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ABSTRACT
Accelerated share repurchases (ASRs) are a type of stock buyback wherein the re-
purchasing firm contracts a financial intermediary to acquire the shares on its behalf.
The intermediary purchases the shares from the open market and is compensated by
the firm according to the average of the stock price over the repurchasing interval,
whose end can be chosen by the intermediary. Hence, the intermediary needs to
decide both how to minimize the cost of acquiring the shares, and when to exercise
its contract to maximize its payment. Studies of ASRs typically assume a constant
volatility, but the longer time horizon of ASRs, on the order of months, indicates
that the variation of the volatility should be considered. We analyze the optimal
strategy of the intermediary within the continuous-time framework of the Heston
model for the evolution of the stock price and volatility, which is described by a
free-boundary problem which we derive here. To solve this system numerically, we
make use of deep learning. Through simulations, we find that the intermediary can
acquire shares at lower cost and lower risk if it takes into account the stochasticity
of the volatility.
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1. Introduction

A stock buyback refers to when a firm purchases back its own shares. Firms choose to
engage in buybacks for various reasons including signalling positive prospects (Vermae-
len 1984), deterring takeovers (Sinha 1991), or to reduce free cash flow (Jensen 1986).
Since the passage by the SEC of safe harbor rules in 1982, allowing stock buybacks
with lesser regulatory scrutiny, stock buybacks have become increasingly popular, with
companies announcing buybacks worth over a trillion dollars in 2018 (Palladino 2020).

One method to execute a stock buyback is an accelerated share repurchase (ASR),
where the firm uses an intermediary, like an investment bank, to acquire shares on its
behalf. ASRs have become an increasingly popular way to conduct stock buybacks,
becoming the second most popular method after Open Market Repurchases (King and
Teague 2021). There are several advantages for a firm to repurchase its shares with
an ASR, as compared to other methods. Most importantly, an ASR grants the firm
credibility that it will actually complete the announced repurchase, since the shares
are delivered immediately (Bargeron, Kulchania, and Thomas 2011). An ASR also
transfers the risk of the stock buyback from the firm to the intermediary, since it is
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the intermediary which has to actually repurchase the shares.
In this paper, we analyze an ASR contract with early exercise, and compute the

optimal way for the intermediary to repurchase shares. To facilitate this, it is important
to understand the specific features of ASRs, as well as what distinguishes them from
other optimal execution problems such as stock liquidation. An ASR has the following
steps: (i) The firm immediately receives the shares it wishes to repurchase from an
intermediary, generally an investment bank, in exchange for a payment equal to the
number of shares times the current price per share; the intermediary obtains these
shares by borrowing from other financial institutions or traders; (ii) the intermediary
settles its short position by repurchasing shares from the open market up to some
specified maturity date; (iii) at any time up to this maturity date, the intermediary can
exercise early; (iv) when the intermediary exercises (or the maturity date is reached),
if the average of the stock price from the starting date to the exercise date is greater
than the previous price per share, than the firm will compensate the intermediary the
difference; if the average is lower then the intermediary will instead pay the firm the
difference.

There are two main considerations for the intermediary in deciding how to repur-
chase shares from the market. Firstly, the intermediary wants to repurchase shares
from the market at the lowest cost. This is essentially an optimal execution problem.
In this type of problem, the seller wants to liquidate their position, balancing the
incentive to trade quickly in order to minimize the risk of price uncertainty with the
incentive to trade slowly in order to minimize the price impact of limited liquidity.
This type of optimal selling was first explored in Almgren and Chriss (2001). There
is a large literature on optimal execution. In Guéant (2014) the issue of block trading
under exponential utility is studied. Optimal execution is extended to a basket with
multiple assets in Schied, Schöneborn, and Tehranchi (2010). More complex models of
price impact have also been studied, like Obizhaeva and Wang (2013) which explores
optimal execution under dynamic supply and demand.

Secondly, the payoff is given by the average of the stock price up until the exercise
time, making it an Asian Option with an American exercise provision. Several papers
consider pricing exotic options with optimal stopping, all in a geometric Brownian
motion/Black-Scholes model. In Shepp and Shiryaev (1993), a perpetual lookback
option with American exercise, called a Russian option, is priced. The fair price of
an option whose payoff is determined by the integral of the stock price up until the
chosen exercise time is studied in Kramkov and Mordecki (1995). Most relevant for
us is Adachi (2003) where an Asian option with infinite time horizon and American
exercise time is considered, and the option price was found to solve a free boundary
problem.

ASRs present a mixture of the incentives of optimal execution and those of optimal
stopping with a complicated payout structure. On one hand, the intermediary wants to
purchase the shares cheaply to minimize costs. On the other hand, the intermediary
wants to be able to take advantage of the freedom to choose a stopping time by
exercising the option when the average of stock price is relatively large to maximize
its payout.

There is a small but growing literature on ASRs. In Guéant, Pu, and Royer (2015),
a discrete space and time model of an ASR is developed. Sensitivity to risk is imple-
mented by way of an exponential utility of the cumulative wealth. In turn, they are
able to reduce the dimensionality of the problem and determine the optimal solution
by solving the associated Bellman equations recursively, which can be done with a
tree-based method. This analysis is extended in Guéant (2017) from the case of an
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ASR with a fixed number of shares to the case of an ASR with fixed notional. A
different type of dimensionality reduction is required, giving a more complicated ap-
proximation to the value function. Orbe (2018) analyzes a similar model of an ASR,
but with the addition of a lookback option. In Guéant, Manziuk, and Pu (2020) neu-
ral networks are introduced to the problem. In contrast to other numerical methods,
neural networks are able to handle more complicated dynamics and larger problems
without succumbing to the curse of dimensionality.

Most important for our paper is Jaimungal, Kinzebulatov, and Rubisov (2017),
which we extend to stochastic volatility. There, a continuous time model is consid-
ered with constant execution costs, a quadratic penalty on unpurchased shares, and
a quadratic penalty on the remaining shares to be purchased when the option is
exercised. In particular, they demonstrate that the problem can be modeled by a
quasi-variational inequality whose dimension can be reduced. Subsequently, the opti-
mal strategy of the intermediary, as well as the exercise time, depends on the ratio
between the stock price and its average up to that time.

However, previous studies share the limitation that they only consider the case where
the volatility of the stock price is constant. ASR contracts occur over longer periods
than standard optimal execution problems, on the scale of weeks and months rather
than hours and days. Hence, it is more realistic to incorporate stochastic volatility. It is
well known that in the context of the Black-Scholes model, the assumption of constant
volatility is contradicted by observed data. Indeed, Black and Scholes themselves noted
when empirically evaluating their model that “there is evidence of non-stationarity in
the variance” (Black and Scholes 1972). The same conclusion was found in Canina and
Figlewski (1993), where implied volatility calculated from Black-Scholes was found to
depart systematically from real-world volatility.

While ignored in the context of ASRs, optimal execution with stochastic volatility
has been studied. A continuous time model with stochastic volatility and liquidity
is looked at in Almgren (2012), while Cheridito and Sepin (2014) examines optimal
liquidation in discrete time with stochastic volatility and liquidity. Optimal execution
in a highly volatile market is explored in Criscuolo and Waelbroeck (2014). Our work
seeks to study the implications of stochastic volatility when combined with the novel
options pricing introduced by the ASR.

This paper is organized as follows. Section 2 details our model of the ASR and
stochastic volatility. In Section 3, we solve the European version of the problem, where
the intermediary can only exercise their option at the end of the time horizon. In
Section 4, we examine the full American version, with variable exercise time permitted.
To solve the American problem, we use deep learning, which is detailed in Section 5,
along with a discussion of the results. Our numerical method is relatively flexible, so
in Section 6 we solve the higher dimensional problem of an ASR with a fixed notional.
Finally, in Section 7 we explore ASRs where the stock is driven by a local volatility
model rather than stochastic volatility.

2. Model

In this section, we present our model for the intermediary to repurchase shares in an
ASR. We consider a stock whose price S with expected growth rate µ and volatility y
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which is given by the Heston model (Heston 1993)

dSt = µSt dt+
√
ytSt dW

(1)
t (1)

dyt = γ(m− yt) dt+ ψ
√
yt dW

(2)
t

where W (1),W (2) are standard Brownian motions whose increments are correlated as
d⟨W (1),W (2)⟩ = ρ dt. The square volatility y has long run mean m > 0 and reverts
to the mean according to the rate γ > 0; ψ > 0 scales the volatility of the volatility,
and so long as the Feller condition ψ2 < 2γm is satisfied, the square volatility y will
remain strictly positive almost surely.

Further, we assume that there is a market impact on trading, so that a faster rate
of repurchase requires the intermediary to spend more. The execution price of a trade
is given by St + aStνt, where a > 0 is a parameter that specifies the strength of the
market impact and νt is the intermediary’s rate of trading the stock.

We also define the process At as the continuous average of the stock price up to
time t:

At =
1

t

∫ t

0
Su du.

The task of the intermediary is to acquire n total shares over the time interval [0, T ].
If it achieves this target and exercises its option at a time τ ≤ T , it is compensated
at the average stock price over [0, τ); in other words it receives nAτ .

