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Abstract

We study the dynamic pricing of discrete goods over a finite selling horizon. One
way to capture both the elastic and stochastic reaction of purchases to price is through a
model where sellers control the intensity of a counting process, representing the number
of sales thus far. The intensity describes the probabilistic likelihood of a sale, and is a
decreasing function of the price a seller sets. A classical model for ticket pricing, which
assumes a single seller and infinite time horizon, is by Gallego and van Ryzin (1994)
and it has been widely utilized by airlines, for instance. Extending to more realistic
settings where there are multiple sellers, with finite inventories, in competition over a
finite time horizon is more complicated both mathematically and computationally. We
introduce a dynamic mean field game of this type, and some numerical and existence
results. In particular, we analyze the associated coupled system of Hamilton-Jacobi-
Bellman and Kolmogorov differential-difference equations, and we prove the existence
and uniqueness results under certain conditions. Then, we demonstrate a numerical al-
gorithm to find this solution and provide some insights into the macroeconomic market
parameters. Finally, we present a preliminary comparison of our findings with airfare
data.

1 Introduction

Deregulation of the airline industry in 1978 ignited the field of revenue management, which
was initially known as yield management. Faced with new competitive dynamics, airlines
adopted inventory control and dynamic pricing to optimize revenue. These techniques have
since diffused across numerous industries, including transportation, entertainment, hospital-
ity, and retail. This paper proposes dynamic pricing strategies for discrete goods such as
tickets for an event, in a competitive market over a finite time horizon corresponding to the
date of the event.

Sales are modeled as Poisson-type random arrivals of customers to a representative seller.
The probability (or intensity) of these arrivals is decreasing in the individual seller’s price,
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and it is increasing with the average market price at any given time. Finite player nonzero-
sum stochastic differential games of this type are analytically challenging, even with just two
firms, as shown in [Ledvina (2011), 21]. They become computationally intractable with more
than five firms. To obtain a computationally feasible approximation that yields interpretable
results, we propose a mean field game model, which assumes a continuum of firms across the
inventory space.

A pioneering work by [Belobaba (1987), 1] underscored how initial airline seat inven-
tory practices relied heavily on human judgment to balance discounted and full-fare tickets
for revenue maximization. Recognizing the need for systematic approaches, the Expected
Marginal Seat Revenue model was subsequently introduced [Belobaba (1989), 2], which sig-
nificantly advanced revenue management by incorporating probabilistic decision-making for
optimal booking limits. These analytical methodologies demonstrated substantial economic
benefits. With advances in computational power, dynamic pricing grew prominent across
industries, as extensively reviewed by [McGill and van Ryzin (1999), 24] in the areas of
forecasting, overbooking, seat inventory control, and pricing.

Dynamic pricing and inventory management under stochastic demand were rigorously
formalized in [Gallego and van Ryzin (1994), 15], where they consider a firm operating in
a market with imperfect competition, e.g. a monopoly, such that the firm has the ability
to influence its demand by changing the price of a product. The demand in their model is
given by a Poisson-type process with intensity λ(p), which is non-increasing in price p. At
every arrival, one unit is sold at the quoted price, and inventory is decreased by one, until
it reaches zero. Their framework illustrated the efficacy of dynamic pricing policies.

A related direction is discrete-choice models introduced by [Talluri and van Ryzin (2004),
25], which explicitly incorporated consumer substitution behavior, allowing more realistic
and profitable pricing strategies. Inventory considerations within dynamic pricing contexts
were extensively reviewed by [Elmaghraby and Keskinocak (2003), 12], providing critical
insights applicable across airlines, hospitality, and retail sectors. This broadened the appli-
cability of dynamic pricing methodologies beyond their traditional scopes. A more recent
survey on dynamic pricing (and learning) can be found in [den Boer (2015), 10].

Recent research on oligopolistic airline markets, such as [Betancourt et al. (2022), 3],
extended earlier monopolistic frameworks to duopolies and multi-firm setups, highlighting
strategic interactions under dynamic pricing with finite inventory and selling horizons. They
manage to show improvements in output at the expense of lower welfare levels due to dy-
namic pricing. Integrating machine learning and game theory into revenue management
has also become a prominent area of development. Various methods of game-theory-based
reinforcement learning in oligopolistic contexts are analyzed in [Collins and Thomas (2012),
9], and comparisons between reinforcement learning and data-driven programming are dis-
cussed in [Lange et al. (2025), 20]. However, as shown in [Bondoux et al. (2020), 4], although
these reinforcement learning models may be proven to converge to the optimal solution in
the market, in practice they require very large amounts of data. Due to limitations with
scarce data, we instead introduce a model-based game theoretic approach.

Another branch of literature that is of interest to our paper is stochastic intensity con-
trol, which has also gained considerable attention parallel to revenue management research.
Recognizing the need for stochastic intensity control models in perishable goods pricing, ear-
lier models were generalized to allow nonhomogeneous but deterministic Poisson consumer
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arrival rates in [Zhao and Zheng (2000), 28], significantly improving revenue outcomes com-
pared to static approaches. Competitive revenue management under deterministic demand
arrival rates was analyzed by [Gallego and Hu (2014), 14], who studied dynamic pricing
equilibrium through shadow prices and extended results to stochastic intensity-controlled
games. Similarly, intensity-controlled stochastic exploration in dynamic Cournot games was
studied in [Ludkovski and Sircar (2012), 23], revealing strategic adjustments firms make un-
der uncertainty to manage exhaustible resources. These insights are applicable to stochastic
demand pricing scenarios.

Despite extensive studies on revenue management, intensity control, and their intersec-
tions, mean-field games of intensity control for markets characterized by nonhomogeneous
consumer arrival rates remain unexplored. Our paper fills this gap, providing a novel analysis
of competition through mean-field game theory as an alternative to analytically and numer-
ically challenging finite-horizon multi-firm competitive models. Mean-field game (MFG)
theory is an active research area, thoroughly covered in texts such as [Carmona and Delarue
(2018), 6]. It has been applied to various problems related to ours, including Bertrand and
Cournot mean-field games [Chan and Sircar (2015), 7], optimal exploitation of exhaustible
resources [Graewe et al. (2022), 19], oil markets and fracking [Chan and Sircar (2017), 8],
optimal execution in a dynamic pricing context [Donnelly and Li (2022), 11], portfolio liq-
uidation problems [Fu et al. (2021), 13], or cryptocurrency mining [Li et al. (2024), 22]. In
the context of the latter model, we refer also to the recent existence results for MFGs of
intensity control in [Garćıa et al. (2025), 16].

The remainder of the paper is organized as follows. Section 2 introduces the detailed
model and its associated coupled Hamilton-Jacobi-Bellman and Kolmogorov differential-
difference equations that characterize the mean field market equilibrium. Our main existence
and uniqueness theorems are given in Section 2.3, with their proofs in Appendix C. Section
3 outlines the numerical algorithm, shows our results, discusses the algorithm’s numerical
stability and effectiveness, and presents a preliminary comparison of our model with airfare
data. Finally, Section 4 concludes and discusses directions for future research.

