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Abstract

We propose a mean field game model to study the question of how centralization of
reward and computational power occur in Bitcoin-like cryptocurrencies. Miners compete
against each other for mining rewards by increasing their computational power. This
leads to a novel mean field game of jump intensity control, which we solve explicitly for
miners maximizing exponential utility, and handle numerically in the case of miners with
power utilities. We show that the heterogeneity of their initial wealth distribution leads
to greater imbalance of the reward distribution, and increased wealth heterogeneity over
time, or a “rich get richer” effect. This concentration phenomenon is aggravated by a
higher bitcoin mining reward, and reduced by competition. Additionally, an advantaged
miner with cost advantages such as access to cheaper electricity, contributes a significant
amount of computational power in equilibrium, unaffected by competition from less
efficient miners. Hence, cost efficiency can also result in the type of centralization seen
among miners of cryptocurrencies.

1 Introduction

Blockchain technologies solve the elusive problem of creating a decentralized ledger.
Proponents have made the case that a payment and banking system founded on blockchain
technologies could conceivably allay data privacy concerns, and provide wider access to
financial services. Various forms of digital currency solutions have been developed in the
past, but Bitcoin is the famous realization that finally created a secure distributed ledger (see
Nakamoto (2008)). Since its creation in January 2009, its fame and popularity have grown
rapidly. The supply of bitcoins is constantly growing, but artificially limited to 21 million, of
which almost 19 million are in circulation now.

In a cryptocurrency network following a so-called proof-of-work protocol, independent
“miners” compete for the right to record the next transaction block on the blockchain. They do
so by solving computational puzzles: once a miner obtains a solution, the corresponding block
is added on top of the blockchain, and the miner obtains a reward. The computational puzzle
is designed such that there is no known better way of solving it than brute force calculation.
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In other words, the chance of getting the reward is proportional to the computational power
or the hash rates that miners contribute. The purpose of the puzzle is to disincentivize
bad behavior by forcing miners to provide proof-of-work that some effort has been exerted –
electricity paid. Moreover, the difficulty of the puzzle varies to maintain a consistent solving
time, for example 10 minutes.

The empirical analysis in Kondor, Pósfai, Csabai, and Vattay (2014) shows that the
accumulation of bitcoins tends to occur among a small number of miners, which suggests
centralization in the market. This raises the following questions: What incentives drive miners’
competitive behavior? How does the centralization of the reward occur in a decentralized
mining environment? What factors impact this centralization?

Another emerging phenomenon is major miners who have access to cheaper electricity
or more efficient hardware and thus are cost-advantaged. Bitmain controls AntPool and
BTC.com and accounts for around 33% of the total hash rate in the world as of June 2019
(see Figure 5). This number includes Bitmain’s computational power as well as that of
miners who join the pools. By rough estimates, Bitmain accounted for about 4.5% of all
mining power for Bitcoin mining in October 2018.1,2 Moreover, as Taylor (2017) points out,
some mining entities also develop application-specific integrated circuits (ASICs) and create
related data centers with low energy cost. One may ask: What leads to this centralization of
computational power? What advantages do some miners have?

We are interested in understanding and modeling the interaction between cryptocurrency
miners, the consequent evolution of wealth inequality among them, and the potential central-
ization of mining power. In the context of cryptocurrency mining, an economic model captures
the cost-reward structure of mining: the cost – typically the marginal cost of electricity, and
the potential reward – the units of currency rewarded to successful miners.

An ongoing regulatory issue is as to whether cryptocurrencies are currencies or commodities
(or even share-like assets offered in initial coin offerings). The Commodity Futures Trading
Commission (CFTC) in the US classifies them as commodities, and their electronic structure
of production mirrors the uncertainty and language of mining exhaustible resources. The
latter connects us to game theoretic models that have been developed to try and explain
energy production from various sources many of which, like oil, are in finite supply (see, for
instance, Ludkovski and Sircar (2015)).

Similarly to models of natural resource extraction, the miners are producers, but the
product is numbers. These numbers, called hashes, come from processing transaction data.
Because of the demand for processing, there is effectively also a demand for hashes. So,
just like in any other market, the suppliers (miners) are competing to fill this demand.
And as in other markets, the (expected) reward per hash obtained is diminishing in the
aggregate supply (mining power). However, calling it a market for hashes is masking the
actual mechanism, because it is not the numbers that are valuable. Instead, the value lies
in the process that ‘extracts’ the numbers (mining), and the numbers themselves are just a
byproduct. Therefore the basis of the models introduced in this paper is the probabilistic
relation between competitive hashing and cryptocurrency discovery.

1https://web.archive.org/web/20181017133438/https://blog.bitmain.com/en/hashrate

-disclosure/
2https://btc.com/stats/diff
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Our paper quantifies the competition between miners by adopting a tractable mean
field games approach. The idea behind mean field games is that, with many participants,
any particular player has little impact on any other player when they interact through the
mean of their actions—hashing in our case. As the number of players grows, one can first
view an individual’s decision making problem as being against a mean field competition,
knowing that their individual contribution to the mean field is infinitesimally small. The final
step is a fixed point condition in which the mean optimal control should coincide with the
aforementioned mean field. This approach leads to a computationally tractable model, which
is intuitively a good approximation to the finite player game, precisely because each player’s
impact dissipates in the mean of many players.

1.1 Related literature

Our work is related to a growing literature on cryptocurrencies. A game-theoretic model is
developed in Easley, O’Hara, and Basu (2019) to show the emergence of transaction fees in the
Bitcoin payment system. Abadi and Brunnermeier (2018) point out the blockchain trilemma,
and analyze when decentralized record-keeping is economically beneficial. Sockin and Xiong
(2018) explore a model to study initial coin offerings for new decentralized digital platforms.
Cong and He (2019) argue that the blockchain facilitates the creation of smart contracts,
which can sustain market equilibria with a larger range of economic outcomes. Biais, Bisière,
Bouvard, and Casamatta (2019) use a stochastic game to show that the proof-of-work protocol
results in multiple equilibria, some of which can lead to persistent divergence between chains.
A revenue management problem in the context of bitcoin selling is studied in Dai, Jiang, Kou,
and Qin (2019). Our work differs from these studies in that we analyze centralization of both
the reward and computational power in mining activities as well as how the reward size and
competition impact it.

Our work is most closely related to recent literature on miners’ strategic behavior and the
centralization of mining. Cong, He, and Li (2021) examine mining pools’ fee-setting decisions,
and their unexpected impact on risk sharing and concentration. Arnosti and Weinberg (2018)
consider asymmetric costs among miners and show that lower cost leads to higher market
share. On the other hand, Alsabah and Capponi (2020) explore a two-stage mining game
consisting of research and development and then competition. They explain how the arms
race leads to asymmetric costs and mining centralization. Garratt and van Oordt (2020)
study the importance of the cost structure in cryptocurrency mining, and they find that fixed
costs improves the resilience to shocks due to its impact on exit and entry.

In contrast to the static games in these papers, our work considers continuous time mean
field games, incorporating dynamically evolving wealth and mining decisions. We refer to
Guéant, Lasry, and Lions (2011) for an early introductory exposition on mean field games.
Bertucci, Bertucci, Lasry, and Lions (2020) provide another example of mean field game
modeling of cryptocurrency mining. Their model complements ours, as they focus on the
blockchain’s resilience to outside attacks, whereas ours focuses on centralization and inside
attacks. Their modeling decisions and approach are therefore very different, in order to
capture the phenomena of importance in that setting.

Our work also contributes to the literature on intensity control of jump processes. It is
used in the model for exploration of natural resources. Deshmukh and Pliska (1980) and
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Arrow and Chang (1982) study the optimal consumption rule of a natural resource. They use
a point process to model the uncertainty of the discoveries for new sources of supply, where
the control is exploration effort. Later on, Soner (1985) considered a similar model with
holding cost, and established the existence and uniqueness of solution to the Bellman equation.
Intensity control models are also used in revenue management and dynamic pricing. A buffer
flow system with jumps is considered by L. Li (1988), where the cumulative production and
demand are modeled by two counting processes, with intensity controlled by production
capacity and price. In addition, Gallego and van Ryzin (1994, 1997) model dynamic pricing
for inventories of products. The demand for those is modeled as point processes and the
intensities are controlled by setting prices. In our work, the jump process is used to represent
the acquisition of the reward. The miners control the jump intensity through adjusting their
computational power or hash rates. This model approach is natural due to the two important
properties of Bitcoin payment system mentioned before.

There has been recent work on games of intensity control. For instance, Ludkovski and
Sircar (2012) consider the effects of stochastic resource exploration in dynamic Cournot game,
where an exhaustible producer and a green producer set the production to affect the price.
Gallego and Hu (2014) study dynamic pricing in an oligopolistic market. Each firm competes
to sell its product and the equilibrium strategies and prices are resolved. In a mean field game
setting, Chan and Sircar (2017) examine the impact of oil discovery, concluding that higher
reserves lead to lower exploration. There the players’ interaction was through producers’ oil
extraction rates. In this paper, different from most works in the literature, the mean field
interaction is through the players’ intensities, or hash rates.

The proof-of-work system supporting Bitcoin, Ethereum,3 and the majority of alt-coins has
received heavy criticism for the high energy consumption of its miners. The most prominent
alternative consensus method is called proof-of-stake.4 In this system, instead of spending
computing power as a requirement for creating valid blocks, the participants are instead
“randomly” chosen in proportion to their current stake in the system. A user holding 1% of
all coins will in the long run create 1% of new blocks. Because block creation is wasteless,
this leads to the so-called nothing-at-stake problem in which deviation from “good” behavior
is not punished. We refer to Brown-Cohen, Narayanan, Psomas, and Weinberg (2019) for
a more detailed account of proof-of-stake and its drawbacks. Fanti et al. (2019) and Roşu
and Saleh (2021) both study the impact of rewards on the wealth distribution of participants
by using the martingale property of participants’ share of assets in a proof-of-stake system.
Roşu and Saleh (2021) show that under a constant reward scheme, the limiting distribution
is stable in terms of the share of total coins, and thus fair (not exhibiting a rich get richer
effect).5 Additionally, proof-of-stake is believed to not only have the advantage of reducing

3Ethereum is working towards replacing proof-of-work with proof-of-stake in Ethereum 2.0 (Eth2). The
first step towards this migration (Phase 0) was deployed in December 2020.