Let qt ≥ 0 denote the remaining inventory yet to be acquired at time t:

qt = n−
∫ t

0
νu du.

Following Jaimungal, Kinzebulatov, and Rubisov (2017), we assume that once the
option is executed at time τ , the remaining qτ shares which need to be repurchased
are purchased on the interval [τ, τ + ϵ]. While the payout of nAτ is not affected by
repurchases after time τ , we strictly enforce that all outstanding shares must be re-
purchased by time τ + ϵ. The optimal strategy to repurchase these shares with this
constraint is detailed in Appendix A. The cumulative cost of acquiring the shares is
given by a quadratic penalty function

ℓ(q, S) = S(α2q
2 + α1q),

for some α1, α2 > 0. Then the profit or loss received by the intermediary for executing
the option at time τ ∈ [0, T ] is

nAτ − ℓ(qτ , Sτ )−
∫ τ

0
νu(Su + aSuνu) du.

Note that there may be an additional constant fee from the repurchasing firm to the
intermediary or vice versa; we ignore this here since it does not affect the intermediary’s
repurchasing strategy.

We will also introduce running penalties to model the intermediary’s urgency and
aversion to risk. First, we introduce a running penalty proportional to Sq2, the stock
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price times the remaining shares to be repurchased squared, as in Jaimungal, Kinzebu-
latov, and Rubisov (2017). This can be viewed both as a penalty to encourage urgency
(especially when the stock price is high), and as a way to express uncertainty about
the model (Cartea, Donnelly, and Jaimungal 2017). Using a parameter ϕ to control the
strength of this penalty, the full penalty is given by ϕSq2. Further discussion of this
penalty is in Appendix B. However, since we want to incorporate stochastic volatil-
ity, this is not sufficient (for example the optimal strategy in Section 3 of Jaimungal,
Kinzebulatov, and Rubisov (2017) is wholly independent of the constant volatility
level).

In order to guarantee that the volatility plays a role in the trading strategy, we also
introduce a penalty of the type in Gatheral and Schied (2011). To derive this additional
penalty, following Fischer (2018), first note that the SDE for the stock price has the
following (strong) solution:

St = S0 exp

∫ t

0

(
µ− ys

2

)
ds+

∫ t

0

√
ys dW

(1)
s .

We consider a risk measure R which is positive homogeneous, meaning that for scalar
c > 0 and random variable X, R(cX) = cR(X). For a risk measure of this type, the
risk of the profit and loss over a horizon t0 > 0 is

R(qt(St+t0 − St)) = qtStR

(
exp

∫ t+t0

t

(
µ− ys

2

)
ds+

∫ t+t0

t

√
ys dW

(1)
s − 1

)
.

Note that if t0 << 1 then

R

(
exp

∫ t+t0

t

(
µ− ys

2

)
ds+

∫ t+t0

t

√
ys dW

(1)
s − 1

)
is approximately a non-negative function of yt alone. Hence, we can approximate the
risk of the profit and loss by qtStλ(yt) where λ is some non-negative function of yt.
Note that the volatility y is a mean-reverting process, and hence y generally stays in
a small interval around its mean m. Since a function like λ can be reasonably well
approximated by a linear function on this small interval, for simplicity’s sake we will
usually use λ(y) = θy + κ for scalars θ, κ ≥ 0. This penalty acts to encourage rapid
liquidation (especially with large stock price or large volatility), with θ determining
the sensitivity to the volatility.

The full value function is given by

H(t, S,A, q, y) = sup
ν≥0,τ≤T

Et,S,A,q,y
[
nAτ − ℓ(qτ , Sτ ) (2)

−
∫ τ

t
[νu(Su + aSuνu) + ϕSuq

2
u + λ(yu)Suqu] du

]
,

where we use the notation Et,S,A,q,y[·] = E[· | St = S,At = A, qt = q, yt = y]. The
intermediary chooses an optimal strategy ν and an exercise time τ to maximize the
expected returns, subject to the running penalties we discussed before.
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3. Stochastic Volatility Without Early Termination

We begin by imposing the requirement that the intermediary cannot exercise their
option early. This is equivalent to fixing τ = T . The value function is

H(t, S,A, q, y) = sup
ν≥0

Et,S,A,q,y
[
nAT − ℓ(qT , ST )

−
∫ T

t
[νu(Su + aSuνu) + ϕSuq

2
u + λ(yu)Suqu] du

]
.

It is convenient to introduce the infinitesimal generator LS,y of the Markov process
(S, Y ) in (1):

LS,y =
1

2
yS2∂SS + µS∂S + ρψSy∂Sy +

1

2
ψ2y∂yy + γ(m− y)∂y.

Dynamic programming arguments tell us that the value function solves the following
PDE problem:

∂tH + LS,yH +
S −A

t
∂AH − ϕSq2 − λ(y)Sq + sup

ν≥0
{−ν∂qH − (aSν + S)ν} = 0(3)

H(T, S,A, q, y) = nA− ℓ(q, S),

where t ∈ [0, T ];A,S ∈ [0,∞); q ∈ [0, n]; y ∈ (0,∞). The first order condition to
optimize over ν leads to the optimal feedback control

ν =
1

2aS
(−∂qH − S)1{q>0}. (4)

While we primarily rely on the price impact a to constrain the trading rate, some
contracts might impose restrictions on the maximum trading rate permitted. It is
straightforward to incorporate this by trading according to min(ν, νmax), where νmax

is the maximum permitted trading rate.
Substituting ν gives

∂tH + LS,yH +
S −A

t
∂AH − ϕSq2 − λ(y)Sq +

1

4aS
(∂qH + S)2 = 0

H(T, S,A, q, y) = nA− ℓ(q, S).

The following change of variables in terms of the ratio of the average and the stock
price reduces the dimension of the problem. Let H(t, S,A, q, y) = Sh(t, z, q, y), where
z = A/S. Then the reduced PDE is given by

∂th+ µh+ Lz,yh+

(
1− z

t
− µz

)
∂zh− ϕq2 − λ(y)q +

1

4a
(∂qh+ 1)2 = 0, (5)

h(T, z, q, y) = nz − α2q
2 − α1q,
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where we define

Lz,y =
1

2
yz2∂zz + [γm+ (ρψ − γ)y]∂y +

1

2
ψ2y∂yyh− ρψyz∂zy.

For affine λ(y) = θy + κ, motivated above, the polynomial ansatz

h(t, z, q, y) = f(t, z)− v(t)q2 +D(t)yq + F (t)q +G(t)y2 + J(t)y +K(t) (6)

gives an explicit solution. We define β =
√
a2µ2 + 4aϕ, and r1,2 as the roots of the

quadratic equation v2 − aµv − aϕ = 0, namely r1,2 =
1
2(aµ± β).

Lemma 3.1. The solution to the PDE problem (3) is given by

H(t, S,A, q, y) =
n

T

(
tA+ S

eµ(T−t) − 1

µ

)
(7)

+ S
{
−v(t)q2 + [D(t)y + F (t)]q +G(t)y2 + J(t)y +K(t)

}
,

where

v(t) =

{
r1−Q(t)r2
1−Q(t) , Q(t) = α2−r1

α2−r2 e
− β

a
(T−t) ϕ ̸= (α2

2/a)− µα2

α2 ϕ = (α2
2/a)− µα2,

(8)

and D,F,G, J,K are solutions of linear ODEs given in the proof. The optimal acqui-
sition rate is given by

ν∗ =

[
q

a
v(t)− D(t)y + F (t) + 1

2a

]
1{q>0}.

Proof. If we substitute (6) into (5), and group all terms which are dependent on z
we get the following PDE:

ft + µf +
1

2
yz2fzz +

(
1− z

t
− µz

)
fz = 0, f(T, z) = nz,

which has unique solution

f(t, z) =
n

T

(
tz +

eµ(T−t) − 1

µ

)
.

By grouping all terms of order q2 we obtain the ODE

vt + µv + ϕ− 1

a
v2 = 0, v(T ) = α2

which is solved by (8). Note that the second case there includes the edge cases α2 = r1,2.
Finally, if we group the terms of order yq, q, y2, y, as well as constant terms, we derive
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the following linear ODEs:

Dt +
(
µ+ ρψ − γ − v

a

)
D = θ, D(T ) = 0

Ft +
(
µ− v

a

)
F = κ− γmD +

v

a
, F (T ) = −1

Gt + (µ+ 2(ρψ − γ))G = −D
2

4a
, G(T ) = 0

Jt + (µ+ (ρψ − γ)) J = −[2γm+ ψ2]G− 1

2a
D(F + 1), J(T ) = 0

Kt + µK = −γmJ − 1

4a
(F + 1)2, K(T ) = 0.

Performing the change of variables z = A/S and H(t, S,A, q, y) = Sh(t, z, q, y) gives
(7). Finally, we can derive the optimal acquisition rate by substituting H into our
formula for the optimal control (4):

ν∗ =
1

2aS
(−∂qH − S)1{q>0} =

[
q

a
v(t)− D(t)y + F (t) + 1

2a

]
1{q>0}.

The linear ODEs can be solved explicitly, but we omit their explicit solutions for
brevity.