2 Stochastic Intensity Mean Field Game

We consider a continuum of firms distributed across our state space, comprising positive
integers. The states represent the number of remaining items, such as tickets, in each firm’s
inventory. The model encompasses two primary interactions. First, we have the individual
optimization of the firms in response to average market prices, strategically adjusting their
prices based on their competitors’ actions. Second, we have the dynamics of the market
itself, which are shaped by the pricing strategies adopted by each firm. The general market
dynamics and the actions of individual terms are interdependent through the customer arrival
intensity function. A mean field equilibrium is reached when the average of individual firm
best responses to a posited mean price, coincides with that mean price (at every time). In
other words there is an optimization coupled with a fixed point.
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2.1 Model Dynamics

We denote the distribution of firms’ inventories by m(t) = {mk(t)}Kk=0, where mk(t) is the
proportion of the firms with k items in their inventory at time t, and K < ∞ denotes
the maximum possible inventory level. We have

∑K
k=0mk(t) = 1 for all times 0 ≤ t ≤ T ,

where T < ∞ is the event horizon (for instance time of flight or concert). Firms have finite
inventories and are incentivized to sell, as any unsold inventory holds no residual value at
the end of the selling period. The initial inventory distribution is given by mk(0) = Mk.

If we denote a firm’s inventory by X, its dynamics are

dXt = −1{Xt>0}dN
λ
t ,

where Nλ
t is a counting process with stochastic and time-varying intensity λt ≥ 0, meaning

P(Nλ
t+h −Nλ

t = 1) = λth+ o(h), P(Nλ
t+h −Nλ

t ≥ 2) = o(h).

See for instance [Brémaud (1981), 5]. The intensity λt is a function that depends on the
price pt quoted by the firm, the average price p̄(t) in the market, and the firm inventory
distribution m on the state space:

λt = λ(pt, p̄(t),m(t)).

The function λ is assumed decreasing in the firm’s own price pt, so decreasing price increases
the probability of a sale. It is increasing in the average price in p̄(t), so with a higher average
price, a firm will expect more demand.

A representative seller optimizes expected discounted revenue and the value functions
V (t) = {Vk(t)}Kk=0 when they have k tickets at time t ≤ T for each k are given by

Vk(t) = sup
ps≥0

E

{∫ T

t

e−r(s−t)ps1{Xs>0} dN
λ
s | Xt = k

}
,

where the supremum is taken over adapted price trajectories ps over the trading period
t ≤ s ≤ T .

For k ∈ K := {1, . . . , K}, the associated HJB differential-difference equation is

dVk

dt
− rVk + sup

p≥0

{
λ(p, p̄,m)(p−∆Vk)

}
= 0, (2.1)

where we define the discrete difference ∆Vk := Vk−Vk−1. We have the terminal and boundary
conditions

Vk(T ) = 0, k ∈ K, V0(t) = 0, t ∈ [0, T ],

where the first condition means that the remaining goods in the inventory at the end of the
selling period will remain unsold and thus generate no value. The second condition means
for a firm starting the trading period with zero inventory, the value function is identically
zero.

For simplicity, we will consider smooth λ(p, p̄,m), and assume that there is a unique
supremum in (2.1), which is expressed as

p∗k = argmax
p≥0

{
λ(p, p̄,m)(p−∆Vk)

}
.
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We define the mean-field equilibrium average price in the market at time t as:

p̄(t) =
1

η(t;m)

K∑
k=1

mk(t)p
∗
k(t),

where

η(t;m) :=
K∑
k=1

mk(t) = 1−m0(t)

is the proportion of active firms. It is important to note that the inactive sold-out firms are
omitted from the average calculation, as {k = 0} is an absorbing state. We need to keep
track of the inactive firms as they do not affect the average price.

The second main equation for our system, known as the Kolmogorov equation, describes
the time-evolution of the distribution m(t) when the firms set prices {p∗k(t)}Kk=1:

dm0

dt
= λ(p∗1, p̄,m)m1(t),

dmk

dt
= λ(p∗k+1, p̄,m)mk+1(t)− λ(p∗k, p̄,m)mk(t), k ∈ K−1

dmK

dt
= −λ(p∗K , p̄,m)mK(t).

(2.2)

subject to an initial condition mk(0) = Mk, and K−1 := {1, . . . , K − 1}. For example, the
second line of (2.2) describes how mk increases if a firm with inventory k + 1 receives a
demand, therefore its inventory level reduces to k, or how it decreases if a k-inventory firm
receives a demand and drops to k − 1 inventory.

The HJB and Kolmogorov equations together characterize the mean field equilibrium in
the market. Their coupling through the intensity function λ(p, p̄,m) allows us to analyze
the interplay between firm strategies, market dynamics, and the resulting equilibrium as the
system evolves over time.

2.2 Linear Intensity Model

In the remainder of the paper, we work with the linear intensity function

λ(p, p,m) = (a(m)− p+ c(m)p)+, (2.3)

where

a(m) =
1

1 + ϵ
∑K

k=1mk

=
1

1 + ϵη(m)
, c(m) =

ϵη(m)

1 + ϵη(m)
,

and we have suppressed the t-dependence of m and η in the notation. We observe that
a(m) = 1 − c(m). The parameter ϵ ≥ 0 represents the level of competition in the market.
When ϵ = 0, λ(p, p,m) becomes independent ofm and p and the firms behave like monopolies.

The function in (2.3) satisfies ∂pλ ≤ 0 and ∂pλ ≥ 0. Moreover, when all firms are inactive
(m0 = 1, mk = 0 ∀k ∈ K), we have η(m) = 0, and we observe that λ(p, p,m) = (1 − p)+

depends only on p. This shows how a firm becomes closer to a monopoly as the other firms
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exit the market by exhausting their inventories. Our motivation to consider the linear inten-
sity function comes from its derivation in [Chan and Sircar (2015), 7]. Referring to [Vives
(2001), 26, Chapter 6], they consider finitely many agents that have a linear price-demand
relation, and by solving the system of equations relating to the price-demand equilibrium,
they obtain a relation of the form (2.3) in the continuum limit N → ∞. A brief discussion
is given in Appendix A.

Using the expression for λ in (2.3), and suppressing a and c’s dependence onm, we obtain

p∗k =
1

2

(
a+ cp+∆Vk

)+
. (2.4)

As demonstrated in the proof our main theorems, given in Appendix C, the quantity between
the parentheses in (2.4) is non-negative in equilibrium for small enough ϵ, so we can remove
the positive part. Then we obtain a simplified expression for the average price p̄:

p =
1

2− c

(
a+

1

η

K∑
k=1

mk∆Vk

)
.

