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Abstract

We describe some stochastic control problems in financial engineering arising from the
need to find investment strategies to optimize some goal. Typically, these problems are
characterized by nonlinear Hamilton-Jacobi-Bellman partial differential equations, and
often they can be reduced to linear PDEs with the Legendre transform of convex duality.
One situation where this cannot be achieved is in a market with stochastic volatility.
In this case, we discuss an approximation using asymptotic analysis in the limit of fast
mean-reversion of the process driving volatility. Simulations illustrate that marginal
improvement can be achieved with this approach even when volatility is not fluctuating
that rapidly.

1 Introduction

The purpose of this article to introduce to students and researchers schooled in differential
equations and scientific computing some problems involving optimal investment strategies
that arise in financial engineering. These can often be characterized by nonlinear second-
order Hamilton-Jacobi-Bellman (HJB) equations in three or more space dimensions, so that
it is difficult to solve them numerically within the time-frame that the solution is required. We
discuss an approximation method based on asymptotic analysis that is effective for models in
which asset prices have randomly varying volatility. This method supposes that volatility is
fluctuating rapidly with respect to the timescale of the optimization problem. The upshot of
the singular perturbation analysis is to approximate the changing volatility by two averages
when forecasting future expected performance. One homogenized volatility is the root-mean-
square average that is common in financial calculations; the second is a harmonic average
that arises from the particular structure of the HJB equations in this context. We show from
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simulation that even when the volatility is not fluctuating so rapidly, as the analysis assumes,
the homogenization approximations serve to improve average performance, albeit marginally,
over the competing constant volatility theory.

1.1 Background

In the financial services industry, stochastic modeling of prices has long been recognized as
crucial to everyday management of risk, particularly that associated with derivative instru-
ments. By derivatives, we refer to contracts such as options whose payoffs depend in some
way on the behaviour of the price of some underlying asset (stock, commodity, exchange
rate, for example) over some period of time. The canonical example, a call option on, say,
a stock, pays nothing if the stock price XT on a specified expiration date T in the future is
less than the specified strike price K, and the difference XT −K otherwise. It is completely
characterized by its payoff function

h(XT ) = (XT −K)+,

where x+ = max{x, 0}, the positive-part function.
Such securities with potentially unbounded payouts (for example if XT becomes very large

in the case of a call) can bring huge and rapid returns on relatively small investments if the
stock moves the right way for the holder. But they are often associated with huge losses (for
example for the writer of the call option). Large trading organizations have been using (to
varying degrees) mathematical models for hedging their derivatives risk, at least since the
Black-Scholes-Merton (BSM) methodology introduced in 1973 [2, 15].

In this context, let us remark that in some mathematical market models, it is possible to
replicate the payoff of any derivative by continuous trading in the underlying. Such markets,
which include the BSM model, are called complete and are much easier to analyze than the
incomplete ones. In this article we will be largely interested in stochastic volatility, a feature
that renders the market incomplete.

A recurrent problem in managing risks associated with derivatives positions is to maximize
over suitably defined trading strategies

IE{U(XT , VT )},

the expectation of a utility function U of the future value of a controlled random wealth
(or portfolio value) process (Vt)0≤t≤T where the utility also depends on the (possibly vector-
valued) state variable (Xt) at the future time T . In the situations of interest here, (Xt) is
an asset price, possibly driven by other stochastic variables like volatility, U is a concave
function of VT , and the state-dependence of the utility function arises from risk associated
with a derivative security h(XT ).

The control variable, denoted (πt), represents the amount the investor has in the stock.
The rest Vt − πt is in the bank earning interest at rate r. The wealth process (Vt) therefore
evolves according to

dVt =
πt

Xt
dXt + r(Vt − πt) dt, (1)

which reads that the change in the portfolio value is the number of stocks held times the
change in the stock price, plus interest earned on the rest in the bank. We assume the initial
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wealth v is given. Recent work on existence and uniqueness of optimal solutions under various
models and constraints is summarized in [13].

We first give some practical examples that can be described in this framework, and then
describe one approach to this problem using dynamic programming.

1.2 Examples

In a complete market, there exists an amount v? of initial capital and a strategy (π?
t ) such

that
VT = h(XT ) with probability 1.

In this case, (π?
t ) is called the replicating strategy for the derivative. Alternatively, it is the

hedging strategy for a short position in the derivative since it is often used to cancel exactly
(in theory) the risk of a short derivative position. The quantity v? is called the Black-Scholes
price of the derivative.

The problems we describe here are concerned with the gap

h(XT )− VT

which may not be zero with probability 1 either because the initial capital v < v? or because
of market incompleteness.

1.2.1 Partial Hedging

Suppose the investor has written (sold) a derivative, but wants to insure or hedge against
his future (uncertain) liability with a trading strategy in the stock. The problem is to find a
strategy (πt)0≤t≤T such that, starting with initial capital v, the terminal value of the hedging
portfolio VT comes as close as possible to h(XT ). We want the performance of the strategy
to be penalized for falling short, with the actual size of the shortfall taken into account,
but when the strategy overshoots the target, the size of the overshoot has no bearing on
the measure of risk. This problem has been studied under various assumptions recently by
Föllmer-Leukert [7] and Cvitanić & Karatzas [3], where existence and uniqueness results
are established. In Section 7, we discuss computation of optimal strategies when volatility is
changing randomly.

If we are given enough initial capital v, we can make sure that the terminal wealth VT

exceeds h(XT ) with probability 1. The smallest such v is called the superhedging price of
the derivative h(XT ). Clearly, the partial hedging problem is only interesting if v is strictly
smaller than the superhedging price.

For the explicit computations and examples here, the penalty function we use is

IE{1
p
((h(XT )− VT )+)p},

the one-sided pth moment. The parameter p > 1 allows control of one’s risk aversion. We
will present simulations corresponding to the case p = 1.1 in Section 7. The limiting case
p = 1 has a particular economic significance since the penalty function then corresponds to a
coherent measure of risk (see [3]), but also leads to certain implementation difficulties. This
is why we pick p = 1.1.
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We also insist that Vt ≥ 0 for all 0 ≤ t ≤ T almost surely for the strategy to be admissible.
That is, the hedging portfolio is bounded below by zero, a portfolio constraint. The problem
can be reformulated as a (state-dependent) utility maximization with

U(x, v) =
1
p

[
h(x)p − ((h(x)− v)+)p

]
.