Figure 1 plots some sample paths of the ratio A/S, the trading rate ν, the volatility
y, and the amount of shares to repurchase q, as well as plotting v(t), D(t), F (t). We
can see that both D and F are negative functions which encourage the intermediary
to trade more rapidly. D is scaled by the volatility in the formula for ν, and the effect
of this is to encourage faster trading when volatility is high. We can see this in the
sample paths where the blue and green curves initially have a higher trading rate since
they begin with a higher volatility, and accordingly they finish repurchasing the shares
earlier. On the other hand, the orange curve starts with noticeably lower volatility,
and hence it has a lower trading rate and finishes acquiring shares later. It is also
notable that the ratio of A/S has no effect on trading, since the intermediary cannot
exercise early to take advantage of a high A/S.

4. ASR With Early Termination

We now enable the intermediary to exercise early. We first analyze the case where
there are no shares to repurchase before considering the full problem.

4.1. American-Asian Option

To analyze the case where there are no shares to repurchase (i.e. q = 0), we follow
Appendix B of Jaimungal, Kinzebulatov, and Rubisov (2017). When there are no
shares to repurchase, the only decision for the intermediary to make is the time to
exercise. Hence, we consider an American option which pays the average of the stock
price up to the exercise time (i.e. an option that pays Aτ when exercised at time τ).
Define p(t, S,A, y) to be the optimal expected payoff at time t of this option given
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Figure 1. The top four plots are sample paths of ASR without early exercise, showing the ratio of the
average process to the stock price At/St, the trading rate νt, the volatility yt, and the shares remaining
to purchase qt. The fifth plot shows v(t), D(t), F (t) in red, purple and yellow respectively. Parameters are

a = 0.005, ϕ = 0.5, α1 = 1.00, α2 = 1.85, ρ = −0.7, γ = 1,m = 0.8, κ = 0.1, ψ = 1, θ = 4, n = 1, T = 0.083.
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that St = S,At = A, yt = y (where St, At, yt are the same stock price, averaging, and
volatility processes from before):

p(t, S,A, y) = sup
τ≤T

Et,S,A,y [Aτ ] .

Then dynamic programming suggests that

p(t, S,A, y) ≥ A

∂tp+ LS,yp+
S −A

t
∂Ap ≤ 0,

with terminal condition p(T, S,A, y) = A and with equality in at least one of the
inequalities at all times.

We can substitute in the ansatz p(t, S,A, y) = Sw(t, z, y) where z = A/S to obtain

w(t, z, y) ≥ z

∂tw + µw + Lz,yw +

(
1− z

t
− µz

)
∂zw ≤ 0,

with terminal condition w(T, z, y) = z. We’ll see in the next subsection that we need
w(t, z, y) to solve the full problem. Hence, we begin by determining appropriate bound-
ary conditions and characterizing w(t, z, y) in terms of a free boundary problem which
we can solve numerically.

To begin, we have 0 < t < T and a terminal condition w(T, z, y) = z since the
option must be exercised by time T . We truncate z to fall in the interval [z, z] where
z, z is sufficiently small (respectively large) enough. If z = A/S is large, this indicates
that the stock price has fallen, and hence that the option should be exercised before
the average drops as well. It follows that the option should be exercised immediately,
giving w(t, z, y) = z.

On the other hand, if A/S is small, this indicates that the stock price has surged, and
so we should wait to exercise until the average catches up with the stock price, which
will increase the value of A/S. We set a reflecting boundary condition ∂zw(t, z, y) = 0.

Finally, since we choose the parameters of the volatility process to obey the Feller
condition, our volatility y is always positive and so it generally falls in an interval
(0, y] where y is sufficiently large. Since the volatility y is mean-reverting, we choose
reflecting boundary conditions at both boundaries so that ∂yw(t, z, 0) = ∂yw(t, z, y) =
0.

The dimensionally reduced QVI is characterized by a free boundary problem, where
the intermediary should exercise early when z = A/S is sufficiently large. The free
boundary z∗(t, y) divides the domain into portions so that the continuation region,
stopping region, and exercise boundaries are given by the following sets respectively:

{(t, S,A, y) : p(t, S,A, y) > A} = {(t, S,A, y) : A/S < z∗(t, y)}
{(t, S,A, y) : p(t, S,A, y) < A} = {(t, S,A, y) : A/S > z∗(t, y)}
{(t, S,A, y) : p(t, S,A, y) = A} = {(t, S,A, y) : A/S = z∗(t, y)}.
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The optimal stopping time τ∗ is then given by

τ∗ = inf{t : At/St ≥ min(z, z∗(t, yt)} ∧ T.

4.2. Full Problem

We now consider the full problem with the intermediary permitted to exercise early.
The associated value function for the problem is given by (2). Dynamic programming
arguments suggest that the value function satisfies the following QVI in the viscosity
sense:

min{−∂tH − LS,yH − S −A

t
∂AH + ϕSq2 + λ(y)Sq − 1

4aS
(∂qH + S)2,

H(t, S,A, q, y)− nA+ ℓ(q, S)} = 0,

with terminal condition H(T, S,A, q, y) = nA − ℓ(q, S). Similar to the case without
early exercise, we can substitute the ansatz

H(t, S,A, q, y) = Sh(t, z, q, y), z = A/S.

Then

min{−∂th− µh− Lz,yh−
(
1− z

t
− µz

)
∂zh+ ϕq2 + λ(y)q − 1

4a
(∂qh+ 1)2,

h(t, z, q, y)− nz + α2q
2 + α1q} = 0.

We next consider the appropriate domain and associated boundary conditions. The
boundaries for z, y are essentially the same as for the American-Asian option. To begin,
t ∈ [0, T ] and the terminal condition is given by

h(T, z, q, y) = nz − α2q
2 − α1q

since the intermediary must exercise at time T . Again z ∈ [z, z] and if z = A/S is large,
this indicates that the stock price has fallen, and corresponds to a large payoff for the
intermediary. It follows that the intermediary should exercise immediately, giving

h(t, z, q, y) = nz − α2q
2 − α1q.

If A/S is small, this indicates that the intermediary should wait to exercise until the
average catches up with the stock price, which will increase the value of A/S. We set
a reflecting boundary condition ∂zh(t, z, q, y) = 0.

Unlike the American-Asian option, we also need a boundary for our inventory q,
which falls in the interval [0, n]. At the boundary q = 0 the intermediary only needs
to decide the best time to exercise in order to receive a payoff of n American-Asian
options. This exactly corresponds to the case discussed in Section 4.1 so the appropriate
boundary condition is h(t, z, 0, y) = nw(t, z, y).

Finally, since the volatility y is mean-reverting, we again choose reflecting boundary
conditions at both boundaries so that ∂yh(t, z, q, 0) = ∂yh(t, z, q, y) = 0.

The dimensionally reduced QVI is characterized by a free boundary problem, where
the intermediary should exercise early when z = A/S is sufficiently large. The free
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boundary z∗(t, q, y) divides the domain into portions so that the continuation region,
stopping region, and exercise boundaries are given by the following sets respectively:

{(t, S,A, q, y) : H(t, S,A, q, y) > nA− ℓ(q, S)} = {(t, S,A, q, y) : A/S < z∗(t, q, y)}
{(t, S,A, q, y) : H(t, S,A, q, y) < nA− ℓ(q, S)} = {(t, S,A, q, y) : A/S > z∗(t, q, y)}
{(t, S,A, q, y) : H(t, S,A, q, y) = nA− ℓ(q, S)} = {(t, S,A, q, y) : A/S = z∗(t, q, y)}.

The optimal stopping time τ∗ is then given by

τ∗ = inf{t : At/St ≥ min(z, z∗(t, qt, yt)} ∧ T.

Hence, the intermediary should trade according to the feedback control of (4) until time
τ∗, at which point they should exercise, and acquire the remaining shares according
to the strategy of Appendix A.

4.3. Constant Volatility

The full problem can be reduced to the constant volatility case by taking volatility of
the volatility ψ = 0 and fixing the volatility to be yt = σ2, t ∈ [0, T ]. In this case, the
value function is defined as

H(t, S,A, q) = sup
ν≥0,τ≤T

Et,S,A,q
[
nAτ − ℓ(qτ , Sτ )−

∫ τ

t
[νu(Su + aSuνu) + ϕSuq

2
u + λSuqu] du

]
,

where λ = λ(σ2) is a constant. Similarly, the associated QVI is given by

min{−∂tH − µS∂SH − 1

2
σ2S2∂SSH − S −A

t
∂AH + ϕSq2 + λSq − 1

4aS
(∂qH + S)2,

H(t, S,A, q)− nA+ ℓ(q, S)} = 0,

with terminal condition H(T, S,A, q) = nA− ℓ(q, S). The dimensionally reduced QVI
with H(t, S,A, q) = Sh(t, z, q), z = A/S is

min{−∂th− µh− 1

2
σ2z2∂zzh−

(
1− z

t
− µz

)
∂zh+ ϕq2 + λq − 1

4a
(∂qh+ 1)2,

h(t, z, q)− nz + α2q
2 + α1q} = 0.