Plugging these expressions for p∗k and p̄ into (2.1) and (2.2), and defining the function

ϕϵ(V,m) :=
1

2 + ϵη(m)

( K∑
k=1

mk∆Vk − η(m)
)
,

we arrive at the coupled system of differential equations that together govern the dynamics
of the model:

dVk

dt
− rVk +

1

4

(
1−∆Vk + ϵϕϵ(V,m)

)2
= 0, k ∈ K

dmk

dt
−
[
1

2

(
1−∆Vk+1 + ϵϕϵ(V,m)

)
mk+1 −

1

2

(
1−∆Vk + ϵϕϵ(V,m)

)
mk

]
= 0, k ∈ K−1

dm0

dt
− 1

2

(
1−∆V1 + ϵϕϵ(V,m)

)
m1 = 0,

dmK

dt
+

1

2

(
1−∆VK + ϵϕϵ(V,m)

)
mK = 0,

Vk(T ) = 0, k ∈ K, mk(0) = Mk, k ∈ K.

(2.5)

A direct observation shows that when the interaction parameter ϵ is identically zero, the two
main equations relating V and m are decoupled. We argue that in the case of non-zero but
sufficiently small competition (ϵ > 0), we can prove existence and uniqueness by linearizing
the system around the monopoly case and using the Schauder Fixed Point Theorem [Gilbarg
and Trudinger (2001), 17, Corollary 11.2, p. 280]. Our proofs are related to those for the
continuous-space Cournot exhaustible resources oil extraction MFG model in [Graber and
Sircar (2023), 18].

2.3 Main Results

The following proposition will be useful in the proofs of the main theorems.
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Proposition 2.1. For ϵ = 0, a solution (V (0),m(0)) = ({V (0)
k }Kk=1, {m

(0)
k }Kk=1) to the system

of differential equations (2.5) exists and is unique. Further, for all k ∈ K, and t ∈ [0, T ], we
have

0 ≤ ∆V
(0)
k (t) ≤ 1− 2ρ < 1

d∆V
(0)
k

dt
(t) ≤ 0

0 ≤ η(0)(t;m(0)) ≤ 1

0 ≤ m
(0)
k (t) ≤ 1,

(2.6)

where ρ =
√
r2 + r − r ∈ [0, 1

2
). Consequently, for λ

(0)
k (t) =

1

2
(1−∆V

(0)
k (t)), we have

ρ ≤ λ
(0)
k (t) ≤ 1

2
.

The proof is given in Appendix B. The bounds (2.6) are in line with our expectations

for a solution that is economically sensible. The parameter λ
(0)
k represents customer arrival

rates, hence it should be non-negative as depicted. Similarly, the variables mk and η signify
proportions, and thus it is crucial for these values to lie within the range [0, 1] to align

with economic rationale. A noteworthy detail is that the λ
(0)
k has a lower bound of ρ > 0,

uniformly across k and in t.
Our two main theorems are the following:

Theorem 2.2. In the setting described above, for any initial inventory distribution {Mk}0≤k≤K,
interest rate r > 0 and time horizon T > 0, there exists a solution {Vk(t),mk(t)}0≤k≤K to
the HJB-Kolmogorov system of equations if the interaction parameter ϵ > 0 is less than some
constant C1, which depends on the model parameters T, K, r.

Theorem 2.3. In the setting described above, for any initial inventory distribution {Mk}0≤k≤K,
interest rate r > 0 and time horizon T > 0, there exists an upper bound C2 < C1 such that
if ϵ < C2, then the solution exists and is unique.

The proofs of these theorems are in Appendix C. For the proof of existence, we consider
first-order deviations of the solution (V,m) to (2.5), from the monopolist solution (V (0),m(0)),
prescribe a compact set as their domain M , and derive the differential equations that control
them. Deriving the integral operators whose fixed points give the solutions to the differential
equations, we apply the Schauder Fixed Point Theorem after checking for the operator
properties such as mapping M into itself, continuity, and precompactness of the image of
M . For uniqueness, we utilize an energy identity. Assuming two solutions to (2.5), we prove
under restrictions on ϵ that the solutions are indeed the same.

These theorems highlight the existence and structure of equilibrium solutions, laying a
solid foundation for subsequent numerical investigations in Section 3.
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3 Numerical Results

In this section, our primary goal is to establish a numerical method for computing the mean-
field equilibrium. Subsequently, we will demonstrate the convergence of our theoretical
findings to the numerical results in the limit ϵ → 0. Finally, we will conclude this section
by conducting an in-depth analysis of the numerical stability of our solution strategy and
explore various ways to establish theoretical convergence proofs.

3.1 Algorithm

As discussed in Section 2, the mean-field equilibrium characterizes a state in which the
aggregate behavior of the continuous set of players reaches a fixed point of an optimization
problem. In this equilibrium, each player autonomously adopts a Markovian strategy to
optimize their individual value function while taking into account the collective behavior of
the entire population. As a result, these individually optimized strategies jointly contribute
to the overall movement of the population as initially assumed. Our algorithm for finding
this fixed point is as follows:

Step 0: Initial guess

Begin with an initial guess (p̄(0)(t),m(0)(t)), and for n = 0, 1, 2, ... do the following steps:

Step 1: Solving the HJB equation

We discretize the HJB equation in time. Using the initial guess (p̄(n)(t),m(n)(t)), we employ
the Runge-Kutta method for ODEs of order 5(4) to solve.

dVk

dt
− rVk + sup

p

{
λ(p, p̄(n)(t),m(n)(t))(p−∆Vk)

}
= 0, k ∈ K

with the terminal condition Vk(T ) = 0. Using the solution, find the prices p
∗(n)
k (t) and

intensities λ
∗(n)
k (t) := λ(p

∗(n)
k (t), p̄(n)(t),m(n)(t)).

Step 2: Solving the Kolmogorov equation

Using intensities in step 1, find m(n+1)(t) by solving the Kolmogorov equation:

dm
(n+1)
0

dt
= λ

∗(n)
1 (t)m

(n+1)
1

dm
(n+1)
k

dt
= −λ

∗(n)
k (t)m

(n+1)
k + λ

∗(n)
k+1(t)m

(n+1)
k+1 , k ∈ K−1

dm
(n+1)
K

dt
= −λ

∗(n)
K (t)m

(n+1)
K

similarly. Using the solution, find p̄(n+1)(t):

p̄(n+1)(t) =

∑K
k=1m

(n+1)
k (t)p

∗(n)
k (t)∑K

k=1m
(n+1)
k

.
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If (p̄(n+1)(t), m(n+1)(t)) and (p̄(n)(t), m(n)(t)) are sufficiently close to each other, we termi-
nate. Otherwise, we go back to Step 1 with the newly computed (p̄(n+1)(t), m(n+1)(t)).