4Proof-of-stake was first introduced in 2011 by user QuantumMechanic on the bitcointalk forums:
https://bitcointalk.org/index.php?topic=27787.0

5Although this is a very interesting result and good news for proof-of-stake systems, we perceive this
as strongly connected to the martingale property of such systems, and believe that it does not translate to
proof-of-work for two main reasons: First, central to the martingale property is the dilution effect (inflation
tax) of introducing new coins. In a proof-of-stake system, this means that whereas a wealthier participant
receives proportionally larger rewards, the inflation tax is also proportionally larger. In contrast, in a proof-
of-work system, a miner does not need to hold the cryptoasset to reap the rewards, creating the possibility
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energy consumption and improving fairness, but also of increasing security, as any attacker
must have a stake in the system. At time of writing, various proof-of-stake systems are under
heavy development, both theory and in practice.

1.2 Contribution and intuition

We introduce a dynamic competitive mining game in the presence of risk aversion and
liquidity constraints. The miners compete by exerting computational effort in an attempt to
obtain the mining rewards, which are distributed based on the computational effort relative
to the population aggregate. They are expected utility maximizers, balancing the cost of
computation (e.g. electricity) and the reward associated with block creation.

We find the equilibrium explicitly under exponential (CARA) utility (Section 3.1), thereby
establishing the existence and uniqueness of a solution in this case. The explicit solution
allows us to understand the influence of model parameters on the equilibrium.

For miners with power (CRRA) utility, we find the equilibrium numerically (Section 3.2).
In this case, heterogeneity of the initial wealth distribution among miners results in preferential
attachment, i.e. increasing heterogeneity of wealth over time. In other words, a miner with
greater wealth contributes a larger hash rate, and thus has a higher probability of receiving
the next reward, whereas some miners with lesser initial wealth become disincentivized over
time from participating entirely, leading to increased wealth inequality. Moreover, our results
show that increasing centralization in mining power arises, an antithesis to the principles
behind cryptocurrency security.

In an extended model (Section 4), we consider an advanced miner with cost advantages,
for instance due to having access to cheaper electricity or advanced equipment. We show
that the advanced miner accounts for a significant share of the total hash rate. Hence, cost
efficiency is another factor leading to the centralization of mining power.

The main driver of our results is that, ceteris paribus, the individual miner’s ratio of
expected reward and the standard deviation of the reward is decreasing in the hash rate (at
least to a point). Coupled with risk aversion, this creates an advantage to a miner willing to
take on more risk by mining at a higher rate. Although assumptions on cost structure, rewards,
or preferences do not change this fundamental feature, they can modulate its strength.

The paper’s technical and methodological contributions are as follows. As each miner’s
action affects the other miners equally, the problem exhibits a natural symmetry that is well
suited to be modeled as a mean field game. Our adaptation of mean field games technology to
this problem is novel: to our knowledge, ours is the first mean field game of control in which
the control and the aggregate (rather than the mean) of other players’ control influence the
intensity of a jump process. This enables us to capture dynamic features of cryptocurrency
mining competition and utility optimization in a numerically tractable way. Finally, we
also provide one of the few explicit mean field game equilbria outside of a linear quadratic
framework.

for a miner to avoid the inflation tax if so desired. Second, even though some miners could be competitive
long-term, the presence of wealth considerations and risk aversion could prematurely force them out of the
game against their will. This latter effect is apparent in the model studied here.
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2 Model and methodology

In this section we develop our model motivated by the specifics of proof-of-work mining and
set up the equations to be tackled analytically and numerically in Section 3. Section 2.1 briefly
presents the purpose and mechanics of cryptocurrency mining, followed by Section 2.2 which
describes our method for representing participant miners as a continuum. Sections 2.3, 2.4,
2.5 collectively describe the mathematical model for the mining game, and finally Section 2.6
presents the numerical method we implement.

2.1 Proof-of-work mining

Under a proof-of-work protocol, mining is the process by which a block, i.e., a list of
transactions, is appended to the cryptocurrency ledger, and by which the system controls
who may choose the next block, and thus also the next transactions to be registered. Due to
the pseudonymity inherent in the system, any real-world individual or entity can trivially
pose as multiple separate users, and for this reason it is problematic to, for instance, take
turns in having the right to append the next block.

A solution to this is to give users the right to append the next block in proportion to their
computing power by means of a computational mining game. The underlying assumption is
that computational power cannot be monopolized. Agents are incentivized to participate by
rewards to successful miners. This is accomplished by mining puzzles that are unique to the
data being processed. This data, among other things, includes a reference to the last mined
block (thus creating the ‘chain’ of blocks) and the transactions to be processed. When the
mining puzzle is solved by one miner, the miner receives the reward, the data processed by
that miner is appended to the blockchain, and the game starts over for everyone, now with a
reference to the new block.

The puzzle is characterized by a binary function h with range [0, 1] and a target ∈ (0, 1),
the latter of which is changing over time. A miner successfully mines a block characterized
by its data if they find an input y such that h(data, y) < target. Because the second input
to the function h is arbitrary and does not carry any information about the transactions
themselves, it is referred to as a nonce.

To make this game computationally difficult, the function h must have the property that
there is no better way to find a nonce y satisfying h(data, y) < target than brute force, i.e.,
haphazardly evaluating the function for different nonce values. This property is provided
by so-called (cryptographic) hash functions. The function h is thus referred to as the hash
function and its output as a hash. The precise hash function varies between cryptocurrencies
and the target is dynamically adjusted so that the average rate at which the population as a
whole solves the puzzles is stable.

All participating miners simultaneously try one nonce after the other until one miner is
lucky enough to produce a small enough hash output, below the target. As a consequence,
the probability of miner i appending the next block is

miner i’s hash rate

total hash rate
. (2.1)

After the successful mining of a block, the game repeats itself in the hunt for the subsequent
block. We see from this expression that, provided no miner’s hash rate is large relative to

6



the population total, no miner will have undue power over which transactions are included
in the ledger. If this is not satisfied and one or more miners run dominant shares of mining
computations, the system is centralized and those miners have undue power over the ledger
and what transactions are included. This could allow dominant miners to conduct censorship
or other forms of malicious behavior. For more in-depth detail on the mining game, problems
with centralization, and potential attacks, we refer the interested reader to (Narayanan,
Bonneau, Felten, Miller, & Goldfeder, 2016, Chapter 5).

Finally, note that because only the data changes between blocks, the process describing
the arrival of solutions to the puzzle is memoryless. This is an important property for the
mathematical model in Section 2.

2.2 Continuum mean field approximation

To study the centralization of mining power and rewards, we first recognize the mean field
structure inherent in mining competition and then introduce a continuum approximation,
which leads to the formulation of a continuum mean field game.

From (2.1) we see that each player depends on the other players through the sum of their
hash rates, which is proportional to the mean hash rate. Hence, formalizing cryptocurrency
mining as a mean field game is completely natural, because each miner is affected by each
other miner equally (through their aggregate or mean).6

Each miner is characterized by their wealth and chooses their hash rate to maximize
expected utility at a fixed time horizon. Their wealth changes because of the mining rewards
and expenses. The instantaneous probability of receiving the reward is given by the probability
of producing the next block:

pl. i’s hash rate

total hash rate
= pl. i’s hash rate

#players × mean hash rate
≈ pl. i’s hash rate

pl. i’s hash rate + (#players−1) × mean hash rate
,

where the last expression is a good approximation when the number of players is large.
Let M = (#players−1), which is assumed to be large. To formulate the continuum
model, we replace the second term in the denominator on the right hand side by (M ×
continuum mean hash rate). With this approximation, the continuum game we consider has
significant computational advantages over finite player games, which are often infeasible to
solve numerically (because of dimensionality), especially in a dynamic setting.7 In other
words, we mathematically model a continuum of players, but their aggregate effect on each
other is still of size M , and is thus interpreted as a game of M + 1 players.8

The purpose of using a continuum mean field games structure instead of a finite N -player9

model is that it significantly reduces the dimensionality. The observation that this structure

6This is in contrast to some other proposed applications of mean field games, such as banking, where the
assumed symmetry in agent interaction does not capture the intricate graph structure of real-world banking
networks. We thank the associate editor for pointing this out.

7Mean field game structures and their computational advantages are briefly introduced and described in
Appendix B.

8This is reasonable as long as the proportion of active players multiplied by M remains large. We restrict
our analysis to finite horizons for which this is the case.

9We use N here to talk about a general game and N → ∞ so as not to confuse with M which stays finite
in our mining game.
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can admit simpler solutions, along with analysis of the convergence for N → ∞, was pioneered
in Huang, Malhamé, Caines, et al. (2006); Lasry and Lions (2007). Whereas a finite N -player
model requires solving N coupled equations, the mean field games system consists of only two
equations. The N -dimensional system of nonlinear partial differential-difference equations
with N state variables in the first case is numerically intractable for N ≥ 3 players, while, as
we demonstrate in this paper, the two continuum equations (in time and one state variable)
are quite tractable for explicit and numerical resolution. The intuition is as follows.

In a game of many, but finitely many, players, anyone considering the average of the
others will observe a quantity very close to the true mean, by the law of large numbers. As
the number of players increases to infinity, the observed average converges to the true mean.
Hence, in each player’s optimization problem, instead of solving for all possible combinations
of randomness influencing others, they need only account for the true mean where individual
fluctuations average out.

In a Markovian setting, the best response to the population average behavior can be
written as a function of the state. As two different players with the same state respond
identically to the same population average, we simultaneously solve for the response of all
players. Knowing the best response, we enter this into the Fokker–Planck (Kolmogorov
forward) equation, whose solution is the evolution of the density of the population over the
state space. With the density and best response, the population average can be computed. If
this coincides with the population average for which we found the best response, we have
found a (mean field) equilibrium. Such a mean field games equilibrium typically constitutes
an ε-Nash equilibrium to the finite player game (with ε converging to 0 as N → ∞). See e.g.
Huang, Caines, and Malhamé (2007); Nourian and Caines (2013).

To summarize: By considering a continuum of players, they do not need to consider random
fluctuations affecting other individuals, which reduces the number of dynamic programming
equations to one. Instead, another equation accounts for the population dynamics and
behavior. These equations are coupled by a fixed point equation, and at the fixed point no
individual has anything to gain from deviating—an equilibrium.

We next describe the general structure of each individual miner’s problem, followed by its
mathematical formulation. With the structure of each miner’s action, we then characterize
their interaction and the equilibrium condition.