For fixed x, this is concave in v on (0,∞), strictly concave on (0, h(x)) and satisfies U(x, 0) =
0, U(x, v) = 1

ph(x)p for v ≥ h(x), see Figure 3.
We call this problem partial hedging of the derivative risk. It is the main example that

we pick to illustrate the asymptotic analysis in Section 6; it is also treated in [12].

1.2.2 Mean-Square Pricing

The problem is to find the initial wealth level such that the minimum variance

inf
(πt)

IE{(h(XT )− VT )2}

is minimized as a function of v. This is then defined to be the option price. In our framework,
this corresponds to the utility function

U(x, v) = h(x)2 − (h(x)− v)2.

Such a quadratic state-dependent utility is considered in [5, 1], for example. In complete
markets the expectation above is zero for the optimal v because the option can be replicated
exactly with initial capital v?, the Black-Scholes price. The technique of mean-square pricing
is most interesting in incomplete markets, such as markets with stochastic volatility.

1.2.3 Options Based Portfolio Insurance

Fund managers are interested in selling trading opportunities in which the clients can take
advantage of a rising market but are insured against losses in the sense that the value of
the fund is bounded below by a number that is either constant or depends on a future asset
price. More precisely, the client is guaranteed that the portfolio value VT at time T > 0 is at
least h(XT ), i.e. the value of an option with payoff h(XT ) ≥ 0. This is studied in complete
markets in [6], for example, and corresponds to the utility function

U(x, v) =

{
Ũ(v) if v ≥ h(x)
−∞ otherwise

where Ũ is an increasing, concave (state-independent) utility function.

1.2.4 Utility-Indifference Pricing

In this mechanism for pricing, described in [4] for example, the (selling) price of a derivative
with payoff h(XT ) is defined to be the extra initial compensation the seller would have to
receive so that he/she is indifferent with respect to maximum expected utility between having
the liability of the short derivative position or just trading in the stock.
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Let
H(v) = sup

π
IE{Ũ(VT − h(XT )) | initial capital is v},

where Ũ is an increasing concave utility function and we show only the v dependence of H.
Here the seller can trade in the stock, but at time T has liability −h(XT ). Thus the relevant
state-dependent utility function is

U(x, v) = Ũ(v − h(x)),

where Ũ is an increasing, concave (state-independent) utility function. Let

M(v) = sup
π

IE{Ũ(VT ) | initial capital is v},

the solution to the same problem without the derivative position. Then the (seller’s) price P
of the derivative security is defined by

H(v + P ) = M(v).

In a complete market, this mechanism recovers the Black-Scholes price v? which does not
depend on the wealth level v of the seller. The same desirable wealth-independent property
can be attained in an incomplete market by assuming an exponential utility Ũ(v) = −e−γv,
where γ is a risk-aversion coefficient.

2 The Merton Problem

To begin our exposition of the methods for dealing with utility maximization problems, we
begin with the simplest and original continuous-time stochastic control problem in finance, the
Merton optimal asset allocation problem. The original reference is [14] and this is reprinted
in the book [16]. Here we concentrate on maximizing expected utility at a final time horizon
T , mainly because we are later interested in problems associated with derivative contracts
that have a natural terminal time; other versions of the asset allocation problem consider
optimizing utility of consumption over all times, possibly with an infinite horizon.

An excellent mathematical introduction to this type of stochastic control problem, as well
as stochastic modelling and connections to differential equations, is the book by Øksendal
[17].

2.1 The BSM Model

The Black-Scholes-Merton (BSM) model takes the price of the underlying asset (for example
a stock) to have a deterministic growth component (measured by an average rate of return
µ) and uncertainty or risk generated (for mathematical convenience) by a Brownian motion
and quantified by a volatility parameter σ. The price Xt at time t satisfies the stochastic
differential equation

dXt

Xt
= µdt + σ dWt, (2)

where (Wt) is a standard Brownian motion. This model is simple and extremely tractable for
a number of important problems (particularly the problem of pricing and hedging derivative
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securities), and as such, it has had enormous impact over the past thirty years. It is the
primary example of a complete, continuous-time market.

An investor starts with capital v at time t = 0 and has the choice to invest in the stock
or put his/her money in the bank earning interest at the (assumed constant) interest rate r.
He continuously balances his portfolio, adjusting the weights between these two choices so
as to maximize his expected utility of wealth at time T . That is, he has a utility function
U that is increasing (he prefers more wealth to less) and concave (representing risk-aversion)
through which he values one investment strategy over another.

If πt is the dollar amount of stock that the investor holds at time t, we define his wealth
process (Vt) by (1). The investor looks for a strategy π?

t that maximizes

IE{U(VT )}

starting with initial wealth v and under the constraint of nonbankruptcy: Vt ≥ 0 for all
0 ≤ t ≤ T (almost surely).

Without loss of generality, we shall henceforth take the interest rate r to be zero. This
can be justified simply by measuring all capital values in units of the money market account,
i.e. replacing (Xt), (Vt) and (πt) by (Xte

−rt), (Vte
−rt) and (πte

−rt), respectively. We recover
the same equations as long as we relabel µ− r as µ. With this convention, the equations for
(Xt, Vt) in terms of the control πt are

dXt

Xt
= µdt + σ dWt, (3)

dVt = µπt dt + σπt dWt, (4)

where µ is now the excess growth over the risk free rate. Notice that the process (Vt) is
autonomous, i.e. it does not directly involve (Xt).

2.2 Dynamic Programming and the Bellman Equation

One approach to this problem is to observe that if πt were chosen to be a (nice) function of
Vt, the controlled process (Vt) defined by (4) would be a Markov process. Therefore, if the
optimal strategy were of this so-called feedback form, we could take advantage of the structure
and study the evolution of the optimal expected utility as a function of the starting wealth
and starting time. To this end, we define the value function

H(t, v) = sup
(πs)s∈[t,T )

IE{U(VT ) | Vt = v},

where by hypothesis, H is a function of only the starting time t and wealth v (and not, for
instance, details of the path). We shall also use the shorthand

IEt,v{·} = IE{· | Vt = v}.