Remarks on the algorithm

• As a proxy for distance between (p̄(1)(t),m(1)(t)) and (p̄(2)(t),m(2)(t)), we take

Lp̄(p̄
(1), p̄(2)) :=

∫ T

0

∣∣p̄(1)(t)− p̄(2)(t)
∣∣2dt,

Lm(m
(1),m(2)) :=

K∑
k=0

∫ T

0

∣∣m(1)
k (t)−m

(2)
k (t)

∣∣2dt,
L((p̄(1),m(1)), (p̄(2),m(2))) := Lp̄(p̄

(1), p̄(2)) + Lm(m
(1),m(2)).

• We calculate the time integrals for the error term using the same partition as we had
while solving HJB and Kolmogorov equations.

3.2 Numerical Stability and Convergence of the Algorithm

To test the numerical stability of the algorithm and the uniqueness of the equilibrium point,
we simulate a sample system with N -many random initial guesses and check the correspond-
ing value functions {V (1)

k (t), . . . , V
(N)
k (t)}, price profiles {p̄(1)k (t), . . . , p̄

(N)
k (t)} and inventory

distributions {m(1)
k (t), . . . ,m

(N)
k (t)}.

For each quantity, for each time point t, and for each level k > 0, we calculate the “coefficient
of variation” (standard deviation / mean) from N samples and finally, take the supremum
of this quantity over the entire period, among all the levels.
Mathematically, for a generic quantity {qk(t)}K,T

k=1,t=0, we use the following formula:

CVq = sup
k∈K,t∈[0,T ]

√
1
N

[∑N
n=1

(
q
(n)
k (t)− 1

N

∑N
m=1 q

(m)
k (t)

)2]
1
N

∑N
n=1 q

(n)
k (t)

.

For the values N = 10, T = 200, r = 0.04, ϵ = 0.4, we find

CVV ≈ 4× 10−11, CVp̄ ≈ 5× 10−12, CVm ≈ 2× 10−8.

Based on our observations, the convergence is typically achieved in 6 steps, and the propor-
tional decrease in error remains consistent after the first step. Notably, the proportionality
constant changes with ϵ, with smaller values of ϵ leading to faster convergence. This aligns
with expectations, as for ϵ = 0, convergence occurs in a single iteration due to the indepen-
dence of the HJB solution from m(t), p̄(t).
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3.3 Algorithm Results

We set K = 100, T = 200 days, r = 0.04 per day. For the initial distribution, we give
a “bimodal-like” distribution, comprising two groups of firms uniformly distributed over
k ∈ {20, . . . , 24}∪{50, . . . , 54}, that is, a low-inventory and a high-inventory group. For our
initial condition on m, we get the following graphs which shows the concavity of V in k at
the starting time t = 0, by demonstrating diminishing marginal returns principle in action:
We see that incremental gains from additional inventory reduce as inventory level increases,
due to saturation and increased urgency to sell before expiration.

Figure 1: Concavity of V in k

In Figure 2, we plot the cumulative distribution function (CDF) of m at three time
instances over inventory level k, for ϵ ∈ {0, 0.4}. The plots show that with increased com-
petition, the market is slower, that is, the firms sell at a slower rate (evidenced by lagging
densities when ϵ = 0.4). As firms get more competitive, we get a more stable inventory flow.
This suggests that intensified competition leads firms to behave cautiously, pricing tickets
more conservatively to avoid rapid inventory depletion and subsequent competitive disadvan-
tage. Hence, increased competition fosters more stable inventory dynamics, ensuring firms
maintain availability throughout the selling period.

Figure 3 reinforces this interpretation by displaying optimal price strategies under varying
competition levels. Increased competition results in uniformly lower optimal prices across
inventory levels, confirming competitive pressures incentivize price reductions to attract cus-
tomers. Furthermore, higher inventory levels consistently translate to lower prices, indicating
urgency in inventory liquidation as the time horizon shortens. This strategic pricing behavior
highlights the necessity of balancing revenue generation with the risk of unsold inventory.
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Figure 2: Evolution of CDF of m(t) at given times for varying ϵ.

Figure 3: Evolution of optimal price p∗(t) at given times for varying ϵ.
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(a) Ratio of active firms η(t) for different ϵ. (b) Average price p̄(t) for different ϵ.

Figure 4: Comparisons for varying ϵ values.

Figure 4 displays the time-evolutions of two important market quantities, proportion of
active firms η(t) and average price in the market p̄(t) for varying ϵ. The slower rate of selling
with higher competition levels is also inferred from the proportion of active firms Figure 4a,
as an increased proportion of firms are actively selling inventory over extended periods. In
Figure 4b, as expected with more competition, average market price decreases, benefiting
consumers. These two effects together underscore competition’s role in prolonging market
participation, allowing consumers greater purchasing flexibility.

In particular, the inflection points of the p̄(t) curve in Figure 4b correspond to key
moments in the evolution of firm density, enhancing the interpretability of the results. The
first inflection occurs when the low-inventory group begins to sell out; the second appears
as this group approaches complete exit from the market; and the third inflection marks the
start of market exit by the high-inventory group.

Figure 5: Density m(t) at inflection points

The model is showing promising results in applicability to real-world data. To see a
demonstration on airplane ticket pricing, we used average flight price data (collected on
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Tuesdays) for Tuesday morning flights from Chicago O’Hare International Airport (ORD)
to New York LaGuardia Airport (LGA), covering five major airlines [Wong (2021), 27]. Our
selection criteria focused on flights predominantly taken by business travelers, with the aim
of minimizing the price discrimination effects, which are not in the scope of our model.

Figure 6 presents a comparison between the normalized average flight prices on a Tuesday
(plots are for September 20, 2022), and the prices predicted by our model. The main
difference is the terminal price drop observed in the numerical results but not in the real-
world data. This difference can be interpreted to be caused by the fact that pricing is a
repeated game with consumers capable of learning in the real world. As a result, firms have
little incentive to sharply lower prices in the final days before a flight. On the other hand,
our model is a non repeated game in continuous time with no carryover of information, and
firms are shown to prefer aggressive end-of-period price reductions to generate some value
compared to the zero value of unsold inventories.

Figure 6: Our numerical solution and ORD → LGA Tuesday morning flight pricing data

4 Conclusion

In this paper, we introduced a novel existence and uniqueness result for a finite-state mean
field game of stochastic intensity control, using differential equations methods. Our approach
aims to provide a new perspective on analyzing such games in revenue management, and
also to contribute additional tools for studying state mean field interactions in discrete-state
settings.

We note that our ticket-selling model can be generalized to encompass a variety of sit-
uations seen in the real markets. One of these situations is the option of reselling by the
customers. In this case, the price for reselling should also be another control parameter. This
can be readily applied in our framework. Another example is the firm overselling. In this
instance, firms have the option to oversell their tickets at the cost of paying high penalties
at the end of the trading period if they oversell by that time. This example is seen in the
airline companies for instance. Our model can be used to understand whether this scheme
leads to economically good results for the customers similar to the firm competition. In
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the computations for the overselling setup, the value functions of the following form can be
considered:

Vk(t) = sup
ps≥0

E

{∫ T

t

e−r(s−t)ps1{Xs>0}dN
λ
s + e−r(T−t)Ψ(XT )

∣∣∣Xt = k
}
,

where Ψ(XT ) is a penalty function for overselling, where Ψ(x) = 0 for x ≥ 0, further tailored
to suit the desired market model.

