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Abstract

Volatility products have become popular in the past 15 years as a hedge against market uncertainty.
In particular, there is growing interest in options on the VIX volatility index. A number of recent
empirical studies examine whether there is significantly greater risk premium in VIX option prices
compared with S&P 500 option prices. We address this issue by proposing and analyzing a stochastic
volatility model with regime switching. The basic Heston model cannot capture VIX implied volatilities,
as has been documented. We show that the incorporation of sharp regime shifts can bridge this
shortcoming. We take advantage of asymptotic and Fourier methods to make the extension tractable,
and we present a fit to data, both in times of crisis and relative calm, which shows the effectiveness of
the regime switching.

1 Introduction

Volatility derivatives have become popular at least since 1998, primarily through variance swaps. More
recently, they have been viewed as indicators of the market’s perception and quantification of future
uncertainty. The VIX volatility index has become a household name as the “fear index”. We present,
analyze, and test to data a stochastic volatility model with regime switching that tries to capture the
“spike-o-phobia” that seems apparent in the pronounced skew of the VIX options implied volatility surface.

Stochastic volatility jump-diffusion models are known to be effective in fitting the implied volatility of
S&P 500 (SPX) options. However, VIX options cannot be fit by the widely-used Heston model because
many of the strikes lie in the tail of the volatility process’s distribution. Therefore, a model for consistent
pricing of both VIX and SPX options should have a volatility process that has a distribution which
spreads probability mass over a broader range than the standard square-root process. In this paper we
propose the addition of a regime-switching process to the Heston model, a modeling feature that will
widen the support of the bulk of the volatility process’s probability distribution. The fits to data are
qualitatively reasonable, but there is some disparity between the two markets, a finding also reported in
recent econometric literature that we discuss below. The Heston model is an industry standard among
stochastic volatility models. Its parameters are known to have clear and specific controls on the implied
volatility skew/smile, and it can mimic the implied volatilities of around-the-money options with a fair
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degree of accuracy. A major shortcoming is that it is often unable to fit the implied skew of short-time-to-
maturity options. Nevertheless, it is still widely used, and so it would be significant (both in practice and
in theory) if it was shown that additional features such as jumps and regime-change allow it to effectively
price VIX derivatives.

The formula for the price of a European call option in the Heston model was originally derived in
[25], formulae for jump models are given in [28], and combined jump-diffusion models are analyzed in
[2, 19]. In particular, a square-root process with jumps in both the underlying and the volatility was used
in [32] to price VIX options. However, several studies have shown that VIX implied volatility data is not
reproducible by models with volatility given by a square-root process [16, 23, 31]. Alternative models such
as the 3/2-model have emerged as possible candidates for fitting VIX implied volatility [3, 15]. Another
approach is to take VIX options or variance swap data directly into the model of the underlying S&P 500
index (SPX) so that it is consistent by design, but at the cost of the index dynamics depending on the
maturity dates of the volatility derivatives. This is the market model approach taken in [13]. In [30], a
simultaneous fit to VIX and SPX option prices is presented using Sato processes. Recently, [4] presents
joint fits using a double mean-reverting diffusion model using Monte Carlo simulation.

However, there are several empirical papers that focus on the quality of the fits achieved. For instance
[14] demonstrates the difficulty of fitting out of the money VIX options well, while [12] finds that “the
information content implied from these two option markets is not identical”. In a current working paper,
[33] use nonparametric estimates of state price densities implied from SPX and VIX option markets
and find that “VIX options deliver unique information for investors to extract information on volatility
dynamics”. In many ways, the issues are how one interprets consistency and quality of fits, particularly if
one demands good fits across all strikes and even short maturities, and the mixed message reflects more
the practitioner or econometrics perspective of the authors.

In the time series literature, markets with Markov regime change were studied in [24], the importance
of identifying regime change for GARCH models was identified in [26], and the importance of jumps was
highlighted in [1, 5, 34, 31], where evidence from variance swap data suggests that fears regarding outlier
events creates a premium that is most likely caused by jump risk. Elliott et al. [10, 11] propose an
extended Heston model, where the parameters in the volatility process are modulated by a Markov chain,
and they analyze the pricing of variance swaps and other derivatives. They demonstrate the impact of
regime change by Monte Carlo experiments, but they did not consider VIX options valuation or calibration
to data as we do here. In this paper, we specify a parametrically richer version of the Heston wherein
the volatility process is modulated by a Markov chain that represents the regime state of the market’s
volatility. The model also has a jump structure that depends on the regime change in such a way as to
model the contrary motion between equity and volatility (i.e. the leverage effect). The rate of regime-
change is taken to be of a small enough order so that option prices can be expanded with a power series.
In this expansion, the lowest order term is the Heston model’s price and the first correction term can also
be written as a function of the components of the Heston price. This is similar to the methodology in [20],
except that they have added a fast-mean reverting diffusion to the Heston model whereas we have added
a slow jump factor. In both their paper and ours, there are explicit formulae for the Fourier transform of
the option price’s expansion.

When applied to data, we find that our model captures separately the implied volatility skews of both
the SPX and VIX options (see Figures 6 and 7). But when the parameter estimates from VIX options are
used to compute SPX option prices through the model, some systematic discrepancies between the two
markets are revealed (see Figure 8), which highlights a distinction between the the VIX and SPX options
markets. We also apply the model to VIX options from the 2008 financial crisis and to non-crisis data of
2011, and are able to relate the parameter estimates to the historical beliefs about volatility fears during
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these periods
The rest of the paper is organized as follows: Section 2 provides an introductory analysis of the VIX

and SPX time series data, along with some analysis of the implied volatility of VIX options; Section 3
describes the model that we’re proposing, as well as the derivation of some key items such as the variance
swap rate, the VIX formula, and a PIDE for option pricing; Section 4 derives an expansion for solving
the pricing PIDE, for both the case of stock options and VIX options; Section 5 describes the procedure
for calibrating the data to the pricing formulae (both for VIX and SPX options data) and also provides
an empirical study of 2008 crisis data and some post-crisis data; Section 6 concludes.

2 Preliminary Data Analysis

To motivate our choice of model, we start by examining the market data. We’ll look at time series data
and the VIX options implied volatility skew; these empirical facts will give us some bearing on which
features are important.