Notice that (Xt) has vanished from the problem because everything can be stated in terms
of the process (Vt). This is a direct consequence of the geometric Brownian motion model
(3) assumed here. If µ or σ were general functions of Xt, the reduction in dimension would
not be possible. In the optimization problems involving derivative contracts, XT appears in
the utility function and, again, we cannot eliminate the x variable.
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The following is a loose derivation of the Bellman equation for the value function H. The
idea is to divide the control process (πs) over the the time interval [t, T ) into the (constant)
control πt over [t, t+dt) and the rest (πs) over s ∈ [t+dt, T ). We then optimize over these two
parts separately. Formally, conditioning on the wealth at time t + dt and using the iterated
expectations formula, this looks like

H(t, v) = sup
(πs)s∈[t,T )

IEt,v {IE{U(VT ) | Vt+dt}}

= sup
πt

IEt,v

{
sup

(πs)s>t

IE{U(VT ) | Vt+dt}

}
= sup

πt

IEt,v {H(t + dt, Vt+dt)}

= sup
πt

IEt,v {H(t, v) + Ht(t, v) dt + LvH(t, v) dt + σπtHv(t, v) dWt} ,

where Lv denotes the infinitesimal generator of (Vt), namely

Lv =
1
2
σ2π2

t

∂2

∂v2
+ µπt

∂

∂v
,

and we have used Itô’s formula in the last step. Note that Lv depends on the control π, but
we do not denote the dependence in this notation. The last term is zero since IE{dWt} = 0.
We therefore obtain

Ht + sup
πt

LvH = 0. (5)

Notice that the computation exploits the Markovian structure to reduce the optimization
over the whole time period to successive optimizations over infinitesimal time intervals. This
description of the optimal strategy for the long run, that is to do as well as one can over the
short run, is called the Bellman principle.

The Bellman partial differential equation (5) applies in the domain t < T and v > 0 with
the terminal condition

H(T, v) = U(v)

and the boundary condition H(t, 0) = 0 enforcing the bankruptcy constraint.
If we can find a smooth solution H(t, v) to which Itô’s formula can be applied, it follows

from a verification theorem that H gives the maximum expected utility and the optimal
strategy is given by a Markov control πt = π(Vt). For details, see [8].

In our case, the Bellman equation is

Ht + sup
π

(
1
2
σ2π2Hvv + µπHv

)
= 0.

The internal optimization is simply to find the extreme point of a quadratic. We shall
assume (and it can be shown rigorously) that the value function inherits the convexity of
the utility function. Moreover, under reasonable conditions, it is strictly convex for t < T
even if U is not. This follows from the diffusive part of the equation. Therefore Hvv < 0.
The optimization over π is not constrained because we have not assumed any constraints
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on the trading strategies themselves, as long as the wealth stays positive, and therefore the
quadratic is maximized by

π? = − µHv

σ2Hvv
. (6)

Substituting with this π, we can rewrite the Bellman equation as

Ht −
µ2

2σ2

H2
v

Hvv
= 0. (7)

2.3 Solution by Legendre Transform

We further take advantage of the assumed convexity of the value function to define the
Legendre transform

Ĥ(t, z) = sup
v>0

{H(t, v)− zv} ,

where z > 0 denotes the dual variable to v. The value of v where this optimum is attained
is denoted by g(t, z), so that

g(t, z) = inf{v > 0 | H(t, v) ≥ zv + Ĥ(t, z)}.

The two functions g(t, z) and Ĥ(t, z) are closely related and we shall refer to either one of
them as the (convex) dual of H. In this article, we will work mainly with the function g, as it
is easier to compute numerically and suffices for the purposes of computing optimal trading
strategies. The function Ĥ is related to g by g = −Ĥz.

At the terminal time, we denote

Û(x, z) = sup{U(v)− zv | 0 < v < ∞}
G(x, z) = inf{v > 0 | U(v) ≥ zv + Û(z)}.

This is illustrated in Figure 1.

�

�

�

��

�

��

��

�

Figure 1: The Legendre transform. The left curve is the graph of U(v) the utility function and the
tangent line has slope z for v = G(z) and has vertical intercept Û(z). The right curve is the graph of
Û(z) and the tangent line has slope −v at the point z = Ĝ(v) and has vertical intercept U(v).

Assuming that H is strictly concave and smooth as a function of v, we have that

Hv(t, g(t, z)) = z,
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or g = H−1
v , whereby, in economics parlance, g is sometimes referred to as the inverse of

marginal utility.
By differentiating this with respect to t and z we recover the following rules relating the

derivatives of the value function to the dual function g:

Htv = − gt

gz
Hvv =

1
gz

Hvvv = −gzz

g3
z

,

where the left is evaluated at (t, g(t, z)). Differentiating equation (7) with respect to v and
substituting gives an autonomous equation for g:

gt +
µ2

2σ2
z2gzz +

µ2

σ2
zgz = 0,

g(T, z) = G(z),

in t < T and z > 0. The key observation is that this is now a linear PDE.

2.4 Optimal Strategy

We are not usually interested in the value function, but rather in the optimal investment
strategy. From (6), we can compute the optimal stock holding as a feedback formula in terms
of derivatives of the value function. In terms of the dual function g, it is given by

π?
t = − µ

σ2
zgz(t, z).

Thus for a given Merton problem, we solve the linear PDE for g and recover the investment
amount π? from its first derivative. All that remains is to use the value of the dual variable
z that corresponds to the current time and wealth level (t, v). This is obtained from the
relation

g(t, z) = v.

2.5 Example: Power Utility

The success of the Merton approach is due primarily to an appealing explicit formula for
certain simple utility functions. For an isoelastic (or power) utility function of the form

U(v) = vγ/γ, 0 < γ < 1,

the Legendre duals G and Û are given by

G(z) = z
1

γ−1 and Û(z) =
1− γ

γ
z

γ
γ−1 .

These are illustrated in Figure 2. In this case, the linear PDE for g admits a separable
solution of the form

g(t, z) = z
1

γ−1 u(t),

for some function u(t) we can compute. It follows that for a given (t, v),

g(t, z) = v
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Figure 2: Terminal conditions for the Merton problem with power utility.

and the optimal strategy is given by

π?
t = − µ

σ2
zgz = − µ

σ2

1
γ − 1

g =
µ

σ2(1− γ)
v.

That is, the optimal strategy is to hold the fraction

M =
µ

σ2(1− γ)

of current wealth in the risky asset (the stock) and to put the rest in the bank. As the stock
price rises, this strategy says to sell some stock so that the fraction of the portfolio comprised
of the risky asset remains the same.

The fraction M is known as the Merton ratio. More importantly, as we see next, this
fixed-mix result generalizes to multiple securities as long as they are also assumed to be
geometric Brownian motions.

2.6 The Multi-Dimensional Merton Problem

We have a market with n ≥ 1 stocks where the ith stock price (X(i)
t ) (in units of the money

market account) is modeled by

dX
(i)
t

X
(i)
t

= µi dt +
n∑

j=1

σijdW
(j)
t ,

where the µi are the growth rates less the risk free rate and (W (i)
t ) are independent Brownian

motions. The price processes are correlated through the diffusion terms. We denote by (Xt)
the vector price process, µ is the vector of return rates, and σ is the n× n volatility matrix.