We can extend number of tickets being sold at every arrival by considering N as a marked
point process. In realistic situations, groups of people traveling together, such as families,
would buy their tickets together at the same time, if there is sufficient inventory. Therefore,
in our model, each arrival can be associated with a random number of sales, such that the
HJB equation becomes

dVk

dt
− rVk + sup

p≥0

{ J∧k∑
j=1

λkπj

[
jp− (Vk − Vk−j)

]}
= 0,

and Kolmogorov equations can be written as

dmk

dt
−
( J∧K−k∑

j=1

πjλk+jmk+j − λkmk

)
= 0,

subject to same initial and terminal conditions as in (2.5).
More general intensity models: as we showed in Appendix C, the existence and uniqueness

of a fixed point can be proven for a sufficiently small interaction parameter. Our proof relied
upon topological fixed point theorems and an energy identity. These methods are rather
canonical, and therefore, the results can be generalized to a larger class of intensity functions.
For the sake of brevity, in this paper, we only considered a piecewise-linear case.

We aim to extend our model to incorporate cancellations and refund mechanisms, as
experienced in real world due to catastrophes or disruptions such as pandemics, weather
anomalies, natural disasters, especially relevant for airline or hospitality industries. Further
analysis can also be conducted in the presence of abundant data, both on its own using
techniques such as reinforcement learning to approach this problem, and in addition to our
method by calibrating the model parameters.

A Brief Review and Limit of the Finite-Player Case

We show that the consumer preferences in our model can be derived from Quasilinear
Quadratic Utility Model (QQUM). Letting q = (qi)

N
i=1, a suitable utility function is

U(q) =
N∑
i=1

qi −
1

2

(
N∑
i=1

q2i +
ϵ

N − 1

∑
j ̸=i

qiqj

)
.
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The first-order condition of the utility maximization problem max
q∈RN

+

U(q)− pq for a represen-

tative consumer yields the inverse demand functions:

qi = Di(p) =

{
an − bnpi + cnp̄

n
i , i = 1, 2, · · · , n

0, i = n+ 1, · · · , N

where n-many firms receive positive demands, and thus, are active and produce positive
quantities, and the rest of the firms are inactive [Vives (2001), 26, see Chapter 6 for more
details]. These constants can be calculated as

an =
1

1 + ϵ n−1
N−1

, bn =
1 + ϵ n−2

N−1

(1 + ϵ n−1
N−1

)(1− ϵ
N−1

)
, cn =

ϵ n−1
N−1

(1 + ϵ n−1
N−1

)(1− ϵ
N−1

)
. (A.1)

In the context of our paper, for very large (n, N), n−1
N−1

→ η(m) (the proportion of active

firms), and 1
N−1

→ 0. Consequently, the equations in (A.1) become

a(m) =
1

1 + ϵη(m)
, b(m) = 1, c(m) =

ϵη(m)

1 + ϵη(m)
,

concluding the justification about our demand arrival process rate of

λ(p, p,m) = (a(m) + c(m)p− p)+.

B Proof of Proposition 2.1

B.1 The inductive setup for Picard-Lindelöf theorem

As the HJB equations become independent from the Kolmogorov equations when ϵ = 0, we
shall start by first solving for V

(0)
k ’s, proceeding by induction on k. Remember that the HJB

equations are given by

dV
(0)
k

dt
− rV

(0)
k +

1

4
(1−∆V

(0)
k )2 = 0. (B.1)

Suppose, for an induction argument, that the bounds in Proposition 2.1 hold for some k.
From (B.1), we get

d∆V
(0)
k+1

dt
+

1

4
(Ak −∆V

(0)
k+1)(Bk −∆V

(0)
k+1) = 0, (B.2)

where we defined

Ak(t) = 1 + 2r −
√

(1 + 2r)2 − 1 + (1−∆V
(0)
k (t))2

Bk(t) = 1 + 2r +

√
(1 + 2r)2 − 1 + (1−∆V

(0)
k (t))2.

15



Now we argue that a unique solution to (B.2) exists in [0, T ] and further it satisfies

0 ≤ ∆V
(0)
k+1(t) < Ak(t) for all t ∈ [0, T ]. Introducing a new variable

z(t) =
1

Ak(t)−∆V
(0)
k+1(t)

,

and 0 < z(T ) ≤ z(t) < ∞ for all t ∈ [0, T ]. Notice that for z, (B.2) can be written as

dz

dt
+

1

4
(Bk − Ak)z + A′

kz
2 +

1

4
= 0. (B.3)

B.2 Inductive step, proving existence and uniqueness of ∆V
(0)
k

By Picard-Lindelöf theorem, it suffices to show that the solution does not blow up for any
t0 ∈ [0, T ]. Therefore, we will now bound the solution from above and below. We can rewrite
(B.3) as

z′ + 2αz − βz2 + γ = 0,

where α(t), β(t), γ(t) are non-negative functions following from Bk(t)−Ak(t) ≥ 0 and A′
k(t) ≤

0. Change of variables z̃(t) = z(t)e
∫ t
0 α(s)ds yields

z̃′ − β̃z̃2 + γ̃ = 0

where β̃(t) = β(t)e−
∫ t
0 α(s)ds ≥ 0 and γ̃(t) = γ(t)e

∫ t
0 α(s)ds ≥ 0. Then the upper bound for z̃(t)

can be shown by

z̃(t) ≤ z̃(T ) +

∫ T

0

γ̃(s)ds

Conversely for the lower bound, inspecting (1/z̃)
′
+ β̃ − γ̃/z̃2 = 0 allows us to show that

z̃(t) ≥
( 1

z̃(T )
+

∫ T

0

β̃(s)ds
)−1

This concludes the proof that a solution ∆V
(0)
k+1 in [0, T ] exists and is unique. Further for

all t ∈ [0, T ]

0 ≤ ∆V
(0)
k+1(t) ≤ Ak(t) ≤ 1 + 2r − 2

√
r2 + r = 1− 2δ

and
d∆V

(0)
k+1

dt
(t) ≤ 0, which is observed readily from (B.3) and the fact that Bk ≥ Ak. This

concludes the inductive step. Now let us prove it for the base case.

B.3 Base case, proving existence and uniqueness of V
(0)
k

In this case, we have

d∆V
(0)
1

dt
+

1

4
(A1 −∆V

(0)
1 )(B1 −∆V

(0)
1 ) = 0,
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where

A1 = 1 + 2r − 2
√
r2 + r

B1 = 1 + 2r + 2
√
r2 + r.

Since A1 and B1 have no dependence on t, the solution has an explicit form.

∆V
(0)
1 (t) = A1

1

1 +
B1 − A1

A1

(e
√
r2+r(T−t) − 1)

.