2.1 Time Series Analysis

Figure 1 shows the time-series plot of the SPX index and the VIX. It is well-known that a volatility

Figure 1: The solid line is the time series plot of the SPX index, and the dotted line is the VIX index. The
correlation of these time series is about −80%.

leverage effect needs to be included in any useful model, and indeed, from the figure we can see an inverse
relationship between the SPX and the VIX: bull markets are accompanied by low VIX, and bear markets
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are accompanied by higher VIX. Empirically, the negative correlation between log-returns on SPX and
log-returns on VIX is quite strong, usually around −60% to −80%. Furthermore, Figure 1 is interesting
because it shows a time series over a period where the markets experience several macroeconomic shocks.
There will be significantly higher correlation for time-windows with a couple of these shocks, compared
to that of time windows where there are no shocks. Hence, negative correlation between S&P 500 and the
VIX should be modeled with two components: correlated diffusion processes to account for the day-to-day
microstructure fluctuations, and a jump process to model the singular events that shock the market. The
importance of jumps for describing the volatility leverage effect is found in [34].

Heavy tails are another important feature that can be deduced from the time-series. Figure 2 shows
the scatter plot of the log-returns on VIX against the log-returns on SPX, along with simulated returns
sampled from various fits to bivariate distributions. It is clear from these scatter plots that simply fitting a

Figure 2: Top Left: The scatter plot of the log-returns on VIX against the log-returns on SPX. Top Right:
Simulations from a fitted Gumbel copula. Bottom Left: Simulations from a fitted Gaussian copula. Bottom
Right: Simulations from a fitted bivariate Gaussian distribution. Notice that the bivariate Gaussian simulation
does not have enough outliers.

bivariate Gaussian distribution to log-returns is insufficient, and that the bivariate distribution of returns
can be better-fitted with a copula. The copula fits in Figure 2 suggest that not only should there be
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negative correlation between the log-returns of SPX and VIX, but there should also be jumps in both
indices and these jumps should happen in opposite directions.

2.2 VIX Option Implied Volatility

For two times t and T with t ≤ T <∞, denote the future on VIX at time t with settlement date T as

Ft,T = EtVIXT

where Et is the expectation under the market-chosen risk-neutral measure. The payoff on a VIX call
option is (FT,T −K)+, and so the Black model for pricing an option on Ft,T can be applied::

CBS(Ft,T , T − t, r,K, σ) = e−r(T−t) (Ft,TN (d1)−KN (d2))

d1 =
log(Ft,T /K) + σ2

2 (T − t)
σ
√
T − t

d2 = d1 − σ
√
T − t ,

where N (·) denotes the CDF of the standard normal distribution function. The implied volatility of this
option is σ̂BSt (T,K) such that

CBS(Ft,T , T − t, r,K, σ̂BSt (T,K)) = Cdatat (K).

Implied volatilities for VIX options on April 8th, 2011 are shown in Figure 3. Some things are important
to notice: there is a premium on low strike options as well as those with high strike; the low-point in the
curve moves to the left of the future price as time-to-maturity increases; the overall level of volatility goes
down as time-to-maturity increases. But most importantly, one should take note of the increase in implied
volatility as strike increases. In [15, 16, 23, 31], it is recognized that this increase in implied volatility is
a phenomenon which cannot be described by the Heston model, the reason being that the square-root
process has relatively little probability mass outside the range of everyday values. Hence, outlier events
being hedged by high-strike VIX options are under-priced by the Heston model. A useful model will have
to account for this phenomenon.

3 Heston Model with Regime Change

We work on a probability space (Ω,F ,P) where P is a risk-neutral or equivalent martingale measure. Let
θt be a continuous-time Markov chain that represents the regime-state of volatility. The regime variable
can take three values, θt ∈ {1, 2, 3} where {θt = 1} means that volatility is in its low state, {θt = 2}
means it is in medium state, and {θt = 3} means it is in a high state. The probabilities of regime-change
are given by the intensity matrix Q ∈ R3×3, and the distribution of θt satisfies

d

dt
P(θt = n) = δ

3∑
m=1

QmnP(θt = m) for n = 1, 2, 3, (1)

where δ > 0 is a small parameter which creates a slow time scale in the regime. The log-price X of a
stock (or index) and its volatility follow paths generated by the following stochastic differential equations
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Figure 3: The implied volatilities of VIX call options (solid line) and put options (dotted line) on April 8th, 2011.
The vertical black line is the future price with settlement data equivalent to the option expiry. Notice the higher
implied volatility on low strike options as well as those with high strike; the low-point in the curve moves to the
left of the future price as time-to-maturity increases; the overall level of volatility goes down as time-to-maturity
increases.

(SDEs):

dXt =

(
r − 1

2
f2(θt)Yt − δν(θt-)

)
dt+ f(θt)

√
Yt dWt − λ(θt)Jt dNt , (2)

dYt = κ(Ȳ − Yt)dt+ γ
√
Yt dBt ,

dNt = 1[θt 6=θt−],

where r ≥ 0 is the risk-free rate of return, andWt andBt are Brownian motions with correlation ρ ∈ (−1, 1)
so that E{dWt dBt} = ρ dt. The random jump sizes Jt are independent and identically distributed as
exponential with parameter 1. Both Jt and the regime process θt are independent of the Brownian motions
and of each other. The function λ controls the direction and magnitude of jumps in the stock price, and
the function δν compensates the jumps so that eXt−rt is a martingale:

δν(n) = lim
∆t↘0

E
[∫ t+∆t
t

(
e−λ(θs)Js − 1

)
dNs

∣∣∣θt− = n
]

∆t
= −

∑
m 6=n

δQnm
λ(m)

1 + λ(m)
,

6



for n = 1, 2, 3, using the moment generating function Ee−λ(m)Js = 1
1+λ(m) . Finally, parameters should be

chosen to satisfy the Feller condition, γ2 ≤ 2κȲ . This will ensure that Yt stays strictly positive.
The Heston model is popular in pricing not only because it has an explicit (up to Fourier transform)

formula, but because it has a handful of parameters that can be identified with effects that are observed
in equity implied volatilities. Some motivation for and features of our model are:

• The persistence of high volatility levels when there is a jump in the stock price. Historically,
precipitous drops in asset prices have been accompanied by spikes in volatility, and this is precisely
what is accomplished by having an exponential random variable that is amplified by λ(θt): when
volatility jumps to its high state there will be a drop in the stock price, and when volatility jumps
to its low state there will be a short-lived surge.

• The parameter δ and the matrix Q quantify the intensity with which the market views the possibility
of a change in the volatility state. Our assumption will be that δQ is of a relatively small order
so that we can do an asymptotic series expansion of equity options; our pricing formula for VIX
options will be exact.

• The regime process controls the level of volatility in the strategy of the VIX tail hedge (VXTH),
which is one of the CBOE’s indices for tracking the price of volatility risk. Volatility is considered
to be in a low state when the VIX future is between 15% and 30%; a medium state when the VIX
future is between 20% and 50%; and a high state when the VIX future is over 50%.1

The model in (2) is fundamentally related to the jump models in [2] and [28], but the addition of the
regimes and the additional structure in the jumps prevent us from pricing directly with an affine Fourier
transform. Also, model (2) is a mixture model, as the future distribution of XT and YT can be viewed as
a mixture of three distributions, each of which is parameterized by a regime state.