All of the rules for the boundary and terminal conditions discussed in the case of
stochastic volatility are equally valid here, so the appropriate boundary and terminal
conditions are

h(T, z, q) = nz − α2q
2 − α1q h(t, z, 0) = nw(t, z)

h(t, z, q) = nz − α2q
2 − α1q ∂zh(t, z, q) = 0.

Again, the intermediary should exercise early when z = A/S is sufficiently large,
and so the free boundary z∗(t, q) divides the domain into portions. The continuation
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region, stopping region, and exercise boundaries for constant volatility are given by
the following sets respectively:

{(t, S,A, q) : H(t, S,A, q) > nA− ℓ(q, S)} = {(t, S,A, q) : A/S < z∗(t, q)}
{(t, S,A, q) : H(t, S,A, q) < nA− ℓ(q, S)} = {(t, S,A, q) : A/S > z∗(t, q)}
{(t, S,A, q) : H(t, S,A, q) = nA− ℓ(q, S)} = {(t, S,A, q) : A/S = z∗(t, q)}

and the optimal stopping time τ∗ is given by

τ∗ = inf{t : At/St ≥ min(z, z∗(t, qt)} ∧ T.

The intermediary should trade according to the feedback control of (4) until time
τ∗, and then exercise and acquire the remaining shares according to the strategy of
Appendix A.

5. Numerical Solution

The free boundary problem derived in Section 4.2 has a four dimensional domain in
(t, z, q, y). Deep learning has recently been used to great success in solving high di-
mensional PDEs (see E, Han, and Jentzen (2020) for a review of techniques for solving
high-dimensional PDEs) and more specifically in free boundary problems. For example
Sirignano and Spiliopoulos (2018) used neural networks to solve high-dimensional free
boundary PDEs related to pricing an American option of many stocks. Not only could
very high-dimensional problems be solved, but the resulting neural network solutions
compared favorably in terms of error to semi-analytic solutions for the problem. In-
deed, neural networks have even been applied to ASRs with Guéant, Manziuk, and Pu
(2020) demonstrating how to solve various high dimensional ASR problems in discrete
time using neural networks. The use of neural networks allowed for more sophisticated
contracts to be priced by limiting the effect of dimensionality. For us, the most impor-
tant result is in Wang and Perdikaris (2021), which uses two simple fully-connected
neural networks to solve the free-boundary Stefan problem. Their numerical solutions
had low error when compared to exact problems, even with their straightforward im-
plementation. We will use the same approach to numerically solve our free boundary
problem for ASR with stochastic volatility.

The general idea is to use two distinct neural networks, one to model the value
function of interest on the interior of the continuation region, and another to model
the free exercise boundary. Both neural networks will be fully connected networks, with
3 hidden layers and 200 hidden units. The parameters will be initialized through Xavier
initialization (Glorot and Bengio 2010), where the weights are initialized as normal
random variables with variances chosen to ensure the weights neither blowup nor
vanish. The only difference between the two networks will be the activation functions:
the network for the value function will use only hyperbolic tangent activation functions
for the hidden layers, while the network for the free boundary will use hyperbolic
tangent activation functions for the hidden layers, and an exponential activation for
the output layer since in our case the free boundary must be non-negative.

Training will be done using the Adam optimizer (Kingma and Ba 2017) with default
settings and a learning rate of 0.001. Adam is frequently used in deep learning as an
optimizer, since it improves on stochastic gradient descent by incorporating learning
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rates for the various parameters to improve fitting. There will be 160000 iterations of
batch size N = 10000 points each. We will go into detail for our two cases: (i) the
American-Asian option (ii) the full problem. We will also discuss how our analysis
generalizes to the simpler case of constant volatility.

5.1. American-Asian Option

For the American-Asian option, we will model the value function w(t, z, y) with one
neural network, vΓ(t, z, y), and we will approximate the corresponding free bound-
ary z∗(t, y) with another neural network r∆(t, y) where Γ and ∆ are the respective
parameters for the networks. We then seek to minimize the following objective

Lw(Γ,∆) = Ξ1Lwinterior(Γ) + Ξ2LwT (Γ) + Ξ3Lwz (Γ) + Ξ4Lwy (Γ) + Ξ5Lwboundary(Γ,∆)

where we define the linear operator M as

M[w] = ∂tw + µw + Lz,yw +

(
1− z

t
− µz

)
∂zw

and the losses as

Lwinterior(Γ) =
N∑
i=1

|M[vΓ](t
i, zi, yi)|2

LwT (Γ) =
N∑
i=1

|vΓ(T, zi, yi)− zi|2

Lwz (Γ) =
N∑
i=1

|vΓ(t, z, yi)− z|2 +
N∑
i=1

|∂vΓ
∂z

(ti, z, yi)|2

Lwy (Γ) =
N∑
i=1

|∂vΓ
∂y

(ti, zi, y)|2 +
N∑
i=1

|∂vΓ
∂y

(ti, zi, 0)|2

Lwboundary(Γ,∆) =

N∑
i=1

|vΓ(ti, r∆(ti, yi), yi)− r∆(t
i, yi)|2.

The first requires that the neural network satisfy the differential operator. The second,
third, and fourth terms are the boundary conditions discussed in Section 4. The fifth
term specifies that the value function is equal to z across the free boundary, ensuring
continuity. The weights Ξ1,Ξ2,Ξ3,Ξ4,Ξ5 allow us to prioritize various parts of the loss.
N is the batch size and (ti, zi, yi) are collocation points sampled uniformly at random
on [0, T ] × [z, z] × [0, y]. In each of the 160000 iterations, we sample N = 10000
collocation points, compute the loss Lw(Γ,∆), and then minimize it using the Adam
optimizer.

5.2. Full Problem

The same principle can be used for the full problem, using one neural network to
model the value function h(t, z, q, y) on the interior of the continuation region, and an-
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other to model the exercise boundary z∗(t, q, y). More specifically, we will approximate
h(t, z, q, y) with the neural network uΛ(t, z, q, y) and we will approximate z∗(t, q, y)
with the neural network sβ(t, q, y) where Λ and β are the respective parameters for
the networks. We then seek to minimize the following objective

L(Λ, β) = ξ1Linterior(Λ) + ξ2LT (Λ) + ξ3Lz(Λ) + ξ4Lq(Λ)
+ ξ5Ly(Λ) + ξ6Lboundary(Λ, β) + ξ7Ls0(β)

where we define the nonlinear operator N as

N [h] = −M[h] + ϕq2 + λ(y)q − 1

4a
(∂qh+ 1)2

and the losses as

Linterior(Λ) =
N∑
i=1

|N [uΛ](t
i, zi, qi, yi)|2

LT (Λ) =
N∑
i=1

|uΛ(T, zi, qi, yi)− nzi + α2(q
i)2 + α1q

i|2

Lz(Λ) =
N∑
i=1

|uΛ(ti, z, qi, yi)− nz + α2(q
i)2 + α1q

i|2 +
N∑
i=1

|∂uΛ
∂z

(ti, z, qi, yi)|2

Lq(Λ) =
N∑
i=1

|uΛ(ti, zi, 0, yi)− nvΓ(t
i, zi, yi)|2

Ly(Λ) =
N∑
i=1

|∂uΛ
∂y

(ti, zi, qi, y)|2 +
N∑
i=1

|∂uΛ
∂y

(ti, zi, qi, 0)|2

Lboundary(Λ, β) =
N∑
i=1

|uΛ(ti, sβ(ti, qi, yi), qi, yi)− nsβ(t
i, qi, yi) + α2(q

i)2 + α1q
i|2

Ls0(β) =
N∑
i=1

|sβ(ti, 0, yi)− r∆(t
i, yi)|2.

The first term requires that the value function satisfies the nonlinear differential op-
erator. The next four terms are the boundary conditions discussed in Section 4. The
sixth term specifies that the value function is equal to nz−α2q

2 −α1q across the free
boundary, and the final term specifies that the free boundary is equal to the bound-
ary of the American-Asian option when q = 0, as we would expect. It is critical that
we have already computed vΓ and r∆ as numerical solutions to the American-Asian
option, so that we can use them when computing the losses Lq and Ls0 .

The weights ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7 allow us to prioritize various parts of the loss. N
is the batch size and (ti, zi, qi, yi) are collocation points sampled uniformly at random
on [0, T ]× [z, z]× [0, n]× [0, y]. In each of the 160000 iterations, we sample N = 10000
collocation points, compute the loss L(Λ, β), and then minimize it using the Adam
optimizer.
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Finally, we note that the constant volatility problem can be solved in much the
same way as the full problem with two important changes. Firstly, since the volatility is
constant, the problem is reduced from four dimensions in (t, z, q, y) to three dimensions
in (t, z, q). Correspondingly, the American-Asian option is reduced in dimension from
three dimensions in (t, z, y) to two dimensions in (t, z). Secondly, because of this, there
are no boundary conditions for the square volatility y. Otherwise, the approach for
constant volatility is the same as for stochastic volatility, namely to use one neural
network as the value function and another as the exercise boundary. The minimized
loss is then the sum squared of the boundary conditions for t, z, q and the corresponding
nonlinear operator for the interior of the continuation region.