An investor chooses amounts πt = (π(1)
t , · · · , π

(n)
t ) to invest in each stock, and puts the

rest in the bank. Again (πt) denotes the vector control process. His wealth process is

dVt = πT
t µdt + πT

t σ dWt,

where T denotes transpose. Recall that in the one-dimensional Merton’s problem, the stock
price process disappeared from the problem. This happens in the multidimensional case, too,
and the Bellman equation for the value function H(t, v) becomes

Ht + sup
π

(
1
2
πT σσT πHvv + πT µHv

)
= 0.
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This can be transformed to a linear PDE using the Legendre transform. In the case of power
utility, U(v) = vγ/γ, the optimal strategy is given by

π?
t =

1
1− γ

(σσT )−1µv.

Thus, the optimal strategy is again to hold fixed fractions of current wealth in the risky assets
(the stocks) and to put the rest in the bank. The fractions are given by the vector of Merton
ratios 1

1−γ (σσT )−1µ.

3 State-Dependent Utility Maximization: Constant Volatility

In this section, we describe briefly the generalization of the utility maximization problem to
the case when the process modeling the price of the stock cannot be eliminated. We assume
still that it is a geometric Brownian motion, but that the utility depends on its final value,
as in the examples outlined in Section 1.2.

The value function is

H(t, x, v) = sup
π

IE{U(XT , VT ) | Xt = x, Vt = v}

and it is conjectured to satisfy the Bellman equation

0 = Ht + µxHx +
1
2
σ2x2Hxx + sup

π

(
πµHv + πσ2xHxv +

1
2
π2σ2Hvv

)
= Ht + µxHx +

1
2
σ2x2Hxx −

(µHv + σ2Hxv)2

2σ2Hvv
. (8)

3.1 Convex Duals

Proceeding as in the Merton problem, we introduce the duals

Ĥ(t, x, z) = sup{H(t, x, v)− zv | 0 < v < ∞}
g(t, x, z) = inf{v > 0 | H(t, x, v) ≥ zv + Ĥ(t, x, z)}.

Notice that the we take the convex duals with respect to the variable v only. What is of
interest is how the extra state variable x affects the transformation of the Bellman PDE. The
transformation rules for the derivatives are given by

Hv = z
Ht = Ĥt

Hx = Ĥx

Hvv = − 1
Ĥzz

Hxv = −Ĥxz

Ĥzz

Hxx = Ĥxx −
Ĥ2

xz

Ĥzz

.

This implies that

Ĥxx = Hxx −
H2

xv

Hvv
. (9)
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If we rewrite (8) as

Ht + µxHx +
1
2
σ2x2

(
Hxx −

H2
xv

Hvv

)
− µx

HvHxv

Hvv
− µ2

2σ2

H2
v

Hvv
= 0,

we see that the first nonlinear term is transformed into a linear term because of (9), and the
third is as in the Merton problem described in Section 2.3 where it became linear in the dual
variables. Moreover the same happens to the second nonlinear term and we get

Ĥt +
1
2
σ2x2Ĥxx +

1
2

µ2

σ2
z2Ĥzz + µxHx − µxzĤxz = 0. (10)

Note that the first nonlinear term would not have been transformed to a linear one if the
(Vt) process was not perfectly correlated with the (Xt) process. This is the situation in the
stochastic volatility models we discuss later because volatility is not a traded asset.

We can recover the PDE for the other dual function g(t, x, z) using

g = −Ĥz

and differentiating the PDE for Ĥ with respect to z to give

gt +
1
2
σ2x2gxx +

µ2

σ2
zgz +

1
2

µ2

σ2
z2gzz − µxzgxz = 0. (11)

3.2 Optimal Strategy

Having solved the linear PDE for either g or Ĥ, we recover the optimal strategy from

π∗ = −(µHv + σ2xHxv)
σ2Hvv

=
µ

σ2
zĤzz − xĤxz

= xgx −
µ

σ2
zgz.

The value of z to be used when the stock and wealth are (x, v) at time t are found from

g(t, x, z) = v.

3.3 Example: Partial Hedging

In this problem, we are partially hedging a derivative with payoff h(XT ) ≥ 0 at time T , as
explained in Section 1.2.1. We assume that v is strictly less than the superhedging price
of the derivative. In the present case of constant volatility, the market is complete and the
superhedging price is the Black-Scholes price v?. It is the (uniquely determined) initial capital
for a replicating strategy for the derivative.

Recall that the state-dependent utility function is

U(x, v) =
1
p

(
hp −

(
(h− v)+

)p)
,
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where h = h(x) and p > 1. This has convex duals

G(x, z) =
(
h− z

1
p−1

)+

Û(x, z) =
(

1
p
hp +

p− 1
p

z
p

p−1 − zh

)
H
(
h− z

1
p−1

)
,

where H is the Heaviside (step) function. See Figure 3.
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Figure 3: Terminal conditions for partial hedging.

The linear PDEs (10) and (11) have a probabilistic interpretation as the expectation of
a function of a (two-dimensional) Markov process, but this can be reduced to a function of
just the terminal stock price (because of the degeneracy of (11)). It can be shown that

g(t, x, z) = IE?
t,x{
(
h(XT )− c̃X−κ

T

)+}, (12)

where κ = µ
σ2(p−1)

, and IE? denotes expectation with respect to the (so-called risk-neutral)
probability measure IP ? under which

dXt = σXtdW ?
t ,

with (W ?
t ) a IP ?-Brownian motion, and

c̃ = c̃(t, x, z) = zx−µ/σ2
exp

(
1
2
(
µ2

σ2
− µ)(T − t)

)
.

This representation is useful in finance where linear diffusion PDEs are associated with
pricing equations for derivative securities. We do not stress this interpretation here, but
merely comment that the optimal strategy is to trade the stock in such a way so as to
replicate the target wealth, which here is a European derivative contract with the modified
payoff function (

h(XT )− c̃X−κ
T

)+
.

This is illustrated in Figure 4. The number z is determined by

g(t, x, z) = current wealth.

For computational purposes, the only requirement is to solve the PDE for g or Ĥ. It turns
out that g is more amenable to explicit computation.
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��

��

�

Figure 4: Target wealth for partial hedging of a European call option. The thin line is the payoff
function of the original call. When partial hedging, they payoff is replaced by the thick line.