2.3 General structure of the mining problem

We consider a continuum of miners who competitively engage in Bitcoin mining over some
finite time period [t0, T ]. The representative miner chooses a hash rate αt ≥ 0, incurring a
linear cost cαt per unit of time, where c > 0, and t ∈ [t0, T ]. This cost is interpreted as the
cost of electricity, and is thus proportional to their hash rates10, and, for simplicity, each
miner incurs the same marginal cost c.11

There are two important features of the Bitcoin proof-of-work protocol: First, the system
always generates a reward on an almost fixed frequency that does not depend on the total

10Garratt and van Oordt (2020) find that fixed costs associated with acquisition and setup of mining
equipment improves the resilience of the system. We leave this interesting extension of the model for future
research.

11We consider some models with cost heterogeneity in Section 4 and Appendix E.
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hash rate. In fact, the system will adjust the difficulty to make a reward available every 10
minutes on average.12 So it is reasonable to model the total number of rewards in the system
as a whole as a Poisson process with a constant intensity K > 0, where K−1 is approximately
10 minutes. Second, a miner’s probability of receiving the next mining reward is proportional
to the ratio of its hash rate to that of the population. Since the math puzzle needs to be
solved by brute force, the more hash rate a miner contributes, the more likely it will obtain
the reward.

The number of rewards each miner can receive is modelled by a counting process N =
(Nt)t≥t0 with jump intensity λ = (λt)t≥t0 > 0.13 Let M + 1 be the total number of miners
and ᾱt ≥ 0 denote the mean hash rate across all miners. Here, our model for the reward
intensity at time t as a function of an individual’s hash rate αt and the mean hash rate is

λt :=


K αt

(αt +Mᾱt)
, αt > 0,

0 αt = 0,
(2.2)

and we use Mᾱt to approximate the total hash rate of other miners.
Each miner is is modeled as having negligible impact on the population’s mean production.

However, the factor M in front of the mean hash rate in (2.2) implies that the mean field
interaction is strong, whereas often in the literature it is assumed to be small for computational
and technical reasons. We argue that for cryptocurrency problems, interaction with the total
hash rate is essential in a realistic model. Indeed, this does introduce numerical difficulties,
for which we provide an effective algorithm in Section 2.6.

The miners have initial wealth x, distributed at time t0 according to an initial density
function m0. Then, an individual miner’s wealth process X = (Xt)t≥t0 follows

dXt = −cαt dt+ r dNt, (2.3)

where r is the value of the mining reward. Successfully mining a block, i.e., appending the
next block to the ledger, grants the miner a reward as compensation. This reward has two
parts. The so-called block reward is set by the system as a fixed number per block. In
addition to the block reward, the miner also receives any transaction fees from transactions
included in the appended block. The value of the total reward is interpreted as the product
of the cryptoasset price and its quantity.14

Since our focus is on the strategic decision of miners and the centralization in the
competition, we treat the reward as a constant.15 Nevertheless, the number of bitcoins as a
reward is set to decrease geometrically with 50% reduction every 4 years approximately, and

12In reality, in the case of Bitcoin, this number is adjusted every 2016 blocks (about every two weeks). We
make the simplifying assumption that this happens continuously in our model. Similarly, we shall assume
that also the miners’ hash rates may change continuously.

13Formally, P [Nt+∆t − Nt = 1] = λt∆t + o(∆t) and P [Nt+∆t − Nt ≥ 2] = o(∆t), see Brémaud (1981).
14The miners are also rewarded the transaction fees in successfully mined blocks. We use the term reward

and mining reward to refer to the total amount received, i.e., the block reward plus the transaction fees.
15Although in reality the mining reward is not constant due to regular decreases of the block reward,

fluctuations in transaction fees, and fluctuations in the value of the cryptocurrency relative to the unit
denominating costs, we believe our base model is a tractable starting point from which a lot of features of the
cryptocurrency market can be seen. As a first step to seeing the effect of stochastic reward, in Appendix C,
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the current block reward is 6.25 bitcoins plus transaction fees of a few percent of the block
reward. Although not presented, we have numerically considered this decreasing reward (and,
for the sake of completeness, increasing) without seeing a qualitative change in the behavior.

2.4 The miners’ optimization problem

With the dynamics of Section 2.3, we are ready to formulate the miners’ risk-reward
problems. The setup of the continuum model is to consider the optimization problem of an
individual miner, in response to any given action of the rest. Let α = (αt)t≥t0 be a Markovian
control. The process α can then be associated with a function (t,Xt) 7→ α(t,Xt; ᾱ) of the
current state. With such controls, the wealth process X is a Markov process. The objective
of the representative miner is to maximize the expected utility at fixed terminal time T .16 Let
U denote a strictly increasing and concave utility function.17 The miner’s value function is

v(t0, x; ᾱ) = sup
α≥0

E[U(XT ) | Xt0 = x]. (2.4)

We give a basic property of the value function.

Lemma 2.1. For any time t ∈ [t0, T ] and fixed ᾱ > 0, the value function v(t, x; ᾱ) is finite
and strictly increasing in the wealth x.

The proof is given in Appendix A.1. The result is intuitive, because more wealth gives
more flexibility to miners to choose their hash rates, and it will be useful below.

For a fixed mean hash rate ᾱ > 0, we first write down the HJB

∂tv + sup
α≥0

(
−cα∂xv + Kα

(α +Mᾱt)
∆v

)
= 0, (2.5)

with terminal condition v(T, x) = U(x), and where

∆v = v(t, x+ r; ᾱ) − v(t, x; ᾱ).

We assume that v is a classical solution of (2.5).18 By Lemma 2.1, ∆v > 0 and ∂xv > 0, and
so the optimal hash rate is given by

α∗(t, x; ᾱ) =


−Mᾱt +

√√√√KMᾱt∆v(t, x; ᾱ)
c∂xv(t, x; ᾱ) , if ᾱt <

K∆v(t, x; ᾱ)
Mc∂xv(t, x; ᾱ) ,

0 otherwise.

(2.6)

we introduce a model with stochastic reward and demonstrate that, in the setting considered there, miners
react only to the current level of the price and do not factor in reward volatility. Moreover, we have run the
numerical experiments also with deterministically halving rewards, and qualitative results such as the cutoff
point in Proposition 3.5 are still observable.

16Many economic models choose an infinite horizon utility of consumption criterion to remove time as a
dimension in the problem. That saving does not occur with mean field games, but the state dimension has
already been decreased from M + 1 to 2: one plus the time dimension. In addition, one could argue that
cryptocurrency miners are not operating on an infinite horizon.

17The miners are endowed with the same utility function and costs in our analysis, although we do
consider some cases of different risk aversions and costs in Section 4. Miners with heterogeneous risk aversion
parameters could be considered similarly to the heterogeneous costs in Appendix E, at some added complexity.

18In the case of exponential utility, this is indeed verified in Section 3.1, so this is a reasonable assumption.
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We observe in this expression that an individual miner at least temporarily stops hashing at
time t if the aggregate competition Mᾱ is above the threshold K

c
∆v(t,x;ᾱ)
∂xv(t,x;ᾱ) , but may resume as

the game evolves. In this sense, there is endogenous entry and exit.
A key question here is whether at a given time t there exists a cutoff point xoff(t) that

separates the population into those who are hashing and those who are not, at that time. We
observe that such a threshold xoff(t) is determined by when ∆v(t,x;ᾱ)

∂xv(t,x;ᾱ) is small enough. We will
see that with CARA utility, the answer is no, whereas with CRRA utility the answer is yes,
as shown in Proposition 3.5.

Finally, we simplify the HJB equation (2.5) by plugging in (2.6) to give:
∂tv +

(√
Mcᾱt∂xv −

√
K∆v

)2
= 0, if ᾱt <

K∆v
Mc∂xv

,

∂tv = 0, otherwise.

(2.7)

2.5 Equilibrium characterization

We now look for a Markovian equilibrium of the mining game. It is useful to think of
the continuum of miners as being labeled by their wealth x. Let α∗(t, x; ᾱ) be the optimal
hash rate of miner x, and denote by m(t, x; ᾱ) the resulting density of the miners’ wealth as
a function of time and wealth. We say ᾱ∗ forms an equilibrium mean hash rate of the mining
game if

ᾱ∗
t =

∫
R
α∗(t, x; ᾱ∗)m(t, x; ᾱ∗)dx, ∀t ∈ [t0, T ]. (2.8)

Henceforth, let ᾱ∗ denote an equilibrium mean hash rate, and denote

v(t, x) = v(t, x; ᾱ∗), α∗(t, x) = α∗(t, x; ᾱ∗), m(t, x) = m(t, x; ᾱ∗).

We assume that ᾱ∗
t 6= 0 for all t for the following reason. If ᾱ∗

t = 0, then each miner has
an admissible control that dominates the choice of not mining.19 Hence, unless the mass of
miners with non-zero admissible controls is zero, some mining will always occur.

We assume the initial density m0(x) is continuously differentiable and satisfies∫
m0(x) dx = 1.

Substituting (2.6) into the equilibrium condition (2.8) gives

ᾱ∗
t =

∫
Et

α∗(t, x)m(t, x)dx = −Mη(t)ᾱ∗
t +

√
KMᾱ∗

t

c

∫
Et

√√√√∆v(t, x)
∂xv(t, x)m(t, x) dx,

where
Et = {x : α∗(t, x) > 0} (2.9)

19This holds for any cost c, as for any small ε > 0, a miner can hash at rate α = ε and, on average, receive
rK − cε as net rewards. As ε is arbitrarily small, this is clearly positive with arbitrarily small risk.
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denotes the wealth level on which the miners are active and η(t) =
∫

Et
m(t, x) dx denotes the

fraction of active miners. Thus,

ᾱ∗
t = M

(1 +Mη(t))2

∫
Et

√√√√K∆v(t, x)
c∂xv(t, x)m(t, x) dx


2

, (2.10)

while the Fokker-Planck equation for m is given by

∂tm− ∂x(cα∗(t, x)m) − K
(

α∗(t, x− r)
α∗(t, x− r) +Mᾱ∗

t

m(t, x− r) − α∗(t, x)
α∗(t, x) +Mᾱ∗

t

m(t, x)
)

= 0,

(2.11)
with initial distribution m(t0, x) = m0(x).

Proving existence and uniqueness of an equilibrium in the general case is beyond the
scope of this paper. However, in Propositions 3.1 and 4.1, we find the unique equilibrium (in
a given class) explicitly. In the next section we introduce a numerical method whose results
in Sections 3.2 and 4.3 give strong indication of existence of a unique equilibrium in those
cases. Moreover, in the case where we have an explicit solution, the numerical solution is
observed to reproduce it (Section 3.1.3).