5.3. Results

Figure 2 shows sample paths for ASR with early exercise. We can see several important
features from these paths. The free boundary decreases as a function of time. This can
be explained by the reduced shares left to repurchase. Since the penalty for early
exercise is α1q + α2q

2, when q decreases as shares are repurchased, the penalty for
early exercise becomes less of a factor, while the running penalties on inventory cause
a greater impact, incentivizing the intermediary to exercise early. We can also see how
important A/S is in the exercise time by comparing the orange and blue curves. Even
though the orange curves have more shares remaining, the uptick in A/S for orange,
and the downturn for blue, lead to orange exercising early.

As expected, a higher volatility corresponds to a faster trading rate. The orange
curve has a noticeably lower volatility, and as such the corresponding trading rate is
lower leaving more shares remaining. The final plot shows the evolution of the free
boundary z∗(t, qt, yt) as a function of time. Since the orange curve trades less quickly,
it has more inventory, corresponding to a larger penalty for early exercise. Hence, the
corresponding free boundary is larger, since it requires a larger value of z to justify
exercising early.

We plot more sample paths of the trading rate νt in Fig. 3. Trading rates for n =
0.5, 2, 5 are shown for the same stock and volatility sample paths in Fig. 2. We can see
that starting with a lower number of initial shares n leads to earlier exercise, since the
penalty for exercise is monotone increasing in the number of shares to repurchase q.
We can also see that for n = 0.5, the volatility has relatively more of an effect, owing
to the shorter time horizon. On the other hand, for n = 2, 5, the volatility has less of
an effect, since the trading is more impacted by the quadratic urgency term ϕq2 for
large q.

To demonstrate the benefit of incorporating stochastic volatility, in Fig. 4 we plot
the expectation and standard deviation of the intermediary’s profit or loss as a result
of facilitating an ASR with early exercise. Recall that the intermediary’s profit or loss
for executing an ASR with strategy ν and exercise time τ is given by

nAτ − ℓ(qτ , Sτ )−
∫ τ

0
νu(Su + aSuνu) du,

where the first term is the payoff for exercising at time τ , the second term is the
penalty function for exercising with qτ shares remaining, and the third term is the
cost of acquiring the shares.

For each dot in the figure we simulate 106 iterations of each trading strategies
and calculate both the average profit or loss, as well as the risk as measured by the
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Figure 2. Sample paths of ASR with early exercise, showing the ratio of the average process to the stock
price At/St, the trading rate νt, the volatility

√
yt, the shares remaining to purchase qt, and the corresponding

exercise boundary. Paths are plotted until the intermediary exercises their option. Parameters are a = 0.005, ϕ =

0.5, α1 = 1.00, α2 = 1.85, ρ = −0.7, γ = 1,m = 0.8, κ = 0.1, ψ = 1, θ = 4, n = 1, T = 0.083
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standard deviation. The stock and volatility are given by the Heston model (1), which
we simulate for ψ = 0.3, 0.4, ..., 1.2. For the dots in the bottom right of the plot, we
simulate (using neural networks) a strategy for the intermediary which incorporates
stochastic volatility, by solving the problem from Section 4.2. For the dots in the
top left of the plot, we use a reduced strategy which ignores the stochasticity of
the volatility and treats it as constant, by solving the problem from Section 4.3. In
particular, we can see that incorporating the stochastic volatility yields better expected
returns and less risk for all values of ψ. We can also see that in general a larger value
of ψ corresponds to a greater risk in the case of stochastic volatility. Note that the
mean returns are negative; hence an intermediary might charge a fee for executing this
ASR.

5.4. Validation

We have seen in previous sections that we can use neural networks to solve the QVI
modeling an ASR with early exercise, and that the resulting solution has qualitative
features we desire out of our model. To validate our model, we would like some method
of determining quantitative performance of our solution compared to some benchmark.
In general, there is no straightforward way of doing this, since the QVIs we solve with
neural networks lack explicit solutions. However, in a very specific parameter case
we will see that we can derive an explicit solution to the QVI, which we can use to
compare to our neural network solution.

In what follows, we set the drift µ = 0, we assume the square volatility y is constant
and equal to its mean m, and we set the urgency parameters θ = κ = 0. In this case,
the penalty function for early exercise reduces to q(1 + αq) for a single constant α. In
order to derive an explicit solution we will fix α =

√
ϕa. Given all of these restrictions,

consider the American-Asian Option from Section 4.1. Recall that we want to derive
the price of an option with the following pricing structure

p(t, S,A) = sup
τ≤T

Et,S,A [Aτ ]

where we suppress dependence on the volatility since it is constant in this section.
With all of our restrictions to the parameter space, the QVI for this problem reduces
to

p(t, S,A) ≥ A

∂tp+
1

2
mS2∂SSp+

S −A

t
∂Ap ≤ 0

with terminal condition p(T, S,A) = A and with equality in at least one of the in-
equalities at all times. We can substitute in the ansatz p(t, S,A) = Sw(t, z) where
z = A/S to obtain

w(t, z) ≥ z

∂tw +
1

2
mz2∂zzw +

1− z

t
∂zw ≤ 0,
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with terminal condition w(T, z) = z. The explicit form for w(t, z) is given by

w(t, z) = max{T + tz − t

T
, z} =

{
z z ≥ 1
T+tz−t

T z < 1.

Though we are primarily concerned with w(t, z) we can also reverse the change of
variables to derive that

p(t, S,A) =

{
A A ≥ S
At+S(T−t)

T A < S.

Recall that the dimensionally reduced QVI for the ASR is given by

min{−∂th− 1

2
mz2∂zzh− 1− z

t
∂zh+ ϕq2 − 1

4a
(∂qh+ 1)2, (9)

h(t, z, q)− nz + q(1 +
√
ϕaq)} = 0,

where we have substituted in our restricted parameters for this section. Noting the
similarity between the QVI for the ASR, and the QVI for the American-Asian option,
we find the solution

h(t, z, q) = nw(t, z)− q(1 +
√
ϕaq). (10)

Note that this solution crucially relies on the relationship α =
√
ϕa which enables

h(t, z, q) to have its z and q dependence split into separate terms.
For comparison’s sake, we can also solve the QVI in (9) using a neural network.

Fig. 5 plots the explicit solution (10) and the relative error between the neural network
solution and the explicit solution at t = 0.01. We can see that the neural network is
indeed a good approximation for the true solution, and this provides some numerical
justification for our use of neural networks throughout this paper. Looking at the
plot of the error, we can see that the worst difference is when the explicit solution
is around zero; this is expected since the relative error is the difference between the
numerical solution and the true solution divided by the true solution, and hence when
the magnitude of the true solution is near zero, the relative error blows up. In general,
the error decreases as t increases, since the neural networks are increasingly constrained
by the terminal conditions. On the other hand the worst error is for small t, since the
numerical solutions have the greatest freedom here, being relatively unconstrained by
the terminal condition. The average relative error is approximately 0.9%.

6. Fixed Notional

We now consider another common form of ASR, where instead of requiring an inter-
mediary to purchase a fixed number of shares, the intermediary is instead provided a
fixed amount of cash F to repurchase a variable number of shares. This form of ASR
has the following steps: (i) The firm provides the intermediary with a fixed amount
F . In exchange, the intermediary borrows some number of shares, for example 80%
of FS for stock price S, from other traders or financial institutions, and provides them
to the firm; (ii) the intermediary settles its short position and acquires an additional
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Figure 5. Contour plots of the solution to the QVI (9) at t = 0.01 as a function of q and z = A/S. The first

panel shows the explicit solution (10), while the second shows the relative error between the numerical solution

and the explicit solution. The average relative error is 0.9%. Parameters are a = 0.005, ϕ = 0.5, α = 0.005,m =
0.8, κ = 0, θ = 0, n = 1, T = 0.083

number of shares so that it can provide a total of F
A shares where A is the average

stock price; (iii) at any time up to the maturity date the intermediary can execute the
contract early; (iv) when the intermediary exercises (or the maturity date is reached),
the remaining shares are provided to the repurchasing firm so that the total number
of shares repurchased is F

A .
A discrete time version of this type of contract was analyzed by Guéant (2017)

with exponential utility. Here, we analyze this problem in continuous time in a similar
framework to the previous sections. In Section 6.1 we define the model and derive the
associated control problem. The numerical solution using neural networks is presented
in Section 6.2.

6.1. Model

In an ASR with a fixed notional, the repurchasing firm provides the intermediary
a cash amount F . The task of the intermediary is to acquire F/Aτ shares over the
time interval [0, T ], which it then provides to the repurchasing firm. Since there is no
longer a fixed inventory to be acquired, it is convenient to define ct to be the inventory
acquired at time t:

ct =

∫ t

0
νudu.

The analogous quantity to qt, the inventory yet to be acquired at time t, is

F

At
− ct.
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The profit or loss received by the intermediary for exercising the option at time τ ∈
[0, T ] is

F − ℓ(
F

Aτ
− cτ , Sτ )−

∫ τ

0
νu(Su + aSuνu)du.

The first two terms are the payout and the penalty for any shares which have yet to
be acquired at exercise time, while the third time gives the cost to acquire the shares.
The full value function is given by

H(t, S,A, c, y) = sup
ν≥0,τ≤T

Et,S,A,c,y
[
F − ℓ(

F

Aτ
− cτ , Sτ )

−
∫ τ

t
[νu(Su + aSuνu) + ϕSu(

F

Au
− cu)

2 + λ(yu)Su(
F

Au
− cu)] du

]
.