3.1 Variance Swaps & the VIX

Volatility swaps, variance swaps and swaptions on realized variance are derivatives on Xt that have become
liquid in OTC markets over the past few decades (see [6] for a general review of volatility derivatives).
They provide the investor with an instrument that returns a positive cash flow in times of high volatility.
European call and put options on VIX have also become liquid, but these options are considerably exotic
as they are really an option on a basket of S&P 500 options (the VIX is itself a basket of S&P 500
options; see [7, 8] or chapter 11 of [22]), and so pricing a European option on VIX is somewhat like
pricing a compound option on the stock.

Let Et denote the risk-neutral expectation given the filtration Ft generated by {(Xs, Ys, θs) : s ≤ t}.
For T > 0, the realized variance of the stock up to time T is the quadratic variation of its logarithm:

[X]T = lim
‖T ‖↘0

∑
t`∈T

(Xt`+1
−Xt`)

2 where T is a partition of [0, T ] ,

which is referred to as the ‘floating-leg’ of a variance swap contract. For a variance swap contract occurring
during the period [t, t + τ ] for some τ > 0, the swap rate (or the ‘fixed-leg’) is given by the expected

1There is a VXTH white paper located at http://www.cboe.com/micro/VXTH/documents/VXTHWhitePaper.pdf.
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quadratic variation of log(Xt) over the interval [t, t+ τ ]. Then we have

VSt,τ =
1

τ
(Et[X]t+τ − [X]t)

=
1

τ
Et
(∫ t+τ

t
f2(θs)Ys ds+

∫ t+τ

t
λ2(θs)J

2
s dNs

)

=
1

τ

∫ t+τ

t
Et[f2(θs)Ys] ds+ 2δ

∑
n,m 6=n

[I(t; τ)]θt,n λ
2(m)Qnm

 ,

where we define the matrix I by

I(t; τ) =

∫ t+τ

t

[
eδ(s−t)Q

]
ds.

Therefore,

VSt,τ =
Ȳ

τ

∫ t+τ

t
Et[f2(θs)] ds+

(Yt − Ȳ )

τ

∫ t+τ

t
e−κ(s−t)Et[f2(θs)] ds+

2δ

τ

∑
n,m 6=n

[I(t; τ)]θt,n λ
2(m)Qnm. (3)

In contrast to variance swap rates, the volatility swap rate is the expectation of the square-root of
realized variance and is considerably more model-dependent and harder to compute. Formulae can also
be derived for the pricing of swaptions or options on realized variance (see [32]). We will not work with
swaptions and volatility swaps in this paper; we have only introduced the variance swap rate because it
is relevant in evaluating the VIX and is hence relevant in the pricing of VIX options.

3.1.1 Relationship between the Variance Swaps, the VIX and the Log Contract

Let VIXt denote the VIX index at time t (in hundredths of a decimal). The CBOE’s VIX index, as it
was re-furbished in 2002, is a discretization of the formula [6, 7, 8, 22],

VIXt =

√√√√2erτ

τ

(∫ Ft,t+τ

0

Pt,t+τ (K)

K2
dK +

∫ ∞
Ft,t+τ

Ct,t+τ (K)

K2
dK

)
(4)

where τ = 30 days, Ft,t+τ = EteXt+τ , and where Pt,t+τ (K) and Ct,t+τ (K) are a put option and a call
option with strike K and maturity t+ τ , respectively. Futures on the VIX have been trading since March
of 2004, and were sufficiently popular that the CBOE introduced options on the VIX in February of
2006. Both instruments are liquid, and if read correctly can provide a gauge of market sentiments for the
coming months. VIX options will be covered in a later section; in this brief sub-section we will cover the
relationship between variances swaps and the VIX.

When Xt has no jumps, VIX2
t is equivalent to the 30 day variance swap rate. It was shown in [9] that

Lévy jumps in the underlying make the 30 day variance swap rate equal to VIX2
t plus a jump premium.

We can derive a similar result for the regime model of (2).
The price of a futures contract on the stock is Ft,T = EteXT . The future and log-future processes

satisfy the following SDEs:∫ T

t

1

Fs−,T
dFs,T =

∫ T

t
f(θs)

√
YsdWs +

∫ T

t
(e−λ(θs)Js − 1)dNs − δν(θs−)ds ,

log(FT,T /Ft,T ) =

∫ T

t

1

Fs−,T
dFs,T −

1

2

∫ T

t
f2(θs)Ysds−

∫ T

t

(
e−λ(θs)Js − 1 + λ(θs)Js

)
dNs .
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After some algebra we see that quadratic variation can be replicated by a combination of the log-contract
and the future contract:

[X]T − [X]t
T − t

=
1

T − t

∫ T

t
f2(θs)Ysds+

1

T − t

∫ T

t
λ2(θs)J

2
s dNs

=
−2

T − t

{
log

[
FT,T
Ft,T

]
−
∫ T

t

dFs,T
Fs-,T

+

∫ T

t

[
e−λ(θs)Js − 1 + λ(θs)Js −

1

2
λ2(θs)J

2
s

]
dNs

}
.(5)

Set T = t + τ with τ = 30 days. Recognizing that VIX2
t = −2

τ Et log(Ft+τ,t+τ/Ft,t+τ ) (see [6, 7, 9]) and
that

∫
1

Fs−,T
dFs,T is a martingale, we have the jump-premium between the variance swap rate and the

VIX by taking expectations of both sides of (5):

VSt,τ = VIX2
t −

2

τ
Et
{∫ t+τ

t

(
e−λ(θs)Js − 1 + λ(θs)Js −

1

2
λ2(θs)J

2
s

)
dNs

}
= VIX2

t +
2δ

τ

∑
n,m 6=n

[I(t; τ)]θt,n
λ3(m)

1 + λ(m)
Qnm,

where VSt,τ is the variance swap rate from (3). Therefore, model (2) has the following VIX formula:

VIXt =

√√√√VSt,τ −
2δ

τ

∑
n,m 6=n

[I(t; τ)]θt,n
λ3(m)

1 + λ(m)
Qnm . (6)

3.2 PIDE for Option Pricing

For times t ∈ [0, T ], the no arbitrage price of a European payoff h(XT , YT , θT ) is simply its discounted
expectation under the risk-neutral measure P. We write the option price P δ as a function of its time to
maturity τ = T − t:

P δ(τ, x, y, n) = e−rτE{h(XT , YT , θT )|Xt = x, Yt = y, θt = n}. (7)

It satisfies the following PIDE:

(Ln + δM)P δ = 0 , (8)

P δ
∣∣
τ=0

= h(x, y, n),

where Ln is the pure-diffusion Heston operator in regime n:

Ln = − ∂

∂τ
+

1

2
f2(n)y

(
∂2

∂x2
− ∂

∂x

)
+ ργf(n)y

∂2

∂x∂y
+
γ2y

2

∂2

∂y2
+ κ(Ȳ − y)

∂

∂y
+ r

(
∂

∂x
− ·
)
,

and M is the integral operator from the jumps,

MP δ(τ, x, y, n) =
∑
m 6=n

Qnm

(∫ ∞
0

P δ(τ, x− λ(m)u, y,m)e−udu− P δ(τ, x, y, n)

)
− ν(n)

∂

∂x
P δ(τ, x, y, n) .