It is seen that ∆V
(0)
1 satisfies the appropriate conditions. This concludes the proof that there

exists a unique solution to V
(0)
k in [0, T ].

B.4 Proving existence and uniqueness of m
(0)
k

With the results for V
(0)
k in mind, recall that the Kolmogorov equations are

dm
(0)
k

dt
− (λ

(0)
k+1m

(0)
k+1 − λ

(0)
k m

(0)
k ) = 0, k ∈ K−1

dm
(0)
K

dt
+ λ

(0)
K m

(0)
K = 0,

with the initial condition m
(0)
k (0) = Mk, satisfying 0 ≤ Mk ≤ 1,∀k ∈ K and

∑K
k=0Mk = 1.

Consequently, we have the following solutions

m
(0)
K (t) = MK exp

(
−
∫ t

0

λ
(0)
K (s)ds

)
m

(0)
k (t) = exp

(
−
∫ t

0

λ
(0)
k (s)ds

)[
Mk +

∫ t

0

λ
(0)
k+1(s)m

(0)
k+1(s) exp

(∫ s

0

λ
(0)
k (u)du

)
ds

]
, k ∈ K−1.

(B.4)

Since MK ≥ 0 and all the other terms are nonnegative in (B.4), by induction, we can see

that ∀k ∈ K, ∀t ∈ [0, T ], m
(0)
k (t) ≥ 0.

Further, for η(0)(t;m(0)) =
∑K

k=1m
(0)
k (t), we have

dη(0)

dt
= −λ

(0)
1 m

(0)
1 ,

with η(0)(0;m(0)) = 1 (assuming without loss of generality that no firms start with zero
inventory). Therefore η(0)(t;m(0)) ≤ 1 for t ∈ [0, T ], and this implies that for all t ∈ [0, T ]

0 ≤ m
(0)
k (t) ≤ 1, k ∈ K.

This concludes the proof.
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C Proofs of Existence and Uniqueness

C.1 Proof of Existence

Let us denote the monopolist solution as (V (0),m(0)), and define the first-order deviations

V (1) = {V (1)
k }Kk=1 and m(1) = {m(1)

k }Kk=1 by

Vk = V
(0)
k + ϵV

(1)
k

mk = m
(0)
k + ϵm

(1)
k ,

where V
(1)
k and m

(1)
k will depend on ϵ. We will consider the vector space of continuous

functions

B := {(V (1)
1 , . . . , V

(1)
K ,m

(1)
1 , . . . ,m

(1)
K ), V

(1)
k ,m

(1)
k ∈ C([0, T ]), k ∈ K},

and the uniform norm

∥(V (1),m(1))∥B =
K∑
k=1

∥V (1)
k ∥∞ +

K∑
k=1

∥m(1)
k ∥∞.

With this norm, B is a Banach space. Vector addition and scalar multiplication are defined
elementwise and pointwise as usual.

C.1.1 Outline of the proof process

By formulating two operators R and S, we will transform our problem into finding a fixed
point (V (1), m(1)), such that

V
(1)
k = Rk(V

(1),m(1)), k ∈ K
m

(1)
k = Sk(V

(1),m(1)), k ∈ K.

To use the Schauder Fixed Point Theorem, we will first define the mapping Γ:

Γ((V (1),m(1))) = (R1(V
(1),m(1)), ..., RK(V

(1),m(1)), S1(V
(1),m(1)), ..., SK(V

(1),m(1))).

Then, we will find the bounds {CV
k , C

m
k }Kk=1 such that the following closed and convex ellip-

soid
M := {(V (1),m(1)) ∈ B : ∥V (1)

k ∥∞ ≤ CV
k , ∥m(1)

k ∥∞ ≤ Cm
k , k ∈ K}

is mapped into itself under Γ. Thereafter by proving that Γ is continuous and Γ(M) is
precompact (i.e. its closure is compact), we will prove the existence of a fixed point.

In the proof, we will derive the operators and define the bounds {CV
k }Kk=1 and {Cm

k }Kk=1

as functions solely dependent on the external parameters: T,K, r. Subsequently, we will
prove that for a sufficiently small ϵ > 0, the mapping Γ maps M into itself. Next, we will
establish the continuity of Γ with respect to the norm ∥ · ∥B. And finally, we will show that
the family Γ(M) of functions is equicontinuous and pointwise-bounded, which will allow us
to conclude that Γ(M) is precompact by the Arzela-Ascoli Theorem.
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C.1.2 Deriving the integral operators

Our strategy is to linearize (2.5) and solve it using Schauder’s Fixed Point Theorem. To
begin, let us establish the following notations:

η(0) =
K∑
k=1

m
(0)
k , η(1) =

K∑
k=1

m
(1)
k ,

ϕ(0) = ϕ0(V
(0),m(0)) =

1

2

( K∑
k=1

m
(0)
k ∆V

(0)
k − η(0)

)
.

(C.1)

Aiming to satisfy ϕϵ(V
(1),m(1)) = ϕ(0) + ϵϕ(1), we define the first-order perturbation term

ϕ(1) as

ϕ(1) =
1

2 + ϵ(η(0) + ϵη(1))

(
− (η(0) + ϵη(1))ϕ(0) +

K∑
k=1

m
(1)
k ∆V

(0)
k +

K∑
k=1

m
(0)
k ∆V

(1)
k − η(1)

)
Then the first equation in (2.5) becomes

dV
(1)
k

dt
− (λ

(0)
k + r)V

(1)
k + λ

(0)
k (ϕ(0) + V

(1)
k−1) + ϵΛV

k = 0,

where λ
(0)
k and ΛV

k are defined in the following way:

λ
(0)
k =

1

2
(1−∆V

(0)
k )

ΛV
k = λ

(0)
k ϕ(1) +

1

4

(
ϕ(0) −∆V

(1)
k + ϵϕ(1)

)2
.

Let us introduce the integral operator

Rk(V
(1),m(1))(t) =

∫ T

t

e−
∫ s
t (λ

(0)
k (s′)+r)ds′

(
λ
(0)
k (ϕ(0) + V

(1)
k−1) + ϵΛV

k

)
ds. (C.2)

With this definition, our problem is transformed into finding a fixed point V (1) under R,
that is, for k ∈ K, V

(1)
k = Rk(V

(1),m(1)).
Similarly, let us derive an integral operator for m(1). We start by defining

λ
(1)
k =

1

2

(
ϕ(0) −∆V

(1)
k + ϵϕ(1)

)
,

the first-order deviation from λk such that λk ≡
1

2
(1−∆Vk + ϵϕϵ) = λ

(0)
k + ϵλ

(1)
k . We observe

that positivity of λk is preserved for small enough ϵ > 0.
We further define

Λm
k = m

(1)
k+1λ

(1)
k+1 −m

(1)
k λ

(1)
k , for k ∈ K−1 and Λm

K = −m
(1)
K λ

(1)
K

to simplify the Kolmogorov equations in (2.5) and arrive at the integral operator:

Sk(V
(1),m(1))(t) =

∫ t

0

e−
∫ t
s λ

(0)
k (s′)ds′

(
m

(1)
k+1λ

(0)
k+1 +m

(0)
k+1λ

(1)
k+1 −m

(0)
k λ

(1)
k + ϵΛm

k

)
ds k ∈ K−1

SK(V
(1),m(1))(t) =

∫ t

0

e−
∫ t
s λ

(0)
k (s′)ds′

(
−m

(0)
K λ

(1)
K + ϵΛm

K

)
ds.