2.6 Numerical method

Solving the equations (2.7) for v and (2.11) for m, individually, are classical PDE problems.
The difficulty here lies in finding a solution that satisfies the equilibrium condition (2.8). The
equilibrium can be represented as a fixed point equation involving the solutions v and m,
formally written as

ᾱ 7→ Ψ(ᾱ), where Ψ(ᾱ) = (integrate α∗, m) ◦ (solve for m) ◦ (solve for v, α∗)(ᾱ),

and where ◦ as usual denotes composition. Our method for finding an equilibrium is an
iteration of the fixed point mapping Ψ.

Each component of Ψ can be readily computed with standard finite difference methods.
Although a direct fixed point iteration for Ψ often does work, in this case, the large factor M
causes some overshoot when iterating. To resolve this, we use an (under-) relaxation of the
fixed point iteration. Such relaxations are well known to help convergence and do not alter
the fixed point (equilibrium) itself. H. Li, Fan, and Ying (2021) analyze convergence of this
type of relaxed iterations in the particular case of mean field game problems. We refer to
them for complete technical details on this type of scheme and the mathematical benefits of
relaxation.

What follows is a more detailed account of the iteration, the PDE solutions, and the
relaxation technique.

1. Initialize with a mean hash rate t 7→ ᾱt, for instance as constant.

2. Solve for the value function v and the hash rate α∗:

12



At time T , the value function is v known, so (2.6) yields α∗(T, x; ᾱ). This value is used
as an approximation of α∗(T − dt, x; ᾱ), which allows solving for v at T − dt, using the
HJB equation:

∂tv +
(

−cα∗(T, x; ᾱ)∂xv + Kα∗(T, x; ᾱ)
(α∗(T, x; ᾱ) +MᾱT )∆v

)
= 0.

The ∆v term is calculated explicitly using v(T, x+ r; ᾱ) − v(T, x; ᾱ), while the other
part is discretized by an implicit finite difference scheme. This separation is made to
balance stability with computational efficiency. With the value function v at T − dt,
we can get α∗(T − dt, x; ᾱ). Repeat such time steps backwards until t = 0. This yields
both functions v and α∗.

3. The next step is to solve the Fokker–Planck equation and get the mean field control.

The α∗(t, x; ᾱ) is obtained from the previous step allows solving (2.11) and (3.6) for
m(t, x). In doing so, the following terms are discretized by an implicit finite difference
scheme

∂tm− ∂x(cα∗(t, x)m) + Kα∗(t, x)
(α∗(t, x) +Mᾱt)

m,

while m in

− Kα∗(t, x− r)
α∗(t, x− r) +Mᾱt

m(t, x− r)

is evaluated in the previous time step, again separated to balance stability and efficiency.

4. Due to the large factor M scaling up the errors away from the equilibrium, so a direct
iteration will tend to overshoot. We therefore use an under-relaxation technique to
reduce this effect. For some parameter w ∈ [0, 1) and for each time t, the relaxed
iteration is given by

ᾱnew
t = wᾱt + (1 − w)

∫
R
α∗(t, x; ᾱ)m(t, x; ᾱ)dx = wᾱt + (1 − w)Ψ(ᾱ)t. (2.12)

This type of (under-) relaxation technique is common in iteration schemes and stabilizes
the iteration at the expense of slower iteration, cf. successive over-relaxation, which
instead speeds up stable iterations with w ≥ 1. The choice of w has no impact on the
equilibrium fixed point.

5. Finally, repeat from the first step with ᾱ = ᾱnew, unless the difference is sufficiently
small to terminate.20

We note that H. Li et al. (2021) study relaxation of the problem by relaxing the updating
of both v and m. Adding relaxation to the updating of v and m (steps 2 and 3) could have
further benefits in improving convergence properties, but because the scheme here successfully
solved all problems we considered, such further relaxation was not explored.

20As usual with fixed point iterations, convergence requires the initial guess to lie in the basin of attraction
of the fixed point mapping. Outside this set, the iterations soon result in ᾱ = 0, which can be discarded as a
non-equilibrium, as mentioned in Section 2.5. The choice w = 1 − 1

M makes the set large enough to find after
a few guesses, and this is the value used for all figures. We emphasize that in all our experiments the limiting
equilibrium has always been unique, regardless of initial guess, for any particular set of parameters.
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3 Explicit (CARA utility) and Numerical (CRRA utility) So-

lutions & Analysis

When the miners’ utility functiona are of CARA-type, we give explicit formulas for the
equilibrium Section (3.1).These provide evidence that the model is well-posed, but, as usual,
wealth effects are missing with this choice of utility. We demonstrate in Section 3.1.3 that
the numerical method reproduces the explicit solution. We also address the problem with
miners having CRRA utilities numerically, in which case wealth effects become apparent.

3.1 Exponential utility (CARA)

With exponential utility,

U(x) = −1
γ
e−γx, γ > 0, x ∈ R, (3.1)

where γ is the risk aversion parameter,21, a miner’s current wealth Xt can take any value in
R. It is convenient to define22

w(r; γ) = 1 − e−γr

γ
. (3.2)

3.1.1 Explicit solution

The following proposition gives formulas for the explicit solution of the mining game.

Proposition 3.1. With exponential utility, (3.1), in the equilibrium, all miners are always
active, with constant hash rate

α∗(t, x) ≡ ᾱ∗
t ≡ KM

c(1 +M)2w(r; γ), (3.3)

and their individual reward rate is

λt ≡ K
(1 +M) ,

for any t ∈ [t0, T ] and x ∈ R. The value function is given by

v(t, x) = U(x)e−γw(r;γ) K(T −t)
(1+M)2 . (3.4)

Remark 3.2. Due to the wealth independence of optimal hash rates, and thus the wealth
distribution, this is the same solution as a model without the mean field game approximation.
Indeed, with M + 1 players all using the same (wealth-independent) strategy α∗, the total
hash rate in the mean field games model α∗ +Mᾱ∗ = (1 +M)α∗ is equal to total hash rate in
the finite player model:

∑M
i=0 α

∗ = (1 +M)α∗. This exact correspondence is specific to this
particular setup.

21With a slight abuse of notation, we use γ = 0 to label the risk-neutral case of U(x) = x. The results of
Section 3.1 hold for risk-neutral miners with formal replacement of γ by 0.

22In the risk-neutral case, w(r; 0) = r.
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Remark 3.3. By the above solution, we observe that the total mining
∑M

i=1 α
∗(t, x) is bounded

by, and for large M approximately equal to K
c
w(r; γ). This is in turn bounded by K/cγ for

CARA utility, and, as a consequence, the total mining is thus also bounded by K/cγ, regardless
of r.

Proof. We guess the form v(t, x) = U(x)h(t) and then the HJB equation (2.7) becomes
∂th− γ

(√
Mcᾱ∗

t −
√

Kw(r; γ)
)2
h = 0, if ᾱ∗

t <
K
Mc

w(r; γ),

∂th = 0, otherwise,

with terminal condition h(T ) = 1. It is an equation in t only, which validates our ansatz.
Moreover, this ansatz implies that ∆v/∂xv does not depend on x. Hence, from (2.10),

ᾱ∗
t = η2M

(1 + ηM)2
K∆v
c∂xv

≤ M

(1 +M)2
K∆v
c∂xv

<
K∆v
Mc∂xv

,

which means all miners are active and η ≡ 1.
The equilibrium mean hash rate is obtained from plugging in the ansatz into (2.10).

Thereafter, (2.6) yields (3.3). The value function then satisfies

∂th− γK
(1 +M)2w(r; γ)h = 0,

with terminal condition h(T ) = 1. Thus we have (3.4).

3.1.2 Risk-Reward Analysis

As α∗ is constant, we drop the dependence on t and x. In the equilibrium, the wealth of
the representative miner can be written as

Xt0+t = Xt0 − cα∗t+ r(N∗
t0+t −N∗

t0) = Xt0 − KM
(1 +M)2w(r; γ)t+ r(N∗

t0+t −N∗
t0),

where N∗ has the constant jump rate λt = K
(1+M) and thus is a Poisson process. Then we can

compute the expectation and variance of Xt0+t:

E[Xt0+t −Xt0 ] =
(
r − Mw(r; γ)

1 +M

) Kt
(1 +M) , Var(Xt0+t −Xt0) = Kr2t

(1 +M) .

If γr is small, the expected wealth change is approximately Krt
(1+M)2 , which decays with

competition as M−2. However, the variance is only discounted by a linear factor 1 +M , and
in particular the standard deviation decays as 1/

√
M . Hence, as more miners join the game,

the expected gain shrinks very fast, but the potential risk decreases slowly: a more crowded
competitive mining environment is less attractive in terms of the risk-reward tradeoff than a
sparser one.
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Iteration 1
T

∑T
t=0 |ᾱt − ᾱnew

t | 1
T

∑T
t=0(Ψ(ᾱ)t − ᾱexplicit

t )/ᾱexplicit
t

1 266244 69.673
2 139090 36.398
3 71891 18.813
4 36485 9.5473
5 18382 4.8095
6 9228 2.4139
7 4624 1.2089
8 2314 0.60440
9 1157 0.30166
10 578.6 0.15020

11 289.28 0.07446
12 144.60 0.03659
13 72.281 0.01766
14 36.130 0.00820
15 18.060 0.00347
16 9.0285 0.00111
17 4.5135 0.0000068
18 2.2565 0.00065
19 1.1282 0.00095
20 0.5641 0.00110

30 0.00055 0.00124

40 5.5184e-07 0.00124

50 4.2964e-09 0.00124

Table 1: Example of observed convergence of the numerical method to the explicit
solution for CARA utility. Following the notation in Section 2.6, ᾱ denotes the output
of the previous iteration, Ψ(ᾱ) denotes the fixed point mapping output of the current
iteration, ᾱnew is the relaxed output (2.12), and ᾱexplicit denotes the explicit solution
from Proposition 3.1. The error remaining in the last column is due to the discretization
error of the PDEs and decreases with the grid size.

3.1.3 Numerical convergence

We use the explicit solution (3.3) to test the numerical scheme from Section 2.6. Table 1
lists errors for one run. The errors are observed to converge toward zero, and as the iteration
closes in on the correct solution, the convergence is of order 1 and rate 0.5. Similar numbers
are obtained for other starting points and parameter values, although the initial iterations can
be slower than rate 0.5 far away from the solution, due to the strong under-relaxation. The
relative error of approximately 0.1% in the last column is due to discretization and decreases
with the grid size.