3.4 Explicit Computation for a Call Option

Sometimes we can get closed formulas for the function g(t, x, z) and its derivatives, and hence
the optimal strategy in the utility maximization. This greatly increases computational speed
and is the case, for instance, when we are partially hedging a call option h(x) = (x −K)+.
Indeed, let us define d̃2 = d̃2(t, x, z) as the (unique) solution to

xe−
1
2
σ2τ−σ

√
τ d̃2 −K − z

1
p−1 e

µ2τ

2(p−1)σ2 +
µ
√

τd̃2
(p−1)σ = 0,

Given K and values of t, x, z, this can be solved numerically, since the left hand side is a
strictly decreasing function of d̃2. We then get from (12):

g(t, x, z) =
∫ d̃2

−∞

(
xe−

1
2
σ2τ−σ

√
τξ −K − z

1
p−1 e

µ2τ

2(p−1)σ2 + µ
√

τξ
(p−1)σ

)
1√
2π

e−
1
2
ξ2

dξ

= xN(d̃1)−KN(d̃2)− z
1

p−1 e
pµ2τ

2(p−1)2σ2 N(d̃3), (13)

where

d̃1 = d̃2 + σ
√

τ d̃3 = d̃2 −
µ
√

τ

(p− 1)σ
.

This is similar to the celebrated Black-Scholes formula for the price of a call option, and in
fact reduces to this as z → 0.

In special cases such as p = 2 one can also get a closed formula for Ĥ(x, z), but we only
need g in order to find the optimal strategy:

π∗(t, x, z)
x

= gx −
µz

σ2x
gz

= N(d̃1) +
µz

1
p−1

(p− 1)σ2x
exp

(
pµ2τ

2(p− 1)2σ2

)
N(d̃3).
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This strategy was derived in [7] and we shall refer to it as the Föllmer-Leukert strategy. It is
implemented in the simulations of Section 7.

4 Stochastic Volatility Models

The BSM model supposes that asset price volatility is constant. This is contradicted by
empirical evidence of fluctuating historical volatility. More crucially, volatility as a measure
of risk is seen by traders as the most important variable (after the price of the underlying
asset itself) in driving probabilities of profit or loss.

Stochastic volatility models which replace σ in (2) by a random process (σt) arise not
just because of empirical evidence of historical volatility’s “random characteristics”, but also
from considerations of market hysteria, uncertainty in estimation, or they could be used
to simulate non-Gaussian (heavy-tailed) returns distributions. They describe a much more
complex market than the Black-Scholes model, and this is reflected in the increase in difficulty
of the derivative hedging problems we shall describe. They were introduced in the academic
literature in the late 1980’s [11] and are popular in the industry today.

A model for stock prices in which volatility (σt) is a random process starts with the
stochastic differential equation

dXt

Xt
= µdt + σt dWt, (14)

the analogue of (2).
A key aim in the modeling is to say as little about volatility as possible so that we are not

tied to a specific model. Since volatility is not observed directly, there is a paucity of consistent
econometric information about its behaviour. One feature that most empirical studies point
out, and which squares with common experience, is that volatility is mean-reverting: it is
not wandering into far-flung excursions, but seems to be pulled upwards when it is low and
downwards when it is high. It is convenient to model volatility as a function of a simple
mean-reverting (ergodic) Markov diffusion process (Yt), for example an Ornstein-Uhlenbeck
(OU) process. We discuss the class of models

σt = f(Yt); dYt = α(m− Yt) dt + β dẐt, (15)

where f is a positive bounded function through which the generality of possible volatility
models is obtained. In fact the asymptotic results for derivative pricing in [10] are insensitive
to all but a few general features of f , and the way the method there is calibrated means that
this function never has to be chosen.

In (15), (Ẑt) is a Brownian motion modeling the fine-scale volatility fluctuations that
is correlated with the other Brownian motion (Wt). Itô diffusions provide a simple way to
model the much observed “leverage effect” that volatility and stock price shocks are negatively
correlated: when volatility goes up, stock prices tend to fall. The instantaneous correlation
coefficient ρ, where

IE{dWt dẐt} = ρ dt

measures this asymmetry in the probability distribution of future stock prices: ρ < 0 generates
a fatter left tail.
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4.1 Fast Mean-Reverting Stochastic Volatility

The effects of fast mean-reversion in volatility were studied in [10]. Mean-reversion is mathe-
matically described by ergodicity and refers to the characteristic time it takes for an ergodic
process to get back to the mean-level of its long-run distribution. The separation of scales
that we shall exploit is that while stock prices change on a tick-by-tick time-scale (minutes),
volatility changes more slowly, on the scale of a few days, but still fluctuates rapidly over the
time-scale (months) of a derivative contract. This phenomenon of bursty or clustering volatil-
ity is characterized as fast mean-reversion in the models we look at. That is, the volatility
process is fast mean-reverting with respect to the long time-scale (months) of reference. (It is
slow mean-reverting with respect to the tick time-scale, by which it is sometimes described).

The important parameter in (15) is α, the rate of mean-reversion of the volatility-driving
process (Yt). Fast mean-reversion describes the limit α tending to infinity with β2/2α, the
variance of the long-run distribution of the OU process, fixed. A detailed study of high-
frequency S&P500 data, where the large rate of volatility mean-reversion was established by
a variety of methods, appears in [9]. As an illustration, Figure 5 shows simulated volatility
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Time
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Volatility

Figure 5: Simulated volatility for small (α = 1, top) and large (α = 200, bottom) rates of mean-
reversion for the OU model, with the choice f(y) = ey. Note how high volatility appears in short
bursts in the latter case.

paths for one of the models above in which α = 1 in the top graph and α = 200 in the bottom
graph. Of course volatility is not directly observable as a time-series, which complicates
estimation issues and makes it desirable to have a theory that is robust to volatility modeling.

In Section 6, we exploit this separation of scales to construct an approximation for the
state-dependent utility optimization problem under stochastic volatility, which is discussed
in the next section.
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5 Utility Maximization under Stochastic Volatility

In this section, we look at the state-dependent utility maximization problem and how it is
modified for a market with stochastic volatility. Under the class of mean-reverting stochastic
volatility models (14)-(15), we study as before the Bellman equation of dynamic programming:
the value function

H(t, x, y, v) = sup
π

IE{U(XT , VT ) | Xt = x, Vt = v, Yt = y}

is conjectured to satisfy:

Ht + Lx,yH − (µHv + f(y)2xHxv + ρβf(y)Hyv)2

2f(y)2Hvv
= 0, (16)

where

Lx,yH = µxHx + α(m− y)Hy +
1
2
f(y)2x2Hxx + ρβf(y)xHxy +

1
2
β2Hyy,

the infinitesimal generator of the process (Xt, Yt). The domain is x > 0, −∞ < y < ∞, v > 0
and t < T and the terminal condition is

H(T, x, y, v) = U(x, v).