(C.3)
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C.1.3 Bounding the operators from above

In order to show the results of existence, we determine that we can set {CV
k }Kk=1 and {Cm

k }Kk=1

recursively as follows:

CV
1 = 2K CV

k = 2CV
k−1 + 2K, k ∈ {2, . . . , K}

Cm
K = TK2K+5 Cm

k = TCm
k+1 + TK2K+5, k ∈ K−1.

We observe that for all k ∈ K, we have CV
k ≤ CV

K and Cm
k ≤ Cm

0 . From the definition of ϕ(0)

(C.1), we have

∥ϕ(0)∥∞ ≤ 1

2

( K∑
k=1

∥m(0)
k ∥∞∥∆V

(0)
k ∥∞ + ∥η(0)∥∞

)
≤ K.

In order to bound ϕ(1), we take ϵ > 0 small enough such that

∥ϕ(1)∥∞ ≤

∥∥∥∥∥ 1

2 + ϵ((η(0) + ϵη(1)))

∥∥∥∥∥
∞

(
∥η(0) + ϵη(1)∥∞∥ϕ(0)∥∞+

K∑
k=1

∥m(1)
k ∥∞∥∆V

(0)
k ∥∞ +

K∑
k=1

∥m(0)
k ∥∞∥∆V

(1)
k ∥∞

+ ϵ
K∑
k=1

∥m(1)
k ∥∞∥∆V

(1)
k ∥∞ + ∥η(1)∥∞

)
≤ 2KCm

0 + 4KCV
K ,

where we used the facts that 0 ≤ η(0)(t) ≤ 1 for all t ∈ [0, T ] and 0 ≤ m
(0)
k (t) ≤ 1 for all

k ∈ K, t ∈ [0, T ] (proved in Appendix B). Similarly, for {λ(1)
k }Kk=1 we get

∥λ(1)
k ∥∞ ≤ K

2
+ CV

K +
ϵ

2
∥ϕ(1)∥∞.

Consequently,

∥Sk(V
(1),m(1))∥∞ ≤ T

(
∥λ(0)

k+1∥∞∥m(1)
k+1∥∞ + ∥m(0)

k+1∥∞∥λ(1)
k+1∥∞+

∥m(0)
k ∥∞∥λ(1)

k ∥∞ + ϵ∥Λm
k ∥∞

)
≤ T

2

(
Cm

k+1 + 2K + 4CV
K

)
+ ϵT

(
∥ϕ(1)∥∞ + ∥Λm

k ∥∞
)
,

where we used the bound ∥λ(0)
k ∥∞ ≤ 1/2 (Appendix B). As Λm

k can be bounded by ∥Λm
k ∥∞ ≤

2Cm
0 (CV

K +
ϵ

2
∥ϕ(1)∥∞) , we can take ϵ > 0 small enough such that for all k ∈ K−1,

ϵ(∥ϕ(1)∥∞ + ∥Λm
k ∥∞) ≤ 1

2
(Cm

k+1 + 2K + 4CV
K).
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Then we get, for k ∈ K,

∥Sk(V
(1),m(1))∥∞ ≤ T

(
Cm

k+1 + 2K + 4CV
K

)
≤ Cm

k ,

by observing that, for example, ∥Λm
K∥∞ can be bounded above with the same constant we

use for ∥Λm
K−1∥∞ to conclude for the case when k = K. This is what we wanted.

Similarly, for integral operators {Rk}Kk=1 (C.2) related to HJB equations, for sufficiently
small ϵ > 0 we have

∥Rk(V
(1),m(1))∥∞ ≤ ∥ϕ(0) + V

(1)
k−1∥∞ + ϵ

∥∥∥∥∥ 1

λ
(0)
k

∥∥∥∥∥
∞

∥ΛV
k ∥∞

≤ CV
k

2
+ ϵ

∥∥∥∥∥ 1

λ
(0)
k

∥∥∥∥∥
∞

∥ΛV
k ∥∞ ≤ CV

k ,

using the fact (proved in Appendix B) that max
k∈K

∥∥∥∥∥ 1

λ
(0)
k

∥∥∥∥∥
∞

< ∞.

C.1.4 Applying Schauder Fixed Point Theorem

Now, we have Γ(M) ⊂ M . The continuity of Γ : M → M is clear. For compactness,
observe that the integrands in Rk (C.2) and Sk (C.3) can be uniformly bounded. Namely,
we have a constant C that depends only on the external parameters T,K, r such that for all
(V (1),m(1)) ∈ M , for all t, s ∈ [0, 1] and for all k ∈ K, we have

|Rk(V
(1),m(1))(t)−Rk(V

(1),m(1))(s)| ≤ C|t− s|
|Sk(V

(1),m(1))(t)− Sk(V
(1),m(1))(s)| ≤ C|t− s|.

This shows that the family of functions Γ(M) is uniformly equicontinuous. Since we are using
a uniform norm on our Banach space, the family clo(Γ(M)) is also a uniformly equicontin-
uous family, and since M is a closed set, we have clo(Γ(M)) ⊂ M . Hence clo(Γ(M)) is
uniformly bounded. Consequently, by the d-dimensional Arzela-Ascoli Theorem, clo(Γ(M))
is a compact set. Then by the Schauder Fixed Point Theorem, we conclude that there exists
(V (1),m(1)) ∈ M such that for all t ∈ [0, T ]

V
(1)
k (t) =

∫ T

t

e−
∫ s
t (λ

(0)
k +r)ds′

(
λ0
k(ϕ

(0) + V
(1)
k−1) + ϵΛV

k (V
(1),m(1))

)
ds, k ∈ K (C.4)

and

m
(1)
k (t) =

∫ t

0

e−
∫ t
s λ

(0)
k (s′)ds′

(
λ
(0)
k+1m

(1)
k+1 −

(
m

(0)
k+1λ

(1)
k+1 −m

(0)
k λ

(1)
k

)
+ ϵΛm

k (V
(1),m(1))

)
ds, k ∈ K−1

m
(1)
K (t) =

∫ t

0

e−
∫ t
s λ

(0)
k (s′)ds′

(
m

(0)
K λ

(1)
K + ϵΛm

K(V
(1),m(1))

)
ds.

(C.5)
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Differentiating both sides of(C.4) and (C.5) with respect to t, we conclude that

Vk(t) := V
(0)
k (t) + ϵV

(1)
k (t), k ∈ K

mk(t) := m
(0)
k (t) + ϵm

(1)
k (t), k ∈ K

is a solution to our set of coupled ordinary differential equations (2.5).

