players. Figure 10 shows another sample path of the number of firms producing and
demand factor and price return volatility, using the same path of the demand factor as in Figure
8, but the costs of the players in this sample path are bunched in two groups (graphed in the right
plot of Figure 6). Figure 11 shows the price and some production levels. In reality, costs of
energy producers are bunched by technology. In this example, we think of the lower cost firms as
the traditional oil producers and the higher cost firms as (say) fracking producers. In both sample
paths, the discount rate and the parameters of the GBM are the same. In Figure 10, the number of
producing firms varies from 500 to 1000, and the change in the price volatility due to blockading
is more pronounced. The number of producing firms starts around 700 and rapidly falls to 500 and
then rebounds to 1,000. The rapid changes create volatility, especially when there is substantial
blockading, such as at the end of the simulation when price volatility reaches over 35%.

By bunching the firms closer together and increasing the number of high cost producers relative
to the low cost producers, we can create volatility that is closer to what is observed in real world
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Figure 9: An illustration of the number of firms and demand factor and price return volatility
in a sample path of the model with 1,000 players. The parameters illustrated here are ¢; = 0,
¢, = 0.000004, ¢; = 0.000008, ..., cip00 = 0.004, r =0.5,u =0,0 =0.52and y = 1.
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Figure 10: An illustration of the number of firms and demand factor and price return volatility in
a sample path of the model with 1,000 players. The costs of the players are shown in the right plot
of Figure 6 and the other parameters are r = 0.5, u = 0,0 =0.52 and y = 1.
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Figure 11: Game dynamics with 1,000 players. The costs of the players are shown in the right plot
of Figure 6 and the other parameters are r = 0.5, u = 0,0 =0.52 and y = 1.

prices. Figure 12 shows actual WTI crude oil price return volatility over the last eight years,
for comparison with Figure 10. While the volatility is significantly lower in the sample path,
the pattern of volatility is similar and blockading creates price spikes like those observed in the
real world. Here, we confirm our finding above that lower demand leads to greater volatility
through reduced competition and show that it applies even with many competitors. With bunching
of producers’ costs due to technology, there are more clear regimes in price volatility as prices
change, which better fits with real world observations. This supports the argument that blockading
can create volatility in oil prices.
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