If a smooth solution (to which Itô’s formula can be applied) can be found, a verification
theorem shows that the optimal strategy is given in feedback form by

π?
t = −µHv + f(y)2xHxv + ρβf(y)Hyv

f(y)2Hvv
. (17)

We proceed to study the dual optimization problem for the Legendre transform (with
respect to v) of the value function. Defining

Ĥ(t, x, y, z) = sup {H(t, x, y, v)− zv | 0 < v < ∞}

g(t, x, y, z) = inf
{

v > 0 | H(t, x, y, v) ≥ zv + Ĥ(t, x, y, z)
}

,

the dual functions g and Ĥ satisfy simpler-looking equation. In the case of g it reads

gt + Lx,yg +
1
2

µ2

f(y)2
z2gzz − µxzgxz −

ρβµ

f(y)
zgyz +

µ2

f(y)2
zgz

−µxgx −
ρβµ

f(y)
gy −

1
2
β2(1− ρ2)

[
2gygyz

gz
−

g2
y

g2
z

gzz

]
= 0, (18)

which is still nonlinear, but only because of the last bracketed term. In the case of a complete
market, meaning nonrandom (β = 0) or perfectly correlated (|ρ| = 1) volatility, notice that
the nonlinear term disappears and the work done by the Legendre transform is to reveal
that the optimization problem is simply a linear pricing problem in disguise. However this
complete reduction is not possible with stochastic volatility. Nonetheless, the transform has
done some work in isolating the nonlinearity due to the fact that volatility is not traded.
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6 Asymptotics for Utility Maximization

In this section, we study the effect of uncertain volatility on the optimal strategies for state-
dependent utility maximization. We take advantage of fast mean-reversion and use a singular
perturbation analysis to find a relatively simple trading strategy that approximates the op-
timal one. The analysis in Section 5 still has not yielded a way to compute the optimal
strategy short of solving one of the nonlinear PDEs (16) or (18) which have three spatial
dimensions. One of the benefits of the approach described here is easing of this dimensional
burden. Another one is robustness—as we will see we do not need to know all the parameters
in the model for the purposes of the approximate strategy.

In the zero-order approximation derived here, two kinds of average (or homogenized)
volatilities emerge: σ̄ := 〈f2〉1/2 and σ? := 〈f−2〉−1/2, where 〈·〉 denotes a particular averaging
procedure described below.

6.1 Singular Perturbation Analysis

We introduce the scaling

α = 1/ε

β =
√

2 ν/
√

ε

where 0 < ε << 1 and ν is fixed, to model fast mean-reversion (clustering) in market
volatility. Recall that α measures the characteristic speed of mean-reversion of (Yt) and ν2

is the variance of the long-run distribution, measuring the typical size of the fluctuations of
the volatility-driving process.

Then g = gε satisfies the PDE (18), which we re-write with the new notation as:(
1
ε
L0 +

1√
ε
L1 + L2

)
gε +

ν2

ε
(1− ρ2)NLε = 0, (19)

where we define

L0 = ν2 ∂2

∂y2
+ (m− y)

∂

∂y
(20)

L1 =
√

2 ρν

(
f(y)x

∂2

∂x∂y
− µ

f(y)
z

∂2

∂y∂z
− µ

f(y)
∂

∂y

)
(21)

L2 =
∂

∂t
+

1
2
f(y)2x2 ∂2

∂x2
+

µ2

f(y)2

(
1
2
z2 ∂2

∂z2
+ z

∂

∂z

)
− µxz

∂2

∂x∂z
, (22)

and the nonlinear part is

NLε = − ∂

∂z

(
(gε

y)
2

gε
z

)
= −

[
2gε

yg
ε
yz

gε
z

−
(

gε
y

gε
z

)2

gε
zz

]
.

Notice that L0 is the usual (scaled) OU generator and L1 takes derivatives in y and kills
functions that do not depend on y.

The approach is now to think of the actual market (and our optimization problem) as
embedded in a family of similar problems parametrized by (small) values of ε. For ε = 0,
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volatility is mean-reverting “infinitely fast” and can be replaced by some average as far as
expectations are concerned. However two different averages are needed for different facets of
the optimal strategy. This principal approximation may be sufficient for many purposes. It
can be improved by perturbation or expansion around ε = 0, but the cost is greater reliance
on model specification. We refer to [12] for details.

6.1.1 Expansion

We look for an expansion

gε(t, x, y, z) = g(0)(t, x, y, z) +
√

εg(1)(t, x, y, z) + εg(2)(t, x, y, z) + · · ·

for small ε. There is a similar expansion for the other dual function Ĥ and the two are related
by Ĥz = −g.

6.1.2 Term of Order 1/ε

Inserting the expansion for g and comparing terms of order 1/ε gives

ν2g(0)
yy + (m− y)g(0)

y + ν2(1− ρ2)
∂

∂z

(
(g(0)

y )2

g
(0)
z

)
= 0.

An obvious solution to this is any smooth function g(0) that does not depend on y. It is an
interesting and crucial fact that the solution g(0) that we are looking for is of this kind, i.e.
does not depend on y. To see this, it is easier to work with the PDE for the zero-order term
Ĥ(0) of Ĥ (recall that g = −Ĥz so g(0) = −Ĥ

(0)
z ). This reads

ν2Ĥ(0)
yy + (m− y)Ĥ(0)

y − ν2(1− ρ2)
(Ĥ(0)

yz )2

Ĥ
(0)
zz

= 0. (23)

Denoting u = Ĥy and using the concavity property Ĥzz > 0 we may write (23) as an ordinary
differential inequality:

ν2uy + (m− y)u ≥ 0. (24)

Let us define
Φ(y) =

1√
2πν2

e−(y−m)2/2ν2
, (25)

the density of the N (m, ν2) distribution. Using this, we can re-write (24) as

1
Φ(y)

∂

∂y
(Φ(y)u(y, z)) ≥ 0.