The expectation (7) can of course be approximated using Monte Carlo, and there are reliable methods
for simulating Markov processes like the one under consideration. However, Monte Carlo can be slow.
It is also possible to solve (8) numerically (e.g. finite element methods), but it also may take a lot
of computation time. However, the expansion that we derive for equity options is relatively fast for
computing and is a good approximation when δ is small (e.g. δ = .01).
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4 Slow Regime Shift Expansion around the Heston Model

This section will use an asymptotic expansion to approximate the solution to equation (8) for various
European payoffs. We expand the solution in powers of δ, apply the PIDE, and match powers in a way
that exploits explicit solutions in the simpler Heston model, which will be the base-term of the expansion.
This basis for expansion was initiated in [20] with a fast mean-reverting and correlated amplification
factor on top of Heston, where it was shown that the Fourier transform of the first correction term in the
series could be computed semi-explicitly in terms of the Heston Fourier expression. Here, the extension
is slow, uncorrelated regime shifts which will be needed to reproduce VIX implied volatility skews.

We start by expressing the price P δ in powers of δ,

P δ = P0 + δP1 + δ2P2 + . . . (9)

and we look for terms P0 and P1 etc. that do not depend on δ. Inserting the δ-expansion into (8), we get
the following system of equations for P0 and P1.

Definition 4.1. The zero-order term is the Heston model’s price (with θt frozen at n) of the European
option:

LnP0 = 0, with P0(0, x, y, n) = h(x, y, n). (10)

The δ-correction is the solution to the inhomogeneous equation

LnP1 = −MP0, with P1(0, x, y, n) = 0. (11)

For European call options and for volatility options, the zero-order term P0 is priced under a Heston
model and can be computed using a Fourier transform. A similar expansion could also be derived for the
model in [32] where there are also jumps in Y ’s SDE, so long as the intensity of jumps is of order δ. We
will use the notation of [20, 21], mainly because they have derived the pricing formula using a Green’s
function (we call it Ĝ). The Green’s function is a way of expressing the solution of (8) for general payoff
function h(x).

4.1 Stock Options

Consider the class of payoffs where the function h does not depend on y,

P δ(τ, x, y, n) = e−rτE{h(XT , θT )|Xt = x, Yt = y, θt = n} .

The explicit formula in [25] is for the Fourier transform of the European call option under a Heston model,
but can be extended to obtain affine formulae for models with jumps [2, 28]. In this section we introduce
an expansion that serves for a generalized class of models with jumps and regime-change.

For the option price P δ, the Fourier transform (and its inverse) are defined as

P̂ δ(τ, ω, y, n) =

∫
R
eiωq(τ,x)P δ(τ, x, y, n) dx ∀ω ∈ C , (12)

P δ(τ, x, y, n) =
1

2π

∫ ic+∞

ic−∞
e−iωq(τ,x)P̂ δ(τ, ω, y, n) dω for some c ∈ R , (13)

where q(τ, x) = rτ + x. Using the expansion (9), the Fourier transform becomes a sum of Fourier
transforms:

P̂ δ(τ, ω, y, n) = P̂0(τ, ω, y, n) + δP̂1(τ, ω, y, n) + · · · ,
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and so P δ can be reconstructed from the Fourier transforms of the expansion terms. We solve for each
Fourier transform separately and then invert.

4.1.1 The Zero-Order Term

Applying the Fourier transform to (10), we see that P̂0(τ, ω, y, n) satisfies the following PDE

L̂nP̂0(τ, ω, y, n) = 0,

where

L̂n = − ∂

∂τ
+

1

2
γ2y

∂2

∂y2
+
(
κȲ − βn(ω)y

) ∂
∂y

+ αn(ω)y·,

and

αn(ω) =
1

2
f2(n)(iω − ω2), βn(ω) = κ+ iρωγf(n). (14)

The initial condition is

P̂0(0, ω, y, n) = ĥn(ω) :=

∫
eiωxh(x, n) dx.

The formula for P̂0(τ, ω, y, n) is given in [20, 22] in terms of Ĝn, the Fourier transform of the Green’s
function, which is the exponential of an affine function of y:

P̂0(τ, ω, y, n) = Ĝn(τ, ω, y)ĥn(ω) , (15)

Ĝn(τ, ω, y) = exp (Cn(τ, ω) + yDn(τ, ω)) , (16)

Cn(τ, ω) =
κȲ

γ2

(
(βn(ω)− dn(ω))τ − 2 log

(
1− e−τdn(ω)/gn(ω)

1− 1/gn(ω)

))
, (17)

Dn(τ, ω) =
βn(ω)− dn(ω)

γ2

(
1− e−τdn(ω)

1− e−τdn(ω)/gn(ω)

)
, (18)

dn(ω) =
√
β2
n(ω)− 2γ2αn(ω), (19)

gn(ω) =
βn(ω) + dn(ω)

βn(ω)− dn(ω)
, (20)

where it should be pointed out that equations (17) and (18) have been written with a complex conjugation
that avoids branch cuts in the path of integration. To obtain the Heston model price of the option, the
integral can be inverted with the following formula:

P0(τ, x, y, n) =
e−rτ

2π

∫ ic+∞

ic−∞
Re
(
e−iωq(τ,x)ĥn(ω)Ĝn(τ, ω, y)

)
dω . (21)

The integration in (21) could be done over the positive real line only, but a shift of the domain of
integration needs to be done (see [28]). Fourier transforms of non-smooth payoff functions are addressed
in [28] and will dictate the imaginary component c in equations (13) and (21). Such payoffs include the
European call, h(x) = (ex −K)+, for which it is required to take c > 1.
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4.1.2 The δ-Correction

Applying the Fourier transform to equation (11), we see that the order-δ correction satisfies a PDE,

L̂nP̂1(τ, ω, y, n) = −
∫
eiωq(τ,x)MP0(τ, x, y, n)dx

= −

∑
m6=n

Qnm
P̂0(τ, ω, y,m)

1− iωλ(m)
+ (Qnn + ν(n)iω)P̂0(τ, ω, y, n)