This observed convergence indicates that the numerical method is sound, and is therefore
valuable indication of the correctness in subsequent sections with CRRA utility, where no
explicit solution exists.
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3.2 Power Utility (CRRA)

In this section, we consider the mining problem where miners have CRRA utility functions
U , defined on R≥0, namely

U(x) = 1
1 − γ

x1−γ for γ ∈ (0, 1), x > 0, (3.5)

and admissible strategies α are such that the wealth process X remains positive. The HJB
equation (2.7) holds on x > 0 with the boundary condition V (t, 0) = U(0) = 0. We naturally
assume that the initial density m0 has strictly positive support, so all the miners start with
positive wealth. This means that the problem is fully characterized on R≥0.

In contrast to the case of exponential utility in Section 3.1, the value function cannot be
found explicitly, even with power utility, so we must solve (2.7) numerically. The mean hash
rate is still given by (2.10), while the Fokker–Planck equation has two parts to account for
the fact that miners’ wealths stay strictly positive. The density m solves (2.11) (at least in a
weak sense) for x > r. On the other hand, if 0 < x < r, there is no density at x− r jumping
to x, because there are no miners with negative wealth. So, for 0 < x < r, the density m
solves

∂tm− ∂x(cα∗m) + Kα∗

(α∗ +Mᾱ∗)m = 0, (3.6)

where the optimal individual hash rate is given by (2.6). The initial condition on all x > 0 is
m(t0, x) = m0(x).

Remark 3.4. The Fokker–Planck equation can be verified to preserve mass on R≥0, i.e., for
all t ∈ [t0, T ],

∫
R≥0

m(t, x)dx = 1. Indeed,

∂t

∫
R≥0

m(t, x)dx =
∫
R≥0

∂tm(t, x) dx,

= cα∗(t, ·)m(t, ·)|r0 −
∫ +∞

0

Kα∗

(α∗ +Mᾱ∗
t )mdx+ cα∗(t, ·)m(t, ·)|+∞

r

+
∫ +∞

r

Kα∗(t, x− r)
(α∗(t, x− r) +Mᾱ∗

t )m(t, x− r) dx,

= cα∗(t, ·)m(t, ·)|+∞
0 = 0,

where the second integral term cancels with the first by making the change of variable x′ = x−r.
The last equation holds because no one can obtain infinite wealth in finite time, and the
condition α∗(t, 0+) = 0 holds.

3.2.1 Concentration of wealth and mining effort

In this section, we numerically solve for the equilibrium with power utility functions (3.5).
This structure leads to strategic decisions of the miners that are very different from those
found with exponential utility, as those with larger wealth tend to hash more. This also puts
competitive pressure on lower wealth miners, and as a consequence, the wealthier miners
receive a disproportionately large share of profits, a form of preferential attachment.
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Preferential attachment effects appears in many situations: scientific citation networks
(Barabási et al., 2002), language use (Perc, 2012), distribution of cities by population and
distributions of incomes by size (Simon, 1955). A recent empirical study points out that
it also appears in the Bitcoin network (Kondor et al., 2014): “we find that the wealth of
already rich nodes increases faster than the wealth of nodes with low balance.” This empirical
observation is consistent with our model’s numerical results.

Figure 1 shows the distribution of the miners’ wealth at t = 30, 45, 60, 90 compared with
the initial distribution. As time increases, the majority of the mass moves to the left, gradually
forming a significant spike. At the same time, there is small part of the mass moving to the
right. This indicates that most miners lose their wealth, but those who have relatively more
money originally accumulate wealth over time.

60 70 80 90 100 110 120 130 140

0

x

m

t = 0
t = 30
t = 45
t = 60
t = 90

Figure 1: The distribution of miners’ wealth at different times. Parameters: K−1 =
0.007, r = 3, c = 2 × 10−5, T = 90, γ = 0.8, M = 1000. The initial distribution m0 is
normal with mean 90 and standard deviation 5. Note that as time passes, there is mass
concentrating on the left hand side of the peak at x = xoff ≈ 77, cf. Proposition 3.5. In
light of Proposition 3.5, this is expected. Below the peak, it is optimal for miners to not
participate, whereas above they do. Hence, miners to the right of xoff move to the left,
whereas those at or below are stationary, causing concentration of the density around
xoff . We emphasize that this does not cause numerical problems, because derivatives are
only evaluated on one side of this point.
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(a) Expected profit.
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(b) Miners with wealth over 100.

Figure 2: The left plot shows the expected instantaneous profit miners at different wealth
levels and times. The right one gives the proportion of miners with wealth over 100 and
their share of the total instantaneous profits. Parameters are the same as Figure 1.

From (2.3), the expected profit E[∆Xt] for an individual miner over a short time ∆t is
given, approximately by E[∆Xt] ≈ −cα∗

t ∆t+ rλt∆t, where λt is given by (2.2). Figure 2(a)
shows the instantaneous profit rate, namely

−cα∗(t, x) + rK α∗(t, x)
α∗(t, x) +Mᾱ∗

t

, (3.7)

as a function of miners’ wealths at various times. We see that the more wealth a miner has,
the higher is their expected profit rate. Miners with lower wealth hash at lower rates or even
zero rate below xoff introduced in Proposition 3.5 below. This pattern holds at all times. In
addition, it is interesting to see that the miners are blockaded (0 hash rate) around and below
wealth level 77 (see Figure 2(a)). Their risk aversion prevents miners with small wealth from
participating in the mining game. This is explained by the following lemma, whose proof is
provided in Appendix A.

Proposition 3.5. For any time t and equilibrium hash rate ᾱ∗
t > 0, there exists a wealth level

xoff(t) > 0 such that α∗(t, x) = 0 for x ≤ xoff(t), i.e., the optimal mining rate is zero at
wealth levels below xoff .

To better understand the preferential attachment effect, we compute the proportion of
miners whose wealth is over 100 and their share of the instantaneous profits, both of which
are shown in Figure 2(b). The proportion increases from around 2% to 18%, while the share
of profits rises from 4% to 41%. Hence, as time goes by, the wealthy receive an increasingly
large share of the profits.

We have shown “the rich get richer” phenomenon in the mining game. It is also interesting
to see how the reward r and competition parameter M affect this phenomenon. To avoid
repetition, we show only the plots at t = 30, but a similar pattern is present also at other
times.

A larger reward r exacerbates the degree of preferential attachment. The density plots
in Figure 3 show that those with lower wealth tend to lose money faster when the price is
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(a) Density comparison (r = 2, 3).
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(b) Density comparison (r = 3, 4).

60 80 100 120 140

0

x

m

r = 4
r = 5

(c) Density comparison (r = 4, 5).
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(d) Expected profit.

Figure 3: The price effects at t = 30. The first three plots show the distribution
of miners’ wealth. The last one shows the expected instantaneous profit of miners at
different wealth levels, for four different price levels. Parameters are the same as Figure
1 except that r takes multiple values.
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higher. At the same time, the density for x ≥ 110 is clearly higher for the larger reward in
Figures 3 (a)(b)(c). Figure 3(d) shows the expected instantaneous profits (3.7), which leads
to the same conclusion.
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(a) Density comparison (M = 1K, 2K).
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(b) Density comparison (M = 2K, 3K).
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(c) Density comparison (M = 3K, 10K).
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(d) Expected profit.

Figure 4: The competition effects at t = 30. The first three plots show the distribution
of miners’ wealth. The last one shows the expected instantaneous profit for miners at
different wealth levels, for four different competition levels. Parameters are the same as
Figure 1 except that M takes multiple values.

The competition parameter M reduces the preferential attachment effect. This is shown
in Figures 4 (a)(b)(c), as the density for x ≥ 100 is lower for larger M . Additionally, the
expected profit rate (3.7) decrease with respect to M , as is shown in Figure 4(d). Meanwhile,
as the competition becomes fierce and the participation threshold for miners to be active
becomes larger. When M = 1000, miners need wealth around 75 to have incentive to hash,
but this increases to about 90 forM = 10000. Hence, the competition makes the mining game
less lucrative, and makes it harder for miners to stay active, which reduces the preferential
attachment.
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4 Competition with cost advantages

In this section, we consider a model in which one miner has cost advantages over the rest.
This could be due to access to cheaper energy or more advanced equipment, and helps the
miner become dominant in the mining game. Bitmain is one example of an advantaged miner.
It utilizes cheaper electricity in China, like the hydropower stations in Sichuan during the
rainy season, and also Hydro Quebec in Canada, which offers some of the lowest electricity
rates in North America.23 The model studied in this section suggests that cost advantages can
be a contributing factor in the centralization observed in Bitcoin mining, which is dominated
by a few large entities, as is illustrated in Figure 5.

Because the advantaged miner is distinct from the other miners, the general structure
of Section 2 is adapted in Section 4.1. As in the earlier model, we are able to obtain the
equilibrium explicitly when the smaller miners have exponential utility (Section 4.2), and we
can demonstrate wealth effects numerically when they have power utility (Section 4.3).
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13.5%AntPool
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BTC.TOP

9.1%

SlushPool

8.5%

ViaBTC
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BitFury

5.0%
Others

13.7%

Figure 5: Bitcoin hash rate distribution among the largest mining pools. The data is
obtained on 06/30/2019 from https: / / www .blockchain .com/ pools .

4.1 Problem formulation

We consider a cost-advantaged miner competing with M + 1 individual miners who are
approximated, as in Section 2.3, by a continuum of miners.24 This miner chooses a hash rate
βt, and incurs cost c1βt = kccβt per hash, where 0 < kc ≤ 1 is the relative cost efficiency.

23https://www.reuters.com/article/us-canada-bitcoin-china/chinese-bitcoin-miners-eye

-sites-in-energy-rich-canada-idUSKBN1F10BU
24This type of competition between an individual and a continuum of payers is related to so-called

major-minor mean field games, see e.g. Huang (2010). However, the introduction of our parameter M to
approximate an aggregate in terms of a mean implies that the so-called minor players are not really minor.
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Given the (continuum) mean hash rate ᾱt of the individual miners, the counting process N1
t

with intensity

λ1
t = Kβt

(βt + (M + 1)ᾱt)
denotes the number of rewards received by the cost-advantaged miner.