By integrating we get

u(y, z) ≥ u(m, z)e
(y−m)2

2ν2 for y ≥ m

u(y, z) ≤ u(m, z)e
(y−m)2

2ν2 for y ≤ m.
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We conclude that u(m, z) = 0, because otherwise u(m, y) would grow too fast as y → ±∞.
This implies that any solution to (23) is independent of y. This is because if we specify the
value q of any solution at the point y = m,

Ĥ(0)(m, z) = q,

then the constant function
H̃(y, z) ≡ q for all y

is also a solution to (23) with H̃y(m, z) = 0. From uniqueness of solutions it follows that
Ĥ(0) ≡ H̃ and so Ĥ(0) and g(0) = −Ĥ

(0)
z do not depend on y, so

g(0) = g(0)(t, x, z).

6.1.3 Term of Order 1/
√

ε

At the order 1/
√

ε,
L1g

(0) + L0g
(1) = 0,

which implies g(1) also does not depend on y because L1g
(0) = 0 and L0 has null space

spanned by constants. This is a general property of generators of “nice” ergodic processes
like the OU.

Since both g(0) and g(1) do not depend on y, the nonlinear term is effectively

NLε = O(ε2)

and only contributes to the asymptotics when we compare order ε and higher. This fact is
crucial to the further analysis. We will go as far as order one (ε0) here, so we are dealing
essentially with linear asymptotics (except for the very first equation).

6.1.4 Zero-order Term

At order 1, we have
L0g

(2) + L1g
(1) + L2g

(0) = 0.

The middle term is zero because g(1) does not depend on y. We have a Poisson equation
(in y) for g(2). The solvability condition is that L2g

(0) must be centered with respect to the
invariant distribution of the OU process (Yt) (equivalently, orthogonal to the null space of
the adjoint of L0, the Fredholm alternative). Therefore

〈L2g
(0)〉 = 〈L2〉g(0) = 0, (26)

where 〈·〉 denotes the averaging

〈Ψ〉 =
∫

ΨΦ =
1√

2πν2

∫ ∞

−∞
Ψ(y) e−

(m−y)2

2ν2 dy,

that is, the average with respect to the N (m, ν2) distribution, the invariant or long-run
distribution of the OU process (Yt).
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The averaged operator is

〈L2〉 =
∂

∂t
+

1
2
σ̄2x2 ∂2

∂x2
+

µ2

σ2
?

(
1
2
z2 ∂2

∂z2
+ z

∂

∂z

)
− µxz

∂2

∂x∂z
,

where we define

σ̄2 = 〈f2〉 (27)
1
σ2

?

= 〈 1
f2
〉. (28)

The terminal condition is
g(0)(T, x, z) = G(x, z).

The problem for g(0)(t, x, z) is similar to the constant volatility problem (11), with two
important differences:

1. The zero-order approximation g(0) depends not just on the usual long-run average his-
torical volatility σ̄, but also on the harmonically-averaged volatility σ? defined by (28).
Thus the asymptotic approximation of the optimal strategy will depend on estimating
this unusual volatility too. By Jensen’s inequality, σ? ≤ σ̄ and equality holds if and
only if volatility is constant a.s.

2. The “homogenized” operator 〈L2〉 is nondegenerate even though L2 is degenerate. As
a result, g(0)(t, x, z) is the expectation of a functional of a two-dimensional Brownian
motion, unlike the expectation in (12). In other words, the zero-order asymptotic ap-
proximation is not simply the complete market problem with constant averaged volatil-
ity.

The consequences of this are discussed in Section 6.2.

6.1.5 Zero-order Strategy

The optimal zero-order strategy is given by

π? =
(

x
∂

∂x
− µ

f(y)2
z

∂

∂z

)
g(0). (29)

Notice that this does depend on tracking volatility f(y) even though the corrected minimum
expected loss does not (to zero-order). However, it does not depend on the difficult to estimate
parameters of a volatility model, namely α, β, ρ, m, nor on a specific choice of model f .

6.1.6 Interpretation and Estimation of σ?

One possible way to estimate σ? is to use the Taylor expansion

1
σ2

t

=
1

σ̄2 + (σ2
t − σ̄2)

≈ 1
σ̄2

[
1−

(
σ2

t − σ̄2

σ̄2

)
+
(

σ2
t − σ̄2

σ̄2

)2
]

,
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so that

〈 1
σ2

t

〉 ≈ 〈σ4
t 〉

σ̄6
.

The long-run volatility σ̄ and the fourth-moment 〈σ4
t 〉 can be estimated stably from the

second and fourth-moments of high-frequency historical returns. There is no need to specify
a volatility model f(Yt).

This rough estimator also shows that

σ̄2

σ2
?

≈ 〈σ4
t 〉

σ̄4
, (30)

and so σ̄/σ? is a measure of excess kurtosis.
As an indication of the type of volatility observed in the market, we plot in Figure 6

the time-series of the VIX index produced by the CBOE, which is a measure of the daily
volatility of US equity indices. It is produced from option implied volatilities and is only used
here to gauge the order of volatility fluctuations. Taking this as a realization of volatility, we

Dec88 Dec00
5

10

15

20

25

30

35

40

45

50

C
B

O
E

 V
IX

 V
ol

at
ili

ty
 In

de
x

Figure 6: CBOE VIX volatility index Dec 1988-Dec 2000 (in percentage units).

estimate the two average volatilities:

σ̄ ≈ 0.220 σ? ≈ 0.177,

which gap describes wide fluctuations in this measure of volatility, as is seen from the picture.

6.2 Explicit Computations

In order to implement the zero order strategy we need to know the function g(0)(t, x, z) and
its derivatives with respect to x and z. While these three quantities could be computed
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numerically from a discretization of the linear PDE (26), it is quicker to use the Feynman-
Kac representation (see e.g. [17]) of the solution. We refer to [12] for further details on the
following argument (in the case of partial hedging). It is possible to write

g(0)(t, x, z) = IE {g (t, x, za; σ̄)} , (31)

where g(t, x, z; σ̄) is the solution to the constant volatility (= σ̄) problem (13) and the expec-
tation is over η drawn from a standard N (0, 1) distribution. Here

a = a(η) = e
µ

σ?

√
1−ρ̂2

√
τη+ 1

2
µ2

σ2
?
(1−ρ̂2)τ

,

where the parameter ρ̂ is given by

ρ̂ :=
σ?

σ̄
, (32)

and satisfies 0 < ρ̂ ≤ 1 by Jensen’s inequality. This parameter can be thought of as a
correlation coefficient and is a measure of how much volatility is fluctuating. In particular,
ρ̂ = 1 if and only if volatility is constant a.s. In the case f(y) = ey in (15), known as the
expOU model, for example, the approximation (30) turns out to be exact and ρ̂ = e−2ν2

,
where ν2 = β2/2α is a measure of the size of volatility fluctuations.