= −

3∑
m=1

M̂nmP̂0(τ, ω, y,m) , (22)

where matrix operator M̂ is given by

M̂nm = Qnm
1− iωλ(m)1[m=n]

1− iωλ(m)
+ iων(n)1[m=n] . (23)

In general, the operators M̂ and L̂n do not commute, so we cannot write a solution of the form in [21]

(that is, P̂1 6= τM̂P̂0). However, the solution to (22) can be written as a mixture in the regime variable
of P̂0’s:

Proposition 4.1. The δ-correction is,

P̂1(τ, ω, y, n) =
3∑

m=1

M̂nmP̂0(τ, ω, y,m)

∫ τ

0
anm(τ, u, ω, y) du, (24)

where for any u ≤ τ , we define

anm(τ, u, ω, y) = exp (ψnm(τ, u, ω) + yχnm(τ, u, ω)) , (25)

and ψnm and χnm solve the ODEs

∂

∂τ
χnm(τ, u, ω) =

1

2
γ2χ2

nm − cnm(τ, ω)χnm +Hnm(τ), with χnm(u, u, ω) = 0, (26)

∂

∂τ
ψnm(τ, u, ω) = κȲ χnm(τ, u, ω), with ψnm(u, u, ω) = 0,

with

cnm(τ, ω) = βn(ω) + γ2Dm(τ, ω), Hnm(τ, ω) = −(βn(ω)− βm(ω))Dm(τ, ω) + (αn(ω)− αm(ω)). (27)

Proof. We look for a solution to (22) of the form

P̂1(τ, ω, y, n) =
3∑

m=1

bnm(τ, y, ω)M̂nmP̂0(τ, ω, y,m), (28)

for bnm(τ, y, ω) to be found. Since

L̂n = L̂m − (βn(ω)− βm(ω))y
∂

∂y
+ (αn(ω)− αm(ω))y· ,

12



and L̂mP̂0(τ, ω, y,m) = 0, we compute that

L̂nP̂0(τ, ω, y,m) = Hnm(τ, ω)yP̂0(τ, ω, y,m),

where Hnm(τ, ω) is given in (27), and we have used that ∂
∂y P̂0(τ, ω, y,m) = Dm(τ, ω)P̂0(τ, ω, y,m). Then

L̂nbnm(τ, y, ω)M̂nmP̂0(τ, ω, y,m) = M̂nmP̂0(τ, ω, y,m)L̂nmbnm(τ, y, ω),

where

L̂nm = − ∂

∂τ
+

1

2
γ2y

∂2

∂y2
+
(
κȲ − cnm(τ, ω)y

) ∂
∂y

+Hnm(τ, ω)y· ,

and cnm(τ, ω) is given in (27). Consequently, (28) satisfies (22) if for each (n,m), L̂nmbnm = −1 with
bnm(0, y) = 0. This is solved by

bnm(τ, y, ω) =

∫ τ

0
anm(τ, u, ω, y) du,

where for τ ≥ u, anm(τ, u, ω, y) solves

L̂nanm(τ, u, ω, y) = 0, anm(u, u, ω, y) = 1.

This is a CIR-type computation, and the solution is given by (25).

The expression in (25) is well-defined for all ω < ∞, but it needs to be verified that the expression
in (24) is integrable over ω from −∞ to ∞. In turns out that the Riccati equations in (26) are not well
behaved for large |ωr| (if f(n) − f(m) < 0), but exponential decay of P̂0(τ, ω, y,m) will dampen any
solutions that diverge.

4.2 VIX Options

In this section we consider payoffs which are functions of the volatility processes only (i.e. on θT and YT ).
Payoffs of this type include the variance swap rate of (3) and the VIX of equation (6). It should be pointed
out that options on realized variance/volatility are not covered in this section because they’re dependent
on the path of X; they are more like Asian options and should be priced with an expansion similar to the
stock option expansion of Section 4.1, but with an additional state variable for the accumulated variance
or volatility (see [27, 32]).

Options on the volatility process have payoffs of the form h(y, n). Since θt and Yt do not depend
on Xt, neither will the price of such a claim. Therefore, all that is needed is to compute the transition
density of the volatility processes, and the option price can be written as an integral over this density.
Since θ and Y are independent, we have

P δ(τ, y, n) = e−rτE{h(YT , θT )|Yt = y, θt = n}

= e−rτ
∑
m

∫
h(z,m)p0(τ, z, y)P(θT = m | θt = n)dy,

where p0(τ, z, y) = d
dzP(YT ≤ z|Yt = y). The Fourier transform in z of the density p0 is

p̂0(τ, ω, y) =

∫
eiωzp0(τ, z, y)dz ,

13



which satisfies a backward equation(
− ∂

∂τ
+

1

2
γ2y

∂2

∂y2
+ κ(Ȳ − y)

∂

∂y

)
p̂0 = 0 , (29)

p̂0 |τ=0 = eiωy .

The solution to (29) is used to price VIX options in [32], but affine formulae and solutions of Ricatti
equations for the Fourier transforms of more general classes of Markov processes are given in [17, 18].
Explicitly, p̂0 is given by

p̂0(τ, ω, y) = exp (A(τ, ω) + yB(τ, ω)) ,

A(τ, ω) = −2Ȳ κ

γ2
log

(
− iωγ

2

2κ
(1− e−κτ ) + 1

)
, (30)

B(τ, ω) =
iωe−κτ

−iωγ2

2κ (1− e−κτ ) + 1
,

for any ω ∈ C. Finally we can easily compute the matrix exponential of Q to obtain the Markov chain
transition probability,

P (θT = m | θt = n) =
[
eδτQ

]
n,m

.

Using the formula from Section 3.1.1, the payoff for a VIX option is written as a function of y and n,

h(y, n) =


√√√√√VSτvix(y, n)− 2δ

τvix

∑
n′

[I(0, τvix)]n,n′
∑
m 6=n′

λ3(m)

1 + λ(m)
Qn′m

−K


+

, (31)

where τvix = 30
365 and VSτvix(y, n) is the variance swap rate (as explained in Section 3.1). Hence, the VIX

option is given by

P δ(τ, y, n) = e−rτE{(VIXT −K)+|Yt = y, θt = n}

=
e−rτ

π

∑
m

[
eτQ
]
n,m

∫ ∞
0

h(y′,m)P(YT ∈ dy′|Yt = y)

=
e−rτ

π

∑
m

[
eτQ
]
n,m

∫ ∞
0

h(y′,m)

∫ ∞
0

Re
(
e−iωy

′
p̂0(τ, ω, y)

)
dωdy′ . (32)

Figure 4 is a comparison of a VIX implied volatility from the Heston model versus the implied volatility
of model (2) computed using the probability density of (30) and the formula of (32). Notice that implied
volatility of the basic Heston model is not upward sloping, whereas having regime change makes the
implied volatility upward sloping like the implied volatility seen from data in Figure 3 of Section 2.2.