Note that we include running penalties on the difference between the inventory ac-
quired ct and the number of shares which need to be repurchased F

At
. Like (2) this

serves to model the intermediary’s urgency and aversion to risk.
Dynamic programming tells us that the value function satisfies the following QVI

in the viscoscity sense:

min{−∂tH − LS,yH − S −A

t
∂AH + ϕS(

F

A
− c)2 + λ(y)S(

F

A
− c)− sup

ν≥0
{ν∂cH − (aSν + S)ν},

H(t, S,A, c, y)− F + ℓ(
F

A
− c, S)} = 0,

with terminal condition H(T, S,A, c, y) = F − ℓ(FA − c, S). The first order condition
to optimize over ν yields

ν =
1

2aS
(∂cH − S)1{c<F

A
}, (11)

which when substituted yields

min{−∂tH − LS,yH − S −A

t
∂AH + ϕS(

F

A
− c)2 + λ(y)S(

F

A
− c)− 1

4aS
(∂cH − S)2,

H(t, S,A, c, y)− F + ℓ(
F

A
− c, S)} = 0.

Notice that the change of variables z = A/S which we used before to simplify the
problem is no longer available, so the problem is 5-dimensional in (t, S,A, c, y). Next,
let us consider the domain and boundary conditions. We have t ∈ [0, T ] and terminal
condition

H(T, S,A, c, y) = F − ℓ(
F

A
− c, S).

For c, we will bound it from above so that c ∈ [0, c]. If the number of shares acquired
is sufficiently high, it follows that the intermediary has likely acquired all the shares
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it needs, and so should exercise immediately. Hence

H(t, S,A, c, y) = F.

We will also bound A ∈ [A,A], S ∈ [S, S] and y ∈ [0, y]. We will choose to apply
reflecting boundary conditions at these boundaries so that

∂AH(t, S,A, c, y) = 0

∂SH(t, S,A, c, y) = ∂SH(t, S,A, c, y) = 0

∂yH(t, S,A, c, 0) = ∂yH(t, S,A, c, y) = 0.

The QVI is characterized by a free boundary problem, where the intermediary should
exercise early when it has acquired sufficiently many shares i.e. when c is sufficiently
large. The free boundary c∗(t, S,A, y) divides the domains into portions so that the
continuation region, stopping region, and exercise boundaries are given by the following
sets respectively:

{(t, S,A, c, y) : H(t, S,A, c, y) > F − ℓ(
F

A
− c, S)} = {(t, S,A, c, y) : c < c∗(t, S,A, y)}

{(t, S,A, c, y) : H(t, S,A, c, y) < F − ℓ(
F

A
− c, S)} = {(t, S,A, c, y) : c > c∗(t, S,A, y)}

{(t, S,A, c, y) : H(t, S,A, c, y) = F − ℓ(
F

A
− c, S)} = {(t, S,A, c, y) : c = c∗(t, S,A, y)}

and the optimal stopping time τ∗ is given by

τ∗ = inf{t : ct ≥ min(c, c∗(t, St, At, yt)} ∧ T.

The intermediary should trade according to the feedback control (11) until time τ∗,
and then exercise and acquire the remaining shares according to the strategy of Ap-
pendix A.

6.2. Numerical Solution

The ASR with fixed notional can be analogously simulated to the ASR with fixed
shares as in Section 5.2. We represent the value function as one neural network, the
free boundary as another, and then attempt to minimize a constituent loss made up
of applying a nonlinear operator over the interior, as well as the various boundary
conditions. Full details are in Appendix C.1.

Sample paths of an ASR with fixed notional are shown in Figure 6. Notably, we
can see that it is not advantageous to exercise early, in contrast to the ASR with
fixed number of shares. For an ASR with a fixed number of shares, it is critical to
exercise when A is relatively large, since the payoff function nA entirely depends on
exercising optimally. On the other hand, for an ASR with fixed notional, the payoff
F is independent of exercise time, so early exercise serves only to reduce the penalty
from the number of shares remaining. Hence, it is more optimal to simply purchase
shares normally, making use of the whole time period before exercising.
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Figure 6. Sample paths of ASR with fixed notional and early exercise, showing the average process At, the
stock price St, the trading rate νt, the volatility

√
yt, the shares purchase ct, and the corresponding exercise

boundary. Paths are plotted until the intermediary exercises their option. Parameters are a = 0.005, ϕ =

0.5, α1 = 1.00, α2 = 1.85, ρ = −0.7, γ = 1,m = 0.8, κ = 0.1, ψ = 1, θ = 4, F = 1, T = 0.083
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We can see that lower volatility corresponds to a lower trading rate and fewer
share purchased. Also, we can observe that as the average A increases, the optimal
exercise boundary decreases, since the number of shares which need to be repurchased
is F

A . Since stock price and volatility are inversely correlated, there are two relevant
trends. On one hand, the lower volatility implies higher stock prices and a higher
average, which in turn implies that fewer shares need to be repurchased. On the other
hand, lower volatility also implies a lower trading rate, which means fewer shares are
repurchased. The combination of these two implies that when there are fewer shares
to be repurchased the intermediary repurchases even fewer shares, which leads to the
intermediary not exercising early.

7. Local Volatility

While the Heston model used throughout this paper is a popular model of stochastic
volatility, an alternative is to use local volatility, where the volatility of the stock price
is given by some function σ(S, t) which depends purely on the current stock price and
time. The evolution of the stock price is then given by

dSt = µStdt+ σ(S, t)dWt.

Choosing σ(S, t) to be constant recovers arithmetic Brownian motion, while σ(S, t) =
σS recovers geometric Brownian motion. Local volatility is attractive since models can
be easily fit using data from the options market.

In the following section, we will analyze an ASR with local volatility, specifically
implementing the constant elasticity of variance model introduced by Cox (1975) where

σ(S, t) = σS
δ/2
t . In this framework, the stock price evolves as

dSt = µStdt+ σS
δ/2
t dWt

with volatility σS
δ/2−1
t . In particular, if δ < 2, then the volatility is inversely related

to the stock price. This model of an ASR is one dimension lower, since the volatility
no longer varies independently. However, we will see that the dimensional reduction
via change of variables z = A/S is no longer possible, and hence the final problem
formulation remains 4-dimensional in (t, S,A, q). We begin by analyzing the American-
Asian option with no shares to repurchase in Section 7.1. The full problem is then
studied in Section 7.2.

7.1. American-Asian Option

When there are no shares to repurchase, the intermediary holds an option with an
Asian payout (i.e. it pays the average of the stock price) and an American exercise
time. Define p(t, S,A) to be the optimal expected payoff at time t given St = S,At = A.
Then

p(t, S,A) = sup
τ≤T

Et,S,A[Aτ ].
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Dynamic programming tells us that p satisfies the following inequalities with equality
in at least one of the inequalities at all times:

p(t, S,A) ≥ A

∂tp+ µS∂SH +
1

2
σ2Sδ∂SSH +

S −A

t
∂Ap ≤ 0

with terminal condition p(T, S,A) = A. To solve for this numerically, we need to set
boundary conditions. We already have a terminal condition, so all that is needed are
boundaries in S,A. We truncate the domain so that S ∈ [S, S] and A ∈ [A,A]. We
then set reflecting boundary conditions so that

∂Sp(t, S,A) = ∂Sp(t, S,A) = ∂Ap(t, S,A) = 0.

The QVI is then characterized by a free boundary problem. A rapid decline in S
presages a decline in the payout A, and hence the intermediary should exercise if the
stock price is sufficiently small. Hence, the free boundary S∗(t, A) divides the domain
into a continuation, stopping, and exercise boundary region, given respectively by the
following sets:

{(t, S,A) : p(t, S,A) > A} = {(t, S,A) : S > S∗(t, A)}
{(t, S,A) : p(t, S,A) < A} = {(t, S,A) : S < S∗(t, A)}
{(t, S,A) : p(t, S,A) = A} = {(t, S,A) : S = S∗(t, A)}.

The optimal stopping time τ∗ is then given by

τ∗ = inf{t : St ≤ max(S, S∗(t, At)} ∧ T.

The American-Asian option can be simulated like in Section 5.1. We represent the
interior as one neural network, the free boundary as another, and then minimize a
constituent loss made up of applying a differential operator to the interior, as well as
the boundary conditions. Full details are in Appendix C.2.

7.2. Full Model

We now analyze the full model. The value function in this case is almost identical to
(2), and is given by

H(t, S,A, q) = sup
ν≥0,τ≤T

Et,S,A,q
[
nAτ − ℓ(qτ , Sτ )

−
∫ τ

t
[νu(Su + aSuνu) + ϕSuq

2
u + λ(σ2Sδ−2

u )Suqu] du

]
.