We can also use (31) to compute derivatives of g(0). For instance, we get

g(0)
x (t, x, z) = IE {gx (t, x, za; σ̄)}

g(0)
z (t, x, z) = IE {agz (t, x, za; σ̄)} ,

which further yields a formula for the optimal zero-order strategy using (29). The main
point of the formulas above is that if we have an efficient way of computing the constant-
volatility solution (such as in the case of partial hedging of a call option), then we can fairly
easily compute the zero-order approximation through (31). Specifically, we may compute
g(0)(t, x, z) (and its derivatives) on a grid in z as weighted averages of the constant volatility
solutions g(t, x, z; σ̄) on a corresponding grid.

7 Simulations

In this section we present numerical results that illustrate the approximation described above.
We focus on partial hedging of a call option. In particular, we demonstrate the performance
of the zero-order strategy suggested by the asymptotics and the Föllmer-Leukert strategy
derived in [7] for a constant volatility market (see Section 3.4). However, in the latter at
every rebalancing of the portfolio, we update the level of the volatility as would be done
in market practice. We assume throughout the level of volatility is perfectly observable. A
reasonable approximation of current volatility can usually be obtained each day (for example
from near-to-expiration implied volatilities or by averaging intraday returns), but it is harder
to assemble a reasonable time-series including intraday volatility levels on which to perform
detailed model calibration.
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7.1 Simulation Details

For the simulation, we discretized the explicit model

dXt

Xt
= µdt + eYt dWt

dYt = α(m− Yt) dt + ν
√

2α
(
ρ dWt +

√
1− ρ2 dBt

)
dVt = πt

dXt

Xt
,

where r = 0.03, µ = 0.15 − r, K = 100, ρ = −0.2 and (Wt) and (Bt) are independent
Brownian motions. In the (Yt) process, we fixed σ̄ = 0.1 and ν = 0.25 and ran hedging tests
for various α. Changing α does not change σ̄ or σ? because the invariant density of the OU
process does not change if we hold σ̄ and ν fixed. The characteristic speed of the process
varies with α, but not the characteristic size of volatility fluctuations. In this case, with f
the exponential function,

σ? = σ̄e−2ν2
= 0.0882.

We used initial stock price X0 = 100 (at the money) and initial capital equal to 25% of the
Black-Scholes price with constant volatility σ̄.

To compute the two strategies along the path we did as follows.

• For the Föllmer-Leukert strategy, given t, Xt and Vt we solved numerically the equation
g(t, Xt, z; σ̄) = Vt for z, where g satisfies (13). The hedging ratio ∆ = π/X is given by

∆t = gx(t, Xt, z; σ̄)− µ

f(Yt)2
z

Xt
gz(t, Xt, z; σ̄)

and the value of the portfolio was updated using dVt = ∆t dXt. Notice that the level
of volatility is updated in this hedge as would be done in practice.

• For the zero-order strategy we did as follows. Given t, Xt and Vt we solved the equation
g(0)(t, Xt, z) = Vt for z, with g(0) from (31). The hedging ratio was then chosen as

∆t = g(0)
x (t, Xt, z)− µ

(exp(Yt)2)
z

Xt
g(0)
z (t, Xt, z)

and the value of the portfolio updated using dVt = ∆t dXt.

Throughout, we used p = 1.1; see Section 1.2.1 for a comment on this choice. The time
horizon of the problem is T = 0.5 years, so we are hedging a six-month option. We used a
time-discretization of 200 even intervals over this period, corresponding roughly to rehedging
twice a day. This might be more frequent than in practice, but we wanted to compare the
two strategies rather than deal with significant discretization issues.

7.2 Large α Simulation

We first compared the strategies when the volatility is fast mean-reverting as assumed by
the asymptotics. We set α = 200 in annualized units which corresponds to a typical mean-
reversion time of about one day. We computed estimates for the expected losses

L = IE{(1
p
(XT −K − VT )+)p}
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for the two strategies.

With 60000 paths, we got L1 = 2.979 (Föllmer-Leukert ) and L2 = 2.903 (zero-order), so
the zero-order strategy outperformed the Föllmer-Leukert strategy by approximately 2.6%.
This is illustrated in Figure 7. One natural question is whether the improvement in the
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Figure 7: Difference in losses between Föllmer-Leukert strategy and zero-order strategy as a function
of the terminal stock price for 60, 000 paths with α = 200.

expected loss comes at significant cost to the variance. From these simulations, the answer is
no (for the Föllmer-Leukert strategy, the standard deviation of the loss was 4.46, and it was
4.21 for the zero-order strategy.)

7.3 Small α Simulation

In some markets, the rate of mean-reversion may not be so rapid. Nonetheless, the zero-order
strategy may still have some effect as a crude approximation to the full stochastic volatility
strategy. We compared the strategies when the volatility is mean-reverting with α = 1 in
annualized units which corresponds to a typical mean-reversion time of about one year.

With 60000 paths, we got L1 = 3.156 (Föllmer-Leukert ) and L2 = 3.111 (zero-order), so
the zero-order strategy outperformed the Föllmer-Leukert strategy by approximately 1.4%.
This is illustrated in Figure 8.

The standard deviations were 3.88 for the Föllmer-Leukert strategy and again it was lower
(3.68) for the zero-order strategy.
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Figure 8: Difference in losses between Föllmer-Leukert strategy and zero-order strategy as a function
of the terminal stock price for 60, 000 paths with α = 1.

8 Conclusions

In this article we have reviewed some stochastic optimization problems that are the subject
of much current research in financial mathematics. These present significant computational
challenges, particularly within realistic market models such as those with stochastic volatility
that we have focused on here.

Our approach is to use a homogenization approximation exploiting rapid mean-reversion
in the stochastic process driving volatility. This leads to a strategy that, as demonstrated by
simulation, performs better than the strategy based on assuming volatility is constant (the
usual root-mean-square average σ̄), but with minimal implementation overhead. The key
ingredient is the harmonically averaged volatility σ? which encapsulates the effect of mean-
reverting stochastic volatility for these problems. Obviously, the degree of suboptimality
of this approximation will be extremely model dependent, but since volatility models and
parameters are not specified with much confidence in practice, this robust method is preferable
to solving a high-dimensional Bellman equation whose parameters are anyway uncertain.

Additionally, as is often found with homogenization approximations, the zero-order strat-
egy is an improvement even outside the regime of fast mean-reversion. This is demonstrated
in the small α simulations above.
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