We think of the advantaged miner as a profit-maximizing firm, or, more generally, having
preferences described by a utility function U1(x) coupled with the appropriate set of admissible
hash rate strategies. The objective for the cost-advantaged miner is

sup
βt≥0

E

U1

(∫ T

0
−c1βtdt+ r dN1

t

). (4.1)

As in Section 2.3, the model for individual miners remains the same except that the
intensity for Nt in (2.3) becomes

λt = Kαt

(αt +Mᾱt + βt)
,

given the cost-advantaged miner’s hash rate βt. Here the denominator consists of both the
cost-advantaged miner’s hash rate and the total of individual miners.

In this generality, we would need an additional state variable for the wealth of the cost-
advantaged minor, as well as their value function, increasing the dimension and complexity
of the PDE system. However, in the case where the players have exponential utility (or are
risk-neutral), the equilibrium hash rates are wealth-independent, and we can solve explicitly
(Section 4.2). We can further handle numerically the case of the individual miners having
power utility when the advantaged miner is profit-maximizing, i.e. risk-neutral, (Section 4.3),
in which case we do not need an additional state variable. In either of these cases then, any
Markov control can be identified by a function β(t; ᾱ), i.e., the control only depends on time.

4.1.1 HJB equation

The value function defined as in (2.4) now depends on both ᾱ and β, i.e., v(t0, x; ᾱ, β).
For a fixed choice of ᾱ > 0 and β ≥ 0, the HJB can be written as

∂tv + sup
α≥0

(
−cα∂xv + Kα

(α +Mᾱt + βt)
∆v

)
= 0,

with terminal condition v(T, x) = U(x). Like Lemma 2.1, it can be proved that v is strictly
increasing in x. Hence, the maximizer is

α∗(t, x; ᾱ, β) =


− (Mᾱt + βt) +

√
(Mᾱt + βt)K∆v

c∂xv
, if Mᾱt + βt <

K∆v
c∂xv

,

0 otherwise,

(4.2)

and the HJB equation is
∂tv +

(√
c(Mᾱt + βt)∂xv −

√
K∆v

)2
= 0, if Mᾱt + βt <

K∆v
c∂xv

,

∂tv = 0 otherwise.

(4.3)
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4.1.2 Equilibrium characterization

Letm(t, x; ᾱ, β) be the resulting density, corresponding to the optimal hash rate α∗(t, x; ᾱ, β)
of individual miners. We say that ᾱ∗ and β∗ form an equilibrium of the mining game with a
cost-advantaged miner if

ᾱ∗
t =

∫
R
α∗(t, x; ᾱ∗, β∗)m(t, x; ᾱ∗, β∗) dx, ∀t ∈ [t0, T ],

and β∗
t = β∗(t; ᾱ∗), from (4.1). Henceforth, let ᾱ∗ and β∗ denote the equilibrium mean

hash rate and equilibrium hash rate for the cost-advantaged miner, v(t, x) = v(t, x; ᾱ∗, β∗),
α∗(t, x) = α∗(t, x; ᾱ∗, β∗), and m(t, x) = m(t, x; ᾱ∗, β∗).

By the same argument presented in Section 2.5, it is meaningful to consider ᾱ∗
t > 0 for all

t. Thus in the equilibrium, we have coupled equations β∗
t = β∗(t; ᾱ∗) and

ᾱ∗
t = −η(t)(Mᾱ∗

t + β∗
t ) +

√
(Mᾱ∗

t + β∗
t )
∫

Et

√√√√K∆v(t, x)
c∂xv(t, x)m(t, x) dx,

by integrating (4.2) in x over the set (2.9). The Fokker-Planck equation is given by

∂tm−∂x(cα∗(t, x)m)−K
(

α∗(t, x− r)
α∗(t, x− r) +Mᾱ∗

t + β∗
t

m(t, x− r) − α∗(t, x)
α∗(t, x) +Mᾱ∗

t + β∗
t

m(t, x)
)

= 0,

with initial distribution m(t0, x) = m0(x).

4.2 Exponential and risk-neutral utility miners: explicit solution

Define

w(r; γ) =


(1 − e−γr)

γ
γ > 0,

r γ = 0.
When the higher cost miners have exponential utility (γ > 0) or are risk-neutral (γ = 0), and
the cost-advantaged miner has exponential utility, or is risk-neutral (U1(x) = x), we have the
following result.

Proposition 4.1. Suppose the individual miners have exponential utility U(x) = − 1
γ
e−γx with

γ ≥ 0 and the cost-advantaged miner either i) has exponential utility with risk-aversion
coefficient γ1 > 0; or ii) is risk-neutral (γ1 = 0). Suppose the relative cost efficiency satisfies

kc <
w(r; γ1)
w(r; γ)

M + 1
M

, (4.4)

and let

κ = Kw(r; γ)
c

, κ1 = (M + 1)Kw(r; γ1)
c1

.

Then, in equilibrium, all miners are active with

α∗(t, x) ≡ ᾱ∗
t ≡ κ2κ1

(κ+ κ1)2 > 0, β∗
t ≡ κκ1(κ1 −Mκ)

(κ+ κ1)2 > 0, (4.5)

for all t ∈ [t0, T ] and x ∈ R.
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Proof. With the ansatz v(t, x) = U(x)h(t), the HJB (4.3) reduces to solving
∂th− γ

(√
c(Mᾱ∗

t + β∗
t ) −

√
Kw(r; γ)

)2
h = 0, if Mᾱ∗

t + β∗
t <

K
c
w(r; γ),

∂th = 0 otherwise,

with terminal condition h(T ) = 1. Since ᾱ∗ and β∗ are only functions of t, this validates the
ansatz. In looking for an equilibrium in which α∗

t > 0 and β∗
t > 0, we use the non-zero best

response β∗ in (4.7), and, using the ansatz in (4.2), we find

α∗(t, x; ᾱ∗, β∗) = −(Mᾱ∗
t + β∗

t ) +
√

K
c
w(r; γ)(Mᾱ∗

t + β∗
t ).

Since α∗ does not depend on the wealth x, all individual miners are active. Therefore, we
have ᾱ∗

t = α∗
t . This, together with (4.7), yields (4.5). It is direct that α∗ is positive, and β∗

is positive if and only if (4.4) holds. Thus we have found the equilibrium in which everyone
is active.

Cost advantage and its effect on mining power concentration

Proposition 4.1 demonstrates that the cost-advantaged miner’s efficiency leads to central-
ization in the following sense. It can be checked that the hash rate β∗

t in (4.5) is increasing
in κ1 and hence decreasing in c1. Similarly, the hash rate α∗ in (4.5) of the individual
miners increases with respect to c1. Thus, a smaller c1—a larger cost advantage—makes the
advantaged miner more dominant. As a consequence, individual miners with higher cost have
to decrease their hash rates to regulate their risk exposure, as the advantaged miner gets a
larger share of the mining rewards.

To quantify this,we write ρ = kc
w(r;γ)
w(r;γ1) . Then κ1 = (M + 1)κ/ρ. The probability for the

cost-advantaged miner to get the reward is

β∗

β∗ + (M + 1)ᾱ∗ = κ1 −Mκ

κ+ κ1
= (1 − ρ)M + 1

M + 1 + ρ
≈ 1 − ρ

for large M , whereas the remaining miners have a collective success probability ρ and
individual probability ρ/(M + 1).

If γ ≈ γ1, this simplifies further because ρ ≈ kc, i.e., the advantaged miner’s share of the
market is approximately their advantage 1 − kc. If the cost-advantaged miner is 10% efficient
(kc = 0.9), then ρ ≈ 0.9, which gives a probability around 10% for the cost-advantaged miner
to get the reward.

This analysis shows that the advantaged miner receives an disproportionately large share
of block rewards. But because this miner pays a lower cost per hash, the profit increases even
further. Both of these effects remain in the power utility setting of the next section and are
explored in more detail in Figure 7 and the accompanying text.

4.3 Power utility

We now consider wealth effects by endowing the individual miners with power utility
preferences (3.5). As discussed in the final paragraph of Section 4.1, we assume the cost-
advantaged miner is profit-maximizing, which keeps the problem tractable without the need
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Figure 6: The distribution of miners’ wealth at t = 0, 30, 45, with kc = 0.8 for the
distributions with an advantaged miner. The parameters are the same as in Figure 1.

to introduce an additional state variable. Therefore (4.1) becomes

sup
βt≥0

E
[∫ T

0
−c1βtdt+ r dN1

t

]
. (4.6)

Given ᾱ > 0, the maximizer in (4.6) satisfies the first-order condition

−c1 + rK(M + 1)ᾱt

(βt + (M + 1)ᾱt)2 = 0,

which yields the best response

β∗(t; ᾱ) =


− (M + 1)ᾱt +

√
rK(M + 1)ᾱt

c1
, if ᾱt <

rK
c1(M + 1) ,

0, otherwise.

(4.7)

Like in Section 3.2, we solve the model numerically. The numerical method correspondingly
follows the procedure in Section 2.6 with appropriate changes adding β.

Figure 6 shows the wealth distribution of individual miners when kc = 0.8 for t = 0, 30, 45.
Two time points from Figure 1 are also plotted, which show two subtle differences. Recall
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Figure 7: Effect of cost efficiency, kc. The first shows the advantaged miner’s probability
of getting the next reward, i.e., the expected share of total rewards. The last one shows
the advantaged miner’s expected instantaneous profits divided by the total instantaneous
profits of all miners. For both figures, t = 30. The parameters are the same as in
Figure 1.

from Section 3.2.1 and Figure 1 that the left peak of each curve is the accumulation of miners
at the point where mining is no longer optimal. Most clearly visible is the right-shift of
this peak, in the presence of an advantaged miner. This means that the minimum wealth
necessary for non-zero mining to be incentivized is greater with an advantaged miner, thus
increasing centralization. The other effect is the slightly slower dispersion of the distribution,
which is explained by the lower mining rate across the board as a result of hesitancy due to
the added competition from the advantaged miner. Nevertheless, the type of evolution in
Figure 1 is observable also in Figure 6.

The effect of varying the cost efficiency kc is plotted in Figure 7. Figure 7(a) shows the
advantaged miner’s probability of getting the next reward, which is also the share of the
expected instantaneous reward. Despite moving to power utility mining, the relationship
is almost identical to that found analytically with exponential utility in Section 4.2: The
hash rate share taken by the advantaged miner is approximately 1 − kc. We see that as
the cost efficiency moves from kc = 1.0 to 0.65, the advantaged miner’s hash rate increases
from around 1% to 35%. This is a strong effect, and hence the cost advantages could be one
explanatory factor for the concentration of mining power. A similar idea also appears in
(Arnosti & Weinberg, 2018). They suggest that if a miner’s cost is (e.g.) 10% lower than
those of other miners, then the miner must control at least 10% of the total mining power.
Alsabah and Capponi (2020) argue that miners invest in R&D which allows them to develop
more energy efficient mining equipment. Hence miners can have lower marginal cost and
contribute higher hash rates. As M = 1000, the advantaged miner contributes a somewhat
higher hash rate than the rest of the population—which is on the order of 1/M—even for
kc = 1. We attribute this small difference to the risk aversion, as these numbers are for
γ = 0.8 and γ1 = 0.