5 Numerical Methods & Calibration

We now turn our attention to options data to see if model (2) has the potential to capture market
dynamics. First we look at SPX and VIX options on July 27th, 2012, with expiries in August, September,
October and November. Later in Section 5.2.3, we look at VIX options from the crisis of the Fall 2008
and compare the calibrated parameters to those of the non-crisis VIX options of February 2011.
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Figure 4: Top: Implied volatilities of VIX options for a basic Heston model (without regime change). Bottom:
Implied volatility of VIX options for model (2) computed using (32).

Given call options P data(τ ;K`) with strike K1,K2, . . . ,KL, the calibration problem is

min

L∑
`=1

(
P δ(τ,Xt, Yt, θt;K`)− P data(τ ;K`)

)2
, (33)

where the minimization occurs over the parameter space of (κ, γ, Ȳ , ρ, λ,Q, f). Another performance
measure that we shall use is absolute-relative error:

rel-err. =
1

L

L∑
`=1

∣∣P δ(τ,Xt, Yt, θt;K`)− P data(τ ;K`)
∣∣

P data(τ ;K`)
. (34)

The parameters (κ, γ, ȳ, ρ) can capture the basic qualities of the implied volatility smile for SPX options,
but the addition of jumps will significantly improve the fit, particularly for options with short time-to-
maturity. For VIX options, the inclusion of Q and f is essential, as regime-change in the underlying’s
volatility is what drives the market for out-of-the-money VIX calls.
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In Sections 5.1 and 5.2, model (2) is fit to the data in a number of different ways: the non-jump and
non-regimed Heston model to the SPX options; the full model to the SPX options; the full model to the
VIX options. We find that the higher degree of explanatory power allows for a better fit to SPX options,
and that significant regime-change allows for accurate calibration to VIX options, which could not be
priced by the basic Heston model.

5.1 Calibration of SPX Call Options

Call options on the SPX index have a payoff h(x) = (ex −K)+. As we mentioned in Section 4.1.1 (see
[20] or [28, page 37]), it is required that Im(ω) = c > 1 in order for the Fourier transform of h to exist, in
which case we have

ĥ(ω) =

∫
eiωx(ex −K)+dx =

K1+iω

iω − ω2
.

Setting ω = ωr + ic, we apply the formula of (21) for P̂0 to get the zero-order term,

P0(τ, x, y, n) =
e−rτ

2π

∫ ∞
−∞

Re

(
e−iω(rτ+x)Ĝn(τ, ω, y, n)

K1+iω

iω − ω2

)
dωr ,

which can be computed numerically with Gaussian quadrature, and fit to the SPX options with a nonlinear
least squares algorithm. The fits obtained using Matlab’s ‘quadgk’ and ‘lsqcurvefit’ functions are shown
in Figure 5 and the estimated parameters are listed in Table 1. The function ‘lsqcurve’ seeks parameters
to minimize the absolute error of (33). The upper-left plot of Figure 5 shows that the basic Heston

Maturity Y0 κ Ȳ γ2/(2κȲ ) ρ rel-err.
Aug 0.0001 9.99 0.1444 0.2427 -0.62 0.1514
Sep 0.0116 9.77 0.0582 0.3014 -0.59 0.0033
Oct 0.0150 8.39 0.0456 0.4605 -0.71 0.0109
Nov 0.0161 5.61 0.0516 0.5472 -0.70 0.0007

Table 1: For the SPX options data, these are the parameter estimates for the Heston model with no jumps (i.e.
f ≡ 1, Q ≡ 0, λ ≡ 0).

model cannot fit the implied volatility of low-strike options with short time-to-maturity. This is a well-
known weakness of the Heston model, and is one of the many reasons for the inclusion of jumps. It also an
indication that the Heston model cannot price VIX or VIX options because these low-strike short-maturity
options are highly-weighted in the CBOE’s VIX formula.

5.1.1 Fit of the Jump Model to SPX Options Data

In this subsection, we calibrate to the SPX options and explain the procedure for fitting model (2) using the
Fourier expansions terms P̂0 and P̂1. By including the correction term P̂1, there is significant improvement
in the fits of implied volatility, most noticeably for the option with shortest time-to-maturity. In general,
jump models are expected to have a better fit because they have a higher degree of explanatory power,
and so it is to be expected that P̂1 will improve the fit. The parameter estimates and the fitted implied
volatilities are shown in Table 2 and Figure 6, respectively.

To calibrate the model, we again used Matlab’s ‘quadgk’ and ‘lsqcurvefit’ functions. Since δ and f(2)
are parameters that do not add extra explanatory power (because δ can be compensated by Q, and f
can be compensated by Y0, Ȳ and γ), we take the following parameters as fixed: δ = .01 and f(2) = 1.
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Figure 5: The implied volatilities of July 27th SPX options, alongside those of a fitted Heston model with no jumps
(i.e. f ≡ 1, Q ≡ 0, and λ ≡ 0). The values of the other fitted parameters are given in Table 1.

Mat. Y0 κ Ȳ γ2/(2κȲ ) ρ f(1) f(3) Q21 Q22 Q23 λ(1) λ(2) λ(3) rel-err.

Aug 0.0109 4.49 0.0832 0.6085 -0.66 0.55 1.83 1.0 -28.1 27.1 -0.30 0.00 0.25 0.0385
Sep 0.0116 3.31 0.0555 0.9837 -0.65 1.73 2.13 3.2 -28.5 25.4 -0.05 -0.06 0.20 0.0009
Oct 0.0079 3.19 0.0679 0.9783 -0.75 0.59 4.98 3.1 -6.2 3.1 -0.08 0.14 0.82 0.0024
Nov 0.0180 2.71 0.0440 0.9900 -0.83 0.88 4.98 8.0 -18.0 10.0 -0.09 0.75 0.22 0.0012

Table 2: For the SPX options data, these are the parameter estimates for model (2), θ0 = 2, f(2) = 1, and δ = .01.

We also take θ0 = 2 since this is the mid-level regime and July 27th could be considered a day with
volatility at an average level. Depending on the time-to-maturity, the optimization took between 5 and
15 iterations to arrive at the parameter estimates in Table 2. The gradient-descent algorithm of lsqcurvefit
will depend on the initial guess of the parameters, but we found the calibration to be fairly robust to this
initial guess. Alternatively, one could look ahead to the parameter estimates in Table 3 and use them as
an initial guess.