C.2 Proof of Uniqueness

It is important to note that the Schauder Fixed Point Theorem does not guarantee unique-
ness. In fact, establishing a priori uniqueness of a solution is not evident from the outset
in the context of economic considerations. Nevertheless, when the interactions between the
firms are sufficiently small, we can indeed prove uniqueness.

C.2.1 Setup and result for when ϵ = 0

We shall use an energy identity to prove that the solution is unique. To begin, suppose that
(V [1],m[1]) and (V [2],m[2]) are two solutions to the equations:

dVk

dt
− rVk +Hk = 0, k ∈ K

dmk

dt
− (Gk+1mk+1 −Gkmk) = 0, k ∈ K

(C.6)

where, for k ∈ K, we defined

Gk =
1

2

(
1−∆Vk + ϵϕϵ

)
Hk = G2

k =
1

4

(
1−∆Vk + ϵϕϵ

)2
,

with the understanding that GK+1 = 0. For the sake of notational brevity, let us denote
δL := L[2] − L[1] for any generic quantity L. Applying δ to (C.6), multiplying the first
equation by δmk and the second by δVk, and adding them yields

2
dδmkδVk

dt
− rδmkδVk + δmkδHk − δVk(δ(Gk+1mk+1)− δ(Gkmk)) = 0. (C.7)

Since the two solutions agree on the initial and terminal conditions, we have

δVk(T ) = 0, δmk(0) = 0, k ∈ K.

We integrate (C.7) and sum over all k ∈ K. Then, by discrete integration-by-parts, we get∫ T

0

e−rt

K∑
k=1

{
δmkδHk + δ(∆Vk)δ(Gkmk)

}
dt = 0. (C.8)

We will now individually target the terms. To simplify this expression, let us introduce
another notation: For any generic quantity L, denote L := (L[1] + L[2])/2. We have the

22



identity δ(LF ) = FδL + LδF for another generic quantity F . Using the definitions for Hk

and Gk yields ∀k ∈ K,

δHk = 2GkδGk = −1

2
δ(∆Vk)

(
1−∆Vk

)
+ ϵZk

δ(Gkmk) =
1

2

(
δmk(1−∆Vk)− δ(∆Vk)mk)

)
+ ϵζk,

where we defined

Zk = −1

2

(
ϕϵδ(∆Vk)− δϕϵ(1−∆Vk)

)
+

ϵϕϵ

2
δϕϵ, ζk =

1

2

(
ϕϵδmk +mkδϕϵ

)
.

Then, (C.8) becomes

1

2

∫ T

0

e−rt

K∑
k=1

mk(δ(∆Vk))
2dt = ϵ

∫ T

0

e−rt

K∑
k=1

{
Zkδmk + ζkδ(∆Vk)

}
dt. (C.9)

Notice that for ϵ = 0, we can conclude that V [1] = V [2] by non-negativity of the left-hand-side
integrand. Then, after applying δ to second line in (C.6):

dδmk

dt
− (δ(Gk+1mk+1)− δ(Gkmk)) = 0, k ∈ K, (C.10)

we can observe that m[1] = m[2] as well, when ϵ = 0.

C.2.2 Uniqueness of V in the general case

For the general case when ϵ > 0, we need to compute the expression on the right-hand side
of (C.9) explicitly. To begin, let us observe that

Zkδmk + ζkδ(∆Vk) =
δϕϵ

2

(
mkδ(∆Vk) + δmk(1−∆Vk)

)
+

ϵϕϵ

2
δϕϵδmk.

Therefore,

K∑
k=1

Zkδmk + ζkδ(∆Vk) =
1

2
δϕϵ

K∑
k=1

(
mkδ(∆Vk) + δmk(1−∆Vk)

)
+

ϵϕϵ

2
δϕϵδη. (C.11)

Now let us find δϕϵ. Recall that we have

(2 + ϵη)ϕϵ =
K∑
k=1

mk(1−∆Vk).

Applying the difference operator δ on both sides, we have

(2 + ϵη)δϕϵ + ϵϕϵδη =
K∑
k=1

(
mkδ(∆Vk)− δmk(1−∆Vk)

)
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and thus,

δϕϵ =
1

2 + ϵη

[
K∑
k=1

(
mkδ(∆Vk)− δmk(1−∆Vk)

)
− ϵϕϵδη

]
. (C.12)

Substituting δϕϵ from (C.12) into the right-hand side of (C.11) transforms the equation to

K∑
k=1

Zkδmk + ζkδ(∆Vk)

=
1

2(2 + ϵη)

( K∑
k=1

mkδ(∆Vk)
)2

− 1

2(2 + ϵη)

[( K∑
k=1

δmk(1−∆Vk)
)
+ ϵϕϵδη

]2
≤ K

2(2 + ϵ)

K∑
k=1

mk(δ(∆Vk))
2,

(C.13)

where in the last line we used that mk(t) ∈ [0, 1] for all k ∈ K, t ∈ [0, T ] and η(t) ∈ [0, 1] for
all t ∈ [0, T ]. Now combining (C.9) and (C.13), we obtain

1

2

∫ T

0

e−rt

K∑
k=1

mk(δ(∆Vk))
2dt ≤ ϵK

2(2 + ϵ)

∫ T

0

e−rt

K∑
k=1

mk(δ(∆Vk))
2dt.

Consequently, for a sufficiently small ϵ > 0, we get∫ T

0

e−rt

K∑
k=1

mk(δ(∆Vk))
2dt = 0.

Since mk(t) > 0 for t ∈ (0, T ], k ∈ K, we get δ(∆Vk(t))
2 = 0 for all t ∈ (0, T ]. From

continuity of Vk(t) in t, we have δ(∆Vk)(0) = 0 as well. Therefore

V [1](t) = V [2](t) ∀t ∈ [0, T ].

C.2.3 Uniqueness of m in the general case

To see that m[1] = m[2], observe that the second term in (C.13) is identically zero.

1

2(2 + ϵη)

[( K∑
k=1

δmk(1−∆Vk)
)
+ ϵϕϵδη

]2
= 0. (C.14)

With uniqueness of V in mind, combining (C.14) with (C.12) results in δϕϵ = 0. Therefore,

ϕ
[1]
ϵ (t) = ϕ

[2]
ϵ (t) for all t ∈ [0, T ]. Consequently, the equations in (C.10) become

dδmk

dt
= −Gkδmk +Gk+1δmk+1, k ∈ K−1

dδmK

dt
= −GKδmK .

Since δmK(0) = 0, the solution when k = K is δmK(t) = 0 for all t ∈ [0, T ]. By backward
induction, we find that for any k ∈ K, we have δmk(t) = 0 for all t ∈ [0, T ]. Therefore,

m[1](t) = m[2](t) ∀t ∈ [0, T ].

This concludes the proof of uniqueness.
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