Figure 7(b) plots the share of total profits for the advantaged miner. At a 35% cost
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advantage, i.e., kc = 0.65, the advantaged miner reaps 93% of the total profits generated, and
86% of profits for kc = 0.75. This shows that most of the economic welfare in the system is
received by a miner with a cost advantage.

5 Conclusion and further research

This paper develops stochastic models for the mining of cryptocurrencies that implement
a proof-of-work protocol. As miners compete through their computation efforts—their
hash rates—a rational utility maximization framework is analyzed as a novel mean field
game of intensity control. Remarkably, the equilibrium is found explicitly for certain utility
functions—one of the very few explicit solutions of mean field games outside the linear
quadratic framework. In other cases, the equilibrium can be found numerically and efficiently
by methods described in this paper.

Our main finding is that, as a result of initial wealth heterogeneity among the miners,
more rewards tend to be collected by those who have more wealth, while miners with lesser
wealth may be disincentivized from participating in mining activity at all. This leads to a
feedback effect of greater wealth and more concentrated mining. Concentration goes against
the very fundamental principle of mining being decentralized, which is a requisite for the
security of the cryptocurrency.

Incorporating a player with even a slight cost-advantage into our game shows that they
become relatively dominant. This is consistent with how these professional miners with more
advanced equipment or access to cheaper electricity have come to account for a significant
share of mining power in recent years.

There are plenty of directions for future research that can build on the approach to
cryptocurrency mining presented in this paper. We present some preliminary findings on
three of these directions in the appendices, as we now describe.

At the end of 2010, the first mining pool was announced. Nowadays, most computational
power comes from mining pools that are controlled by a few companies (see Figure 5). For
instance, AntPool and BTC.com are run by Bitmain. Miners can join a pool, which collects
their computational power to do the mining. Once the pool gets a reward, it is shared among
the miners. Meanwhile, these companies also contribute a significant proportion of hash rates
to their own pools. Although pools are often public, meaning miners may participate and
receive a share of pool revenue, the pool operators control what block data (the ‘work’) is
processed by its participants. This means that a few entities account for selecting the block
data (transactions) processed by a large share of hash rates in the world. An initial discussion
of how our model can be adapted to incorporate mining pools is presented in Appendix D.

A notorious feature of cryptocurrencies, in particular bitcoin, is wild changes in their
prices, which can run to speculative highs followed by sudden crashes. In Appendix C, we
explore the effect of stochastic rewards, for instance due to price fluctuations, in an extension
of our model. In the case of exponential utility miners, we find miners react to the level but
not the volatility of prices.

We have assumed homogeneous costs and preferences in our model, which may be relaxed
as we demonstrate (for costs) in Appendix E. In general, costs would depend on miners’
geographic location, access to silicon and hardware, etc. Bill Tai of Hut 8 Mining Corp. has
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stated that big miners (like Bitfury) can buy at discount thanks to being able to “buy silicon
in large quantities and commit to the electricity grid in chunk sizes.”25 This suggests that
per unit costs should be smaller for large miners. Such concave costs would amplify the
preferential attachment effects we find already in the linear costs model. Another avenue for
further research is to include fixed costs of entering the mining game, as motivated in Garratt
and van Oordt (2020).

Appendix A Proofs

A.1 Proof of Lemma 2.1

Proof. For the finiteness, by Jensen’s inequality,

E[U(XT )|Xt = x] ≤ U(E[XT |Xt = x]) ≤ U(x+rE[NT −Nt|Xt = x]) ≤ U (x+ rKT ) < ∞.

For any x1 < x2, let α
i
t and X

i
t (i = 1, 2) denote the optimal hash rate and corresponding

wealth starting at time t with initial wealth xi. Consider the case where we start with x2.
We use x1 as the wealth in the mining and save x2 − x1. Then we use the hash rate α1

t . The
corresponding wealth process is denoted by X2,1

t . Thus we have X2,1
t ≥ x2 − x1 +X1

t > X1
t .

Thus,
v(t, x1) < E[U(X2,1

T )|X2,1
t = x2] ≤ v(t, x2).

A.2 Proof of Proposition 3.5

Since α can be chosen identically zero on [t, T ] and the optimal strategy does at least as
well as doing nothing, for any ε > 0, we have

v(t, ε) − v(t, 0)
ε

≥ U(ε) − U(0)
ε

ε→0−−→ ∞,

from the derivative of the power utility function (3.5). Hence, ∂xv(t, x) → ∞ as x → 0 and
consequently, ∆v/∂xv is arbitrarily small in some neighborhood of 0, because ∆v(t, 0) ≤
v(t, r) − v(t, 0) = v(t, r) < ∞. Thus, by (2.6), there exists a xoff(t) such that zero rate mining
is optimal for x ≤ xoff .

Appendix B Mean field games (of controls)

We here describe the ideas behind mean field games and the arguments leading to the
continuum limit. Most mean field games models exhibit interaction between the players
through their state. In contrast, the reward rate to each player in the proof-of-work mining
game depends only on the hash rate of the population. Consequently, the interaction between

25https://www.bloomberg.com/news/articles/2018-04-18/bitcoin-miners-facing-a-shakeout

-as-profitability-becomes-harder
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players is through their actions as opposed to their state. This is commonly referred to as
extended mean field games or mean field games of controls. Conceptually, the state and action
interaction types of mean field games are very similar, but the structure of the resulting
equations are very different.

Consider a game of N players, each (i ∈ 1, . . . , N) with control αi and state X i = X i,αi

described by the evolution

dX i
t = f

(
αi

t, X
i
t ,

N∑
j=1
αj

t/N
)

dt+ dW i
t , X i

0 = xi, (B.1)

where W i is a Brownian motion representing player i’s idiosyncratic noise (W i and W j are
independent for i 6= j). Given a strategy profile α−i = (α1, . . . , αi−1, αi+1, . . . , αN) of the

other players, player i is optimizing some quantity E[U(X i,αi

T )], and we assume that the
optimizer αi,∗ can be found in the class of Markovian controls, i.e., that it is a function of
player i’s state (for fixed α−i). In other words, we may write αi,∗

t = α∗(t,X i
t , α

−i
t ).

An equilibrium t 7→ αt = (α∗(t,X1
t , α

−1
t ), . . . , α∗(t,XN

t , α
−N
t )) of this form is characterized

by the property that for all i, t 7→ α∗(t,X i
t , α

−i
t ) is an optimizer to player i’s optimization

problem, i.e., no player has anything to gain from deviating. We will not delve into detail
about why these games become very difficult to solve, but the gist of it is that each player
must solve an HJB equation that depends on every other player’s solution, thus creating
a system of N coupled equations. The idea of mean field games enters to circumvent this
dimensionality issue.

The first step is to consider a sequence of games with increasingly many players. Each
additional player must be assigned an initial state (see state xi for player i in (B.1)). This is
done by sampling the initial states from a distribution (independent from W i) with density
m0. We now consider what happens to the problem in the limit N → ∞. Because the
probability of two players starting at the same state is zero, we may index each player by
their state xi instead of i. In the limiting problem we simply write x and remember that the
collection of initial states x is distributed according to m0. As time passes, the players’ states
evolve. We denote by m(t, ·) the density of players at time t.26

For any strategy profile α = (αx1
, . . . , αxN ), we consider the problem of player xi. The

first observation is that if player xi deviates from αxi
, the impact on the other players is of

order 1/N , due to the averaging effect in (B.1). In particular, as N → ∞, we see that the
effect of any one player on the others is vanishing, as

f
(
αxi

t , X
xi

t ,
N∑

j=1
αxj

t /N
)

−→ f
(
αxi

t , X
xi

,
∫
R
αxj

t m(t, xj) dxj
)
.

Hence, in the limit, player xi’s action and state alone do not impact the population average.
Moreover, the dependence of player xi on the population is only through a statistical property:
the mean. Dropping the superscript, we may thus consider the dynamics of player x given
the mean control ᾱ of the population:

dXx,αx = dXx
t = f(αx

t , X
x
t , ᾱt) dt+ dW x

t , Xx
0 = x.

26This density does depend on the actions, but for now we omit this in the notation.
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Player x seeks to optimize E[U(Xx
T )], given the (mean) strategy profile ᾱ. For any fixed ᾱ,

this is a standard control problem, and we again write the optimizer as a function of the
current state and the actions of the other players: α∗(t,Xx

t , ᾱt).
If every player chooses the action α∗

t = α∗(t,Xx
t , ᾱt), we denote bym(t, ·;α∗) = m(t, ·;α∗,m0)

the resulting density at time t. The process ᾱ is the equilibrium mean control if

ᾱt =
∫
R
α∗(t, x, ᾱt)m(t, x;α∗) dx. (B.2)

In other words, if all other players are using the strategy α∗, then no players can improve
their situation by deviating from this strategy.

Finally, given any process ᾱ and a strategy α(t, x) shared by all players, the density
m(t, ·;α) of the population can be shown to satisfy the Fokker–Planck equation

∂tm(t, x;α) − ∂x(f(t, α(t, x), x, ᾱ)m(t, x;α)) − 1
2∂xxm(t, x;α) = 0, m(0, ·, α) = m0. (B.3)

Furthermore, the value function v of each player’s optimization problem is characterized by
the HJB equation

∂tv + sup
α
f(t, α, x, ᾱ)∂xv + 1

2∂xxv = 0, v(T, ·) = U. (B.4)

To summarize: by considering the limit as N → ∞, the system of N coupled HJB equations
reduces to the two coupled equations (B.3) and (B.4) along with the equilibrium fixed point
condition (B.2). Although the structure of this smaller system is still mathematically very
complex, it is often amenable to numerical computations, in contrast to the computational
intractability of the N -player system.