5.2 Calibration of VIX Options

Calibration of model (2) to VIX options is much faster than calibrating to SPX options; it takes on the
order of 1 minute to generate the estimates and plots in Table 3 and Figure 7, respectively. Therefore, it
makes sense to first calibrate to VIX options, and then use these parameters to fit the SPX options, and
then re-adjust if needed. This section will explore the calibration of the model to the VIX options and
make comparisons of the VIX options’ parameters to those of the SPX options.
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Figure 6: The implied volatilities of July 27th SPX options, alongside those of a fitted Heston model with jumps
(i.e. λ 6= 0). The fitted parameters values are given in Table 2. Notice the improvement in the shortest time-to-
maturity compared to the fit of the same option in Figure 5.

5.2.1 Numerical Computation of Y ’s Transition Density using Laguerre Polynomials

For α ≥ 0, let Zt be a square-root process such that

dZt = (1 + α− Zt)dt+
√

2Zt dBt

where Bt is the same Brownian motion as in (2). The transition density for this process can be written
in terms of an infinite series of Laguerre polynomials (see [21, 29]):

d

dz′
P(Zt ≤ z′|Zt = z) = µα(z′)

∞∑
`=0

Lα` (z′)Lα` (z)e−`(T−t) ∀t ≤ T and ∀z, z′ ∈ R+ ,

where µα(z) = zαe−z

Γ(α+1) , Lα` denotes the `th generalized Laguerre polynomial

Lα` (z) = ezz−(`+α) d
`

dz`

(
e−zz`+α

)( `! Γ(α+ 1)

Γ(`+ α+ 1)

)−1/2

, (35)

and Γ denotes the Gamma function. These polynomials form an orthonormal basis with respect to µα,∫
Lα` (z)Lα`′(z)µ

α(z)dz = 1[`=`′] .
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Furthermore, for α = 2κȲ
γ2 − 1, it can be verified that

Yt
d
=
γ2

2κ
Zκt ,

and so the transition density in (32) can be well-approximated with the first 16 orthonormal polynomials,

d

dy′
P(YT ≤ y′|Yt = y) =

d

dy′
P
(
Zκ(T−t) ≤

2κ

γ2
y′
∣∣∣Z0 =

2κ

γ2
y

)
≈ 2κ

γ2
µα
(

2κ

γ2
y′
) 15∑
`=0

Lα`

(
2κ

γ2
y′
)
Lα`

(
2κ

γ2
y

)
e−`κ(T−t) . (36)

Taking 16 basis elements in (36) is equivalent to approximating the density with a 15-degree polynomial,
which is a very good approximation provided that y is not far into the tail of Y ’s probability distribution.
The approximation in (36) is faster and more stable than a quadrature approximation of (32), and so we
will use this formula when calibrating to the VIX options data.

5.2.2 Fit of Jump Model to VIX Options Data

In calibrating model (2) to VIX options, the choice of parameters (f(1), f(3)) is crucial because they
impact the volatility process σt = f(θt)

√
Yt, allowing significant probability mass outside the range of the

typical square-root process. The implied volatility fits are shown in Figure 7 and the estimated parameters
in Table 3. From the figure it is clear that we have managed to price out-of-the-money VIX call options

mat. Y0 κ Ȳ γ2/(2Ȳ κ) f(1) f(3) Q21 Q22 Q23 λ(1) λ(2) λ(3) rel-err.

Aug 0.0180 8.19 0.0357 0.9894 1.0 3.0 15.1 -38.2 23.2 -0.060 0.041 0.037 0.1463
Sep 0.0115 4.72 0.0454 0.9893 2.0 3.9 15.3 -27.7 12.4 -0.060 -0.000 0.098 0.0458
Oct 0.0100 2.46 0.0832 0.9891 0.5 4.6 15.0 -22.4 7.4 -0.002 0.000 0.000 0.0108
Nov 0.0100 1.86 0.0994 0.9871 0.6 4.7 15.0 -19.2 4.2 -0.007 -0.000 -0.004 0.0330

Table 3: For the VIX options data, these are the parameter estimates for model (2), θ0 = 2, δ = .01, f(2) = 1.

that were previously beyond the scope of the Heston model, and so we can conclude that the addition of
volatility regime-change has made a difference.

The parameters in Table 3 differ from those in Table 2, some by a small relative amount, some by
more, so it is hard to determine the degree of consistency between the two markets. However if we take
the VIX option-calibrated parameters and compute the model’s SPX option prices, then we see in Figure
8 that there is a distinct and striking mismatch, particularly for options with shorter time-to-maturity.

To determine if there was a possible fit that matches both markets, we did a simultaneous calibration
and found the mismatch to remain (see Table 4 and Figure 9). A similar mismatch in prices is also found
independently in [33], wherein several stochastic volatility models were tested and found to be misspecified
when fit to both S&P 500 and VIX data, and also in [12] where it was found that the information content
of the SPX was not identical to that of the VIX.
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Figure 7: The implied volatilities of July 27th VIX options, alongside those of a fitted Heston with jumps. The
fitted parameter values are given in Table 3. The vertical line marks the VIX futures price on the date of maturity.
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Figure 8: The implied volatilities of July 27th SPX options, alongside those of a Heston with jumps calculated
using the parameter estimates of Table 3 (i.e. the parameters estimated from the VIX options data –not the SPX
data).

Mat. Y0 κ Ȳ γ2

2κȲ
ρ f(1) f(3) Q21 Q22 Q23 λ(1) λ(2) λ(3) rel-err.

SPX VIX.

Aug 0.03 8.58 0.0299 0.99 -0.67 0.82 3.02 14.6 -41.0 26.4 -0.01 0.04 0.09 0.06 0.16
Sep 0.01 4.72 0.0452 0.99 -0.65 1.98 3.90 15.3 -27.7 12.4 -0.06 -0.00 0.10 0.03 0.13
Oct 0.01 2.46 0.0813 0.99 -0.75 0.53 4.55 15.0 -22.4 7.3 -0.00 0.00 0.00 0.05 0.11
Nov 0.01 1.86 0.0993 0.99 -0.84 0.60 4.74 15.3 -19.6 4.2 -0.00 -0.07 0.01 0.01 0.03

Table 4: A simultaneous fit to both the VIX and SPX options, θ0 = 2, f(2) = 1, and δ = .01. Both the relative
error of the fit for SPX options and VIX options has increased from this reported in Tables 2 and 3, respectively.
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Figure 9: The implied volatilities of July 27th SPX options (left column) and VIX options (right column), plotted
alongside those of a fitted Heston with jumps. The fitted parameter values are given in Table 4. The vertical lines
in the plots on the right mark the VIX futures price on the date of maturity.
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It should be pointed out that we have only fit a narrow range of strikes for VIX call options. After
cleaning the data of options that could be deemed illiquid because of low volume and/or little open
interest, we were left with roughly 12 options for each maturity, namely, those options with strike near
the money and those with strikes 10 points higher. If we were to fit the extremely low and extremely high
strike options, we might find ourselves limited by only three regimes. Indeed, more regimes means more
spreading-out of the probability mass, and thus might be effective in fitting all listed options. However,
a model with too many regimes might be considered unfounded, as the clear explanation for using three
distinct regimes can have a certain amount of appeal in practice (e.g. for the VIX tail hedge).