Importantly, the volatility penalization is now given by λ(σ2Sδ−2
u ), since the square

volatility is now given by σ2Sδ−2
u . The QVI can be derived through dynamic program-
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ming as

min{−∂tH − µS∂SH − 1

2
σ2Sδ∂SSH − S −A

t
∂AH + ϕSq2 + λ(σ2Sδ−2)Sq − 1

4aS
(∂qH + S)2,

H(T, S,A, q)− nA+ ℓ(q, S)} = 0,

with terminal condition H(T, S,A, q) = nA − ℓ(q, S). In addition to the terminal
condition, we impose a similar domain truncation and boundary conditions as with
the American-Asian option:

∂SH(t, S,A, q) = ∂SH(t, S,A, q) = ∂AH(t, S,A, q) = 0.

At the q = 0 boundary, there are no shares left to repurchase, and so the value function
should be equal to that of the American-Asian option:

H(t, S,A, 0) = p(t, S,A).

The full problem is also characterized by a free boundary problem in S. A lower value
of S anticipates a decline in the payout A, and also corresponds to a lower penalty
for exercising. The intermediary should exercise when the stock price is below the
free boundary, so S < S∗(t, A, q). The continuation, stopping, and exercise boundary
regions are given by

{(t, S,A, q) : H(t, S,A, q) > nA− ℓ(q, S)} = {(t, S,A, q) : S > S∗(t, A, q)}
{(t, S,A, q) : H(t, S,A, q) < nA− ℓ(q, S)} = {(t, S,A, q) : S < S∗(t, A, q)}
{(t, S,A, q) : H(t, S,A, q) = nA− ℓ(q, S)} = {(t, S,A, q) : S = S∗(t, A, q)}.

The optimal stopping time τ∗ is

τ∗ = inf{t : St ≤ max(S, S∗(t, At, qt)} ∧ T.

The full problem can be simulated similarly to Section 5.2. We represent the free
boundary and value function as separate neural networks. The model is fitted by con-
structing a constituent loss made up of applying a differential operator to the interior,
as well as contributions from boundary conditions. All details are in Appendix C.3.

Some sample paths for an ASR with local volatility are plotted in Figure 7. We can
see that a lower volatility corresponds to a lower trading rate, with the green curve
having a noticeably lower rate of repurchase and lower volatility. We can see that it is
optimal to exercise early, typically with a peak in A coupled with a steep reduction in
the stock price. Volatility and stock price are inversely related, as desired. The exercise
boundary increases over time, since as shares are repurchased, the penalty ℓ(q, S)
becomes lesser. A larger average A also corresponds to a larger exercise boundary,
since this implies a larger payout.

8. Conclusion

We have extended the model of accelerated share repurchases from Jaimungal, Kinze-
bulatov, and Rubisov (2017) to include stochastic volatility. This inclusion is important
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Figure 7. Sample paths of ASR with local volatility and early exercise, showing the average process At,
the stock price St, the trading rate νt, the volatility

√
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since ASRs are typically conducted over longer time horizons than standard optimal
execution problems, so that the variability of the volatility has a more pronounced
effect. We derived the associated free boundary problem which describes the interme-
diary’s optimal trading strategy and exercise time.

By solving this problem numerically, we demonstrated that the intermediary is en-
couraged to trade more rapidly when the volatility is greater, and that the optimal
exercise time occurs when the ratio of the average stock price to the current stock
price crosses the free boundary. We have also illustrated that it is beneficial to include
stochastic volatility. Simulations of the intermediary’s profit demonstrate that strate-
gies which incorporate stochastic volatility have greater average returns and lower
average risk. Our numerical solution uses deep learning to solve the high-dimensional
free boundary problem. By comparing our numerical solution to an analytical solu-
tion which we can derive for a special choice of parameters, a low numerical error is
observed. The numerical method is capable of solving other models of ASRs including
with fixed notional and local volatility. We find that in the case of fixed notional, it is
optimal to make use of the full trading interval, rather than exercising early.
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Appendix A. Acquisition After Exercise

Following Appendix A of Jaimungal, Kinzebulatov, and Rubisov (2017) we will derive
the penalty function discussed in Section 2 for purchasing outstanding shares once
the intermediary exercises their option. Once the intermediary exercises at time τ
their payout of nAτ is no longer affected. However, there may still be shares left to
acquire which must be done on the time interval [τ, τ + ϵ]. We strictly enforce that all
outstanding shares are purchased so that qτ+ϵ = 0. The value function will be given
by

H(t, S, q, y) = inf
ν≥0

Et,S,q,y
[ ∫ τ+ϵ

t
Su(1 + aνu)νu + ϕ1Suq

2
u du (A1)

+qτ+ϵ(Sτ+ϵ + ϕ2Sτ+ϵqτ+ϵ)

]
.

The first term in the integral is the cost of acquiring the shares and the second term in
the integral is to encourage urgency. The final term is the cost of acquiring all of the
shares at the final time with a penalty corresponding to ϕ2. Since we are interested in
enforcing full repurchase, we will consider the limit as ϕ2 → ∞. Dynamic programming
suggests that the value function satisfies the following PDE:

∂tH + LS,yH + ϕ1Sq
2 +min

ν≥0
[−ν∂qH + ν(S + aSν)] = 0

H(τ + ϵ, S, q, y) = q(S + ϕ2Sq).

Using first order conditions, the optimal acquisition strategy is given by the feedback
control

ν∗ =
∂qH − S

2aS
1{q>0}.

Substituting this into the PDE gives

∂tH + LS,yH + ϕ1Sq
2 − (∂qH − S)2

4aS
= 0.

Consider the ansatz H(t, S, q, y) = S(q2h2(t) + qh1(t) + h0(t)). Then

∂th0 + µh0 −
(h1 − 1)2

4a
= 0, h0(τ + ϵ) = 0

∂th1 + µh1 −
h2(h1 − 1)

a
= 0, h1(τ + ϵ) = 1

∂th2 + µh2 −
1

a
h22 + ϕ1 = 0, h2(τ + ϵ) = ϕ2.
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Then

lim
ϕ2→∞

h2(t) =
1

2

(
aµ+

√
a2µ2 + 4aϕ1coth(

(τ + ϵ− t)
√
µ2a+ 4ϕ1

2
√
a

)

)
.

By substituting this into the ODES for h0, h1, we can also solve for them explicitly,
though we omit this for brevity’s sake. Note that

−dq
∗(t)

dt
= ν∗(t, q∗(t)) =

2q∗(t)h2(t) + h1(t)− 1

2a
1{q∗(t)>0} (A2)

is independent of the volatility y and the stock price S, and is hence deterministic.
Then, if we trade according to ν∗ we have qτ+ϵ = 0. This allows us to rewrite (A1) as

H(τ, S, q, y) = E
∫ ϵ

0
Su+τ (1 + aν∗u+τ )ν

∗
u+τ + ϕ1Su+τq

∗2
u+τ du

= S

∫ ϵ

0
eµu(1 + aν∗u+τ )ν

∗
u+τ + ϕ1q

∗2
u+τ du (A3)

where in the second step we can exchange order of integration by Tonelli’s Theorem,
since the integrand is non-negative. From the formulas for h0, h1, h2 we can see that
H(τ, S, q, y) is in fact independent of the value of τ .

Note that since ν∗ depends linearly on q except for the indicator function,
H(τ, S, q, y) is almost quadratic with respect to q. Hence, we will approximate
H(τ, S, q, y) by a function of the form α2q

2 + α1q as follows: (i) calculate q∗, ν∗ by
numerically solving the ODE in (A2) (ii) numerically solve the integral in (A3) (iii)
repeat steps (i) and (ii) for various initial conditions qτ , and use least squares to fit
the coefficients α1, α2. The penalty function ℓ(q, S) is then given by

ℓ(q, S) = H(τ, S, q, y) = S(α2q
2 + α1q).

Figure A1 shows on the left a plot of the shares to repurchase q as a function of time.
As expected, the number of shares reaches zero as t→ τ + ϵ. On the right Figure A1
shows H(τ, S = 1, q, y) and the least squares quadratic α2q

2 + α1q. We can see that
there is good agreement between the actual function and our quadratic approximation,
justifying the use of the approximation throughout the paper.

Appendix B. Quadratic Penalty

A referee pointed out that the quadratic penalty can lead to some misaligned incentives
for the intermediary. The argument is as follows: we consider the European constant
volatility problem with λ(y) = 0 and drift µ = −m/2 so that S is a martingale, and
no market impact i.e. a = 0. The profit and loss is given by

nAT −
∫ T

0
νuSudu.
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Figure A1. The left plot shows the shares remaining q(t) for t ∈ [τ, τ + ϵ] with qτ = 1. The right plot shows

H(τ, S = 1, q, y) as dots for q = 0, 0.2, 0.4, 0.6, 0.8, 1.0 as well as the corresponding least squares quadratic

α2q2 + α1q. The parameters are a = 0.005, µ = 0.1, ϕ1 = 37.5, ϵ = 1/365 yielding α1 = 1.00, α2 = 1.85

If the intermediary purchases shares at a constant rate, so that νu = n
T , then the profit

and loss is zero, and the value of the strategy (2) is

−E
[∫ T

0
ϕSun

2(1− u

T
)2du

]
< 0.

On the other hand, if the intermediary buys all the shares immediately, then the profit
and loss is n(AT −s0) with expectation zero and positive variance, but the value of the
strategy is 0 (which is greater). Hence, for ϕ > 0 the value function incentivizes the
intermediary to adopt a strategy with a random profit and loss over a deterministic
strategy.