Appendix C Stochastic reward & exponential utility

We consider the base model of Section 2, but when the reward r is stochastically varying
over time, driven, for instance, by the price of bitcoin. Similar to Section 3.1, we can solve
analytically for the equilibrium when the miners have exponential utility. A miner’s wealth
process X = (Xt)t≥t0 follows: dXt = −cαt dt + rt dNt, where now r > 0 is modeled as a
Markov process with infinitesimal generator Lr, whose increments are independent of the
contemporaneous increments dN . For instance, if r is fit to a geometric Brownian motion
model: drt = µrt dt + σrt dWt, where W is an independent Brownian motion and σ is the
reward volatility, then Lr = 1

2c
2
1r

2∂rr + c0r∂r.
Consider exponential utility miners, i.e., U(x) := − 1

γ
e−γx. Then the value function of an

individual miner, which is a function of t, x, and r, is defined by

v(t, x, r; ᾱ) = sup
α≥0

E[U(XT )|Xt = x, rt = r].

The associated HJB equation is

∂tv + Lrv + sup
α≥0

(
−cα∂xv + Kα

(α +Mᾱt(r))
∆v

)
= 0,
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with terminal condition v(T, x, r) = U(x), and where ∆v = v(t, x+ r, r; ᾱ) − v(t, x, r; ᾱ).
Adapting the analysis of Section 2.4, in equilibrium the optimal hash rate α∗ and ᾱ∗ are

related by

α∗(t, x, r; ᾱ∗) = −Mᾱ∗
t (r) +

√√√√KMᾱ∗
t (r)∆v(t, x, r; ᾱ∗)

c∂xv(t, x, r; ᾱ∗) ,

and the HJB equation can be written as:

∂tv + Lrv +
(√

Mcᾱ∗
t (r)∂xv −

√
K∆v

)2
= 0.

With exponential utility miners, we have v(T, x, r) = U(x) := − 1
γ
e−γx. With the ansatz

v(t, x, r) = g(t, r)U(x), we find that g must solve the linear PDE problem

∂tg + Lrg − γ
(√

Mcᾱ∗
t (r) −

√
Kw(r; γ)

)2
g = 0, g(T, r) = 1,

where w was defined in (3.2). The ansatz implies that ∆v/∂xv = w(r; γ) does not depend on
x. Then, as in the proof of Proposition 3.1, all miners are active and so

ᾱ∗
t (r) = KM

c(1 +M)2w(r; γ).

This yields the linear PDE problem for g:

∂tg + Lrg − γ
Kw(r; γ)
(1 +M)2 g = 0,

with terminal condition g(T, r) = 1. The solution can be written as a Feynman–Kac
expectation:

g(t, r) = E

exp
(

−γ
∫ T

t

Kw(rs; γ)
(1 +M)2 ds

)
| rt = r

 ,
but is not needed for the optimal mining rate, which is given by

α∗(t, x, r; ᾱ∗) ≡ ᾱ∗
t (r) ≡ KM

c(1 +M)2w(r; γ). (C.1)

The individual reward rate is λt ≡ 1
D(1+M) , which does not depend on r. So, even as the price

appreciates or falls, the hash rates go up and down respectively, following the formula (C.1),
but the individual rewards rates remain the same. The reward affects the value function as
higher reward gives higher reward, but reward volatility σ does not enter into the equilibrium
hash rates (C.1), which are simply reactive to the present reward.

Appendix D Mining pools

An important property of mining pools is their use for risk sharing. Miners may join
pools to reduce risk by sharing rewards among all pool contributors, in some proportion to
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their contribution. Each miner thus receives smaller but more frequent rewards,27 thereby
reducing the risk associated with reward arrival. In fact, a miner may join multiple pools and
contribute hashes to the different pools. This enables further risk reduction.

However, pool miners no longer have the power to select which transactions to process as
part of their blocks.28 Instead the block data—the ‘work’—is handed down to them by pool
operators. So even if the risk sharing mechanism of mining pools improves the resilience of
the blockchain to outside attacks, it does come at a cost to decentralization, and thus lesser
resilience to malicious behavior among its participants.

We here consider a model with pools and miners who desire the risk sharing offered by
pools. The decision making problem of pools becomes a problem very similar to that studied
in the paper, suggesting that similar competition and centralization effects would appear on
a pool level.

There exists a variety of reward distribution schemes, fee structures, and other features
that differentiate pools. To not overcomplicate the model, we consider pools that distribute
rewards to their contributors proportional to their hash rate contribution.29 We also assume
that all pools are public, i.e., anybody may join them, and that all miners who are not
operating a pool distribute their contributions across pools to reduce risk. There are thus
two groups of miners: pool operators and individual miners.

The assumptions that all pools are public and that everybody mines for pools allows
individual miners perfect risk sharing, except for the inherent randomness of the arrival of
the next block. This is accomplished by mining for each pool in proportion to the pool’s
total contribution to the global hash rate. We denote by αind the aggregate hash rate of the
individual miners, and by αp the hash rate of the operator of pool p = 1, . . . , P . The hash
rate contribution of individual miners to pool p is then

αind αp∑P
p′=1 α

p′ .

Given the individual miners’ contributions to the pool, each pool’s hash rate is

αp + αind αp∑P
p′=1 α

p′ = αp
(

1 + αind 1∑P
p′=1 α

p′

)
,

and the aggregate is
P∑

p=1
αp
(

1 + αind 1∑P
p′=1 α

p′

)
.

A pool’s block arrival rate is (proportional to) the ratio of the two which, after simplification,
is

αp

(
1 + αind 1∑P

p′=1 αp′

)
∑P

p′=1 α
p′(1 + αind 1∑P

p′=1 αp′ )
= αp∑P

p′=1 α
p′ = αp

αp +∑P
p′=1
p′ 6=p

αp′ .

27Some pools even employ a system in which members are paid for hash contributions regardless of reward
arrival, thus moving all risk to the pool. Such pools charge higher fees to offset this risk. As mentioned
towards the end of this section, such a structure fits well into the analysis in the main text.

28The decentralized mining pool P2Pool is an example of an exception to this.
29More commonly, pools use a ‘Pay Per Last N Shares’ (PPLNS) system that discourages contributing to

multiple pools. Such a system would see more centralization than the model set up here.
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Hence, when individual miners strive for risk sharing, the reward arrival for pools has the
same structure as without pools.

Suppose a pool charges a fee ψr when a block is mined. The pool’s reward is then

r(share in pool) + rψ(share of participants) = r
αp

αp + αind αp∑P

p′=1 αp′

+ rψ

αind αp∑P

p′=1 αp′

αp + αind αp∑P

p′=1 αp′

= r
(

1 + (ψ − 1) αind∑P
p′=1 α

p′ + αind

)
.

This reflects that the pool operator must share the reward with participants in proportion to
the relative hash contributions.

We thus have a model for the pool manager’s wealth as

dXp
t = −cαp

t dt+ r̃p
t dNp

t ,

where Np
t has intensity

λp = αp
t

αp
t +∑P

p′=1
p′ 6=p

αp′

t

≈ αp
t

αp
t + (P − 1)ᾱt

and

r̃p
t = r

(
1 + (ψ − 1) αind

t∑P
p′=1 α

p′

t + αind
t

)
≈ r

(
1 + (ψ − 1) αind

t

αp
t + (P − 1)ᾱt + αind

t

)
,

where ᾱ is the continuum approximation of the average pool manager hash rate.
The continuum mean field game version is to consider a representative pool manager with

initial wealth X0 = x and hash rate αt, and wealth evolving according to

dXt = −cαt dt+ r̃t dNt, λt = αt

αt + (P − 1)ᾱt

, r̃t = r
(

1 + (ψ− 1) αind
t

αt + (P − 1)ᾱt + αind
t

)
.

(D.1)
The pool game (D.1) differs slightly from our model in Section 2.3, where r is constant.
However, because in the expression for r̃, α only appears in the denominator, along with
both αind and all other pool operators’ hash rates, the representative operator has very little
control over the reward size. Thus, the choice of α primarily impacts the reward arrival rate
λ, where it appears also in the numerator. In other words, this model is very similar to that
studied in this paper and can be treated in the same way.

The similarity of this model to that without pools suggests the competition and centraliza-
tion would be similar among pool operators after taking pools into account. In particular, the
previous results suggest the emergence of dominant pools, which we also observe in practice.
This section assumes a proportional distribution of rewards to participants. If the pools
instead employ a pay per share (PPS) system, which means miners receive a guaranteed
payment per hash, pools essentially buy hashes at a cost equal to that payment. This cost
can be interpreted as c in our model, which leads to a game even more similar to that in the
main text.

Of course, a more complete model of pools might include competition in setting the fee ψ.
For further discussion and analysis of pooled mining in a static setting, we refer to Cong et
al. (2021).
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Appendix E Cost heterogeneity

Recall that in the model of Section 3.1, when the individual miners have CARA utility
∆v/∂xv is constant. Consequently, α∗ in (2.6) becomes

α∗ =


−Mᾱ +

√
w(r; γ)KMᾱ

c
, if ᾱ <

w(r; γ)K
cM

,

0, otherwise,

(E.1)

with w defined in (3.2), which is independent of wealth.
Suppose now that the continuum of miners have heterogeneous costs. In Section 2.4

miners were indexed by their wealth x, whereas here the miners are characterized by their
wealth x and the parameter c indexing their cost. Because of the wealth-independence of
the optimal hash rates described above, we may consider only c when indexing the miners.
For simplicity, consider costs c in some bounded interval (c0, c1) ⊂ R+. Denote by fc(c) the
associated density of miners. Then, the individual miners hash at rates (E.1). We use the
notation α∗(c) to stress the dependence on c.

We see from (E.1) that a miner is active if its cost

c <
w(r; γ)K
ᾱM

.

Define cmax = min{w(r;γ)K
ᾱM

, c1}. By this definition and (E.1), miners with costs c < cmax
are active, while the rest do not mine. Then, averaging (E.1) over active miners, i.e., over
c < cmax with respect to the density fc(c), leads to the following equation for ᾱ:

ᾱ =
∫

c<cmax

−Mᾱ +
√
w(r; γ)KMᾱ

c

 fc(c) dc. (E.2)

In a case where all miners are active, i.e., cmax = c1, we can solve (E.2) to find

ᾱ = w(r; γ)KM
c̄(M + 1)2 .

where c̄ is the inverse square root averaged cost

1√
c̄

=
∫ c1

c0

1√
c
fc(c) dc.

Again using (E.1), the condition for a miner to be active is therefore

c <

(
M + 1
M

)2

c̄,

and so costs have to be increasingly homogeneous for larger M for everyone to be active.
The cost distribution may have a small tail to the left, but on the right miners would not
participate. This suggests that homogeneous costs, possibly with few cost-advantaged miners,
is the right place to start, as we did in this paper.
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