5.2.3 Comparison of VIX Parameters: Crisis vs. Post-Crisis Era

In this section, we compare VIX options data from the crisis of Fall 2008 to data from a non-crisis period.
In both cases we calibrate to the most liquid options with the shortest time-to-maturity. For the crisis
we consider the dates of October 8th through 16th of 2008. The VIX was at 57% on the 8th, and rose to
a high of 80% on October 27th (and hit 80% again in November), and would not drop below 40% until
January 2nd of 2009. For the non-crisis dates we consider February 4th through 14th of 2011, a period
in which there was little fear in the markets, as the VIX stayed down at roughly 15%.

The parameter estimates for October 2008 are shown in Table 5. Notice in these estimates that the

Day Y0 κ Ȳ γ2/(2Ȳ κ) f(1) f(3) Q31 Q32 Q33 λ(1) λ(2) λ(3) rel-err.
8th 0.0100 2.56 0.0604 0.7338 0.5 3.1 0.7 -1.4 0.7 -0.001 -0.000 0.020 0.0024
9th 0.0100 3.02 0.0577 0.8679 0.5 3.6 3.2 -6.3 3.1 -0.000 0.000 0.020 0.0131
10th 0.0100 2.34 0.0571 0.8343 0.5 4.0 1.1 -2.2 1.1 -0.001 -0.000 0.020 0.0026
13th 0.0100 4.33 0.0716 0.7851 0.5 3.2 0.4 -0.8 0.4 -0.001 -0.000 0.020 0.1137
14th 0.0100 4.51 0.0581 0.4600 0.5 3.2 0.2 -0.4 0.2 -0.001 0.000 0.020 0.0113
15th 0.0100 3.81 0.0696 0.6603 0.5 3.6 0.2 -0.5 0.2 -0.001 0.000 0.020 0.0022
16th 0.0100 2.73 0.0942 0.6843 0.5 4.0 0.5 -1.0 0.5 -0.001 0.000 0.020 0.0070

Table 5: Parameter estimates for 2008 Crisis data. Calibration to VIX Options of October 2008, θ0 = 3, δ = .01,
f(2) = 1.

regime is in the high state (θ0 = 3) and the risk-neutral probability of switching out is very low (Q33 ≈ −1
so that P(regime change) ≈ 1 − e−1/365 ≈ .003). These parameters characterize the fear at that time,
which was the belief that things were going to get a lot worse. Indeed, implied volatility of high-strike
VIX calls was not increasing during October 2008 because the VIX future was extremely high; the flat
implied volatility of high-strike VIX options during the crisis is seen in Figure 10.

The parameter estimates for February 2011 are shown in Table 6. In contrast to those in Table 5,
the regime is θ0 = 2 because there is certainly not a high-volatility state, but the probability of jumping
to the high state looms as Q22 ≈ −18 (the risk-neutral probability of a jump is significantly higher than
before as P(regime change) ≈ 1−e−18/365 ≈ .05). Historically, February 2011 was a relatively calm period
for the VIX (and the SPX), but high-strike VIX options are somewhat of an insurance contract against
outlier events, and so they trade at a premium for the same reason that low-strike SPX put options trade
at a premium. The implied volatilities of these VIX options are shown in Figure 11, where we see an
increase in implied volatility for high strikes caused by the probability of jumping to the high-volatility
regime, aka by crash-o-phobia.

Finally, we should make a few remarks on the sensitivity of the parameter estimation procedure. It
was mentioned in Section 5.1.1 that calibration of the model in (2) is a non-convex optimization, and it is
well-known that non-convex problems are sensitive to the initial guess that is input to the optimization
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Figure 10: Top: Implied volatilities of VIX options during the Crisis of October 2008, fitted with the parameters
of Table 5. The vertical is the VIX futures price; the belief during the crisis was that things were going to get a lot
worse, so the VIX future was very high, and high-strike VIX options had low implied volatility.

algorithm. Hence, we see in Tables 5 and 6 that parameters associated with states that have little
probability of occurring will not change much from their initial guess, as these parameters have little
bearing on the fit (that is why we only fit Qθ01, Qθ02, and Qθ03).

6 Conclusion

Motivated by the frequent observation that the Heston stochastic volatility model cannot fit the implied
volatiles of VIX options, we analyzed and implemented an extension which incorporates regime switching
and jumps. Using asymptotic expansions of the Fourier transforms, we can efficiently price SPX and VIX
options. When applied to market data, the model captures the implied volatility skews of both the SPX
and VIX separately, but highlights a distinct discrepancy between the two markets. We also calibrated the
model to VIX options from the 2008 financial crisis and to non-crisis data of 2011, and were able to relate
the parameter estimates to the historical beliefs about volatility fears during these periods, confirming
the importance of regime switches.
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Day Y0 κ Ȳ γ2/(2Ȳ κ) f(1) f(3) Q21 Q22 Q23 λ(1) λ(2) λ(3) rel-err.
4th 0.0150 3.98 0.0290 0.6577 0.5 3.9 1.0 -18.6 17.5 -0.001 0.000 0.168 0.5013
7th 0.0150 4.06 0.0232 0.6237 0.5 4.0 1.0 -18.0 17.0 -0.001 0.000 0.181 0.6159
8th 0.0150 4.06 0.0195 0.6201 0.5 4.0 1.0 -18.0 17.0 -0.001 0.000 0.184 0.6003
9th 0.0150 4.19 0.0209 0.5459 0.5 3.8 1.0 -17.9 16.9 -0.001 0.000 0.192 0.5270
10th 0.0150 4.09 0.0344 0.6153 0.5 4.0 1.0 -18.0 17.0 -0.001 0.000 0.150 1.2601
11th 0.0150 4.07 0.0332 0.6217 0.5 4.0 1.0 -18.0 17.0 -0.001 0.000 0.128 1.3604
14th 0.0150 4.17 0.0127 0.8813 0.5 3.9 1.0 -18.0 16.9 -0.001 0.000 -0.148 0.5255
15th 0.0150 4.23 0.0135 0.7905 0.5 3.9 1.0 -18.0 17.0 -0.002 0.000 0.187 0.8480

Table 6: Parameter Estimates for the Post-Crisis Data. Calibration to VIX Options of February 2011, θ0 = 2,
δ = .01, f(2) = 1.
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