The penalty ϕSq2 is introduced to model the intermediary’s risk aversion and in-
duce urgency. While the running penalties act to encourage rapid trading, the market
impact 1 + aνt counters this, since a faster trading rate increases the execution price
for the repurchase. The above argument demonstrates that if the market impact is
negligible, then the quadratic penalty can lead to undesirable behavior, and hence it
is an important consideration when calibrating parameters. Our model can straight-
forwardly accommodate this, since we simply need to set the parameter ϕ = 0 to
eliminate any potential concern.

To demonstrate the impact of the quadratic penalty, Figure B1 shows an identical
plot to Figure 2, but with the quadratic penalty zeroed out. We can see very simi-
lar trading profiles and boundaries. Without the quadratic penalty, the intermediary
trades for slightly longer, and there is greater effect of the volatility on the trading
rates, since the volatility penalty Sqλ(y) is the only running penalty.
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Figure B1. Sample paths of ASR with early exercise, showing the ratio of the average process to the stock
price At/St, the trading rate νt, the volatility

√
yt, the shares remaining to purchase qt, and the corresponding

exercise boundary. Paths are plotted until the intermediary exercises their option. Parameters are a = 0.005, ϕ =

0, α1 = 1.00, α2 = 1.85, ρ = −0.7, γ = 1,m = 0.8, κ = 0.1, ψ = 1, θ = 4, n = 1, T = 0.083
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Appendix C. Numerical Details

We provide the details of the deep learning methods in the case of the ASR with
fixed notional, as well as the ASR with fixed shares and local volatility. The general
strategy is the same as in Section 5, namely that we represent that value function
with one neural network, and the free boundary with another neural network. The
hyper-parameters are tuned by constructing a constituent loss L made up of the sum
of a nonlinear operator over the interior and losses associated with the boundary con-
ditions. At each iteration, we sample a batch of collocation points uniformly across the
truncated domain, compute the loss, and then minimize it using the Adam optimizer.

C.1. Fixed Notional

We can simulate the fixed notional ASR by approximating H(t, S,A, c, y) with the
neural network uΛ(t, S,A, c, y) and approximating c∗(t, S,A, y) with the neural net-
work sβ(t, S,A, y) where Λ and β are the respective parameters for the networks. We
then seek to minimize the following objective

L(Λ, β) = ξ1Linterior(Λ) + ξ2LT (Λ) + ξ3LS(Λ) + ξ4LA(Λ)
+ ξ5Lc(Λ) + ξ6Ly(Λ) + ξ7Lboundary(Λ, β)

where we define the nonlinear operator N as

N [h] = ∂tH + LS,yH +
S −A

t
∂AH − ϕS(

F

A
− c)2 − λ(y)S(

F

A
− c) +

1

4aS
(∂cH − S)2

and the losses as

Linterior(Λ) =
N∑
i=1

|N [uΛ](t
i, Si, Ai, ci, yi)|2

LT (Λ) =
N∑
i=1

|uΛ(T, Si, Ai, ci, yi)− F + ℓ(
F

Ai
− ci, Si)|2

LS(Λ) =
N∑
i=1

|∂uΛ
∂S

(ti, S,A, ci, yi)|2 +
N∑
i=1

|∂uΛ
∂S

(ti, S, A, ci, yi)|2

LA(Λ) =
N∑
i=1

|∂uΛ
∂A

(ti, Si, A, ci, yi)|2

Lc(Λ) =
N∑
i=1

|uΛ(ti, Si, Ai, c, yi)− F |2

Ly(Λ) =
N∑
i=1

|∂uΛ
∂y

(ti, Si, Ai, ci, y)|2 +
N∑
i=1

|∂uΛ
∂y

(ti, Si, Ai, ci, 0)|2

Lboundary(Λ, β) =
N∑
i=1

|uΛ(ti, Si, Ai, sβ(ti, Si, Ai, yi), yi)− F + ℓ(
F

Ai
− sβ(t

i, Si, Ai, yi), Si)|2.
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The first term requires that the value function satisfies the nonlinear differential op-
erator. The next five terms are the boundary conditions discussed in Section 6.1. The
final term specifies that the value function is equal to F − ℓ(FA − c, S) across the free
boundary.

The weights ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7 allow us to prioritize various parts of the loss.
N is the batch size and (ti, Si, Ai, ci, yi) are collocation points sampled uniformly at
random on [0, T ]× [S, S]× [A,A]× [0, c]× [0, y]. In each of the 160000 iterations, we
sample N = 10000 collocation points, compute the loss L(Λ, β), and then minimize it
using the Adam optimizer.

C.2. American-Asian Option with Local Volatility

For the American-Asian option, we will model the value function w(t, S,A) with one
neural network, vΓ(t, S,A), and we will approximate the corresponding free bound-
ary S∗(t, A) with another neural network r∆(t, A) where Γ and ∆ are the respective
parameters for the networks. We then seek to minimize the following objective

Lp(Γ,∆) = Ξ1Lpinterior(Γ) + Ξ2LpT (Γ) + Ξ3LSz (Γ) + Ξ4LpA(Γ) + Ξ5Lpboundary(Γ,∆)

where we define the linear operator M as

M[p] = ∂tp+ µS∂SH +
1

2
σ2Sδ∂SSH +

S −A

t
∂Ap

and the losses as

Lpinterior(Γ) =
N∑
i=1

|M[vΓ](t
i, Si, Ai)|2

LpT (Γ) =
N∑
i=1

|vΓ(T, Si, Ai)−Ai|2

LpS(Γ) =
N∑
i=1

|∂vΓ
∂S

(ti, S, Ai)|2 +
N∑
i=1

|∂vΓ
∂S

(ti, S,Ai)|2

LpA(Γ) =
N∑
i=1

|∂vΓ
∂A

(ti, Si, A)|2

Lpboundary(Γ,∆) =

N∑
i=1

|vΓ(ti, r∆(ti, Ai), Ai)−Ai|2.

The first requires that the neural network satisfy the differential operator. The second,
third, and fourth terms are the boundary conditions discussed before. The fifth term
specifies that the value function is equal to A across the free boundary, ensuring
continuity. The weights Ξ1,Ξ2,Ξ3,Ξ4,Ξ5 allow us to prioritize various parts of the loss.
N is the batch size and (ti, zi, yi) are collocation points sampled uniformly at random
on [0, T ] × [S, S] × [A,A]. In each of the 160000 iterations, we sample N = 10000
collocation points, compute the loss Lp(Γ,∆), and then minimize it using the Adam
optimizer.

36



C.3. ASR with Local Volatility

To simulate the full problem numerically, we will approximate H(t, S,A, q) with the
neural network uΛ(t, S,A, q) and we will approximate S∗(t, A, q) with the neural net-
work sβ(t, A, q) where Λ and β are the respective parameters for the networks. We
then seek to minimize the following objective

L(Λ, β) = ξ1Linterior(Λ) + ξ2LT (Λ) + ξ3LS(Λ) + ξ4LA(Λ)
+ ξ5Lq(Λ) + ξ6Lboundary(Λ, β) + ξ7Ls0(β)

where we define the nonlinear operator N as

N [H] = M[H]− ϕSq2 − λ(σ2Sδ−2)Sq +
1

4aS
(∂qH + S)2

and the losses as

Linterior(Λ) =
N∑
i=1

|N [uΛ](t
i, Si, Ai, qi)|2

LT (Λ) =
N∑
i=1

|uΛ(T, Si, Ai, qi)− nAi + ℓ(qi, Si)|2

LS(Λ) =
N∑
i=1

|∂uΛ
∂S

(ti, S,A, qi)|2 +
N∑
i=1

|∂uΛ
∂S

(ti, S, A, qi)|2

LA(Λ) =
N∑
i=1

|∂uΛ
∂A

(ti, Si, A, qi)|2

Lq(Λ) =
N∑
i=1

|uΛ(ti, Si, Ai, 0)− nvΓ(T, S
i, Ai)|2

Lboundary(Λ, β) =
N∑
i=1

|uΛ(ti, sβ(ti, Ai, qi), Ai, qi)− nAi + ℓ(qi, sβ(t
i, Ai, qi))|2

Ls0(β) =
N∑
i=1

|sβ(ti, Ai, 0)− r∆(t
i, Ai)|2.

The first term requires that the value function satisfies the nonlinear differential op-
erator. The next four terms are the boundary conditions discussed before. The sixth
term specifies that the value function is equal to nA−ℓ(q, S) across the free boundary,
and the final term specifies that the free boundary is equal to the boundary of the
American-Asian option when q = 0. Necessarily, we have already computed vΓ and r∆
as numerical solutions to the American-Asian option, so that we can use them when
computing the losses Lq and Ls0 .

The weights ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7 allow us to prioritize various parts of the loss. N
is the batch size and (ti, Si, Ai, qi) are collocation points sampled uniformly at random
on [0, T ]×[S, S]×[A,A]×[0, n]. In each of the 160000 iterations, we sample N = 10000
collocation points, compute the loss L(Λ, β), and then minimize it using the Adam
optimizer.
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