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Abstract

We present a family of hedging strategies for a FKuropean derivative security in
a stochastic volatility environment. The strategies are robust to specification of the
volatility process and do not need a parametric description of it or estimation of the
volatility risk premium. They allow the hedger to control the probability of hedging
success according to risk aversion. The formula exploits the separation between the
time scale of asset price fluctuation (ticks) and the longer time scale over which volatil-
ity fluctuates, that is, the observed “persistence” of volatility. We run simulations that
demonstrate the effectiveness of the strategies over the classical Black-Scholes strategy.

1 Introduction

In this article we present a family of hedging strategies for a European derivative security
that super-replicate the claim with a controllable success probability, in a stochastic volatility
environment. The strategy has the following features:

e It is an approximate (asymptotic) solution to the problem, but as such, it is computable
(we give an explicit formula).

e [t is based on a nonparametric description of the random volatility process of the un-
derlying asset. Thus it is robust to specific modelling of the volatility (under technical
restrictions).

e It requires estimates of certain simple statistics of the volatility process that are easily
obtained from historical asset price data.

e It does not need identification (or estimation) of the volatility risk premium or the
market’s (equivalent martingale) pricing measure.
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author is grateful for conversations on the subject with George Papanicolaou, to Hans Follmer for suggesting
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questions and comments.



The strategy is selected as follows: choose a minimum acceptable probability py with
which the strategy should dominate the perfect hedging strategy. Then, find the number of
standard deviations p of a standard normal distribution whose confidence interval has this
probability

P,
\/% /p e 2dz = py. (1)
This is easily found in tables (for example p = 1 corresponds to py = 67%, p = 2 to 95%).
Then the hedging strategy is given by formulas (15) and (20). Note that p, is not the
probability that the hedge is successful, but increasing p, increases that probability.

That the randomness of the volatility process (whose distribution is unspecified) trans-
lates into a family of hedging strategies that are distinguished simply by a normally dis-
tributed random variable comes from an application of the central limit theorem for Markov
processes to the Black-Scholes derivative pricing PDE with a random volatility coefficient.
That such a convenient characterization is a good approximation is due to the persistent
nature (or burstiness) of volatility (in at least equity and F/X markets).

The next section briefly sketches the background and motivation for stochastic volatility
models. In Section 3, we explain how volatility persistence is modelled here and how un-
certainty in volatility translates into uncertainty in derivative prices and hedging strategies.
Section 4 presents the main result which is illustrated by the simulations of Section 5. The
issue of estimation, crucial for the theory to be applicable, is explained in Section 6, followed
by conclusions.

2 Why Stochastic Volatility?

Several excellent survey articles, for example [7], outline the main features of stochastic
volatility modelling for derivative pricing, starting from the work of Hull and White [8] in
1987. The stock price (or exchange rate) process { Xy, ¢ > 0} satisfies

dXt = /,LXtdt + UtXttha

where {0y, ¢t > 0} is the stochastic volatility process. An overview of the usual approach as
it relates to the work here is given in [13], and the important points are:

e Empirical studies of stock price data strongly suggest volatility is not constant (as
assumed by the Black-Scholes theory), but has a random component. ARCH/GARCH
models, whose continuous-time diffusion limits are stochastic volatility models, provide
much better descriptions of the data. See [2] for details.

e Empirical studies of implied volatility data, for example [12], report frequent observa-
tion of the smile curve, a U-shaped variation of implied volatility with strike price for
options with the same time-to-maturity. The minimum is at or near the current stock
price.

e Any stochastic volatility model in which the volatility process is independent of the
Brownian motion W, results in predicted European option prices whose implied volatil-
ity curve smiles, with minimum at today’s stock price adjusted by compound interest
earned from today to expiration. See [11] or [13] for a proof.
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e Most analysis and estimation is parametric: o; is modelled as the solution to a partic-
ular 1t6 SDE.

e A stochastic volatility environment is a simple example of an incomplete market. As
such there is no unique pricing (or equivalent martingale) measure and this indetermi-
nacy can be characterized by an unknown process, labelled the volatility risk premium,
playing a part in derivative pricing and hedging. Most usually this process is taken
to be zero, sometimes a constant or a deterministic function of present volatility, the
main reasons being feasibility of estimation or to preserve the Markovian structure.
Here we shall not need to make such a choice, as explained in Section 3.

We mention briefly some recent work related to the hedging problem considered here.
The problem of almost sure super-replication is considered by Cvitanié et al. [3] (and authors
referenced therein) by stochastic control methods. Such strategies that guarantee a successful
hedge are usually expensive, which motivates Follmer and Leukert [4] (and others cited there)
to allow some risk of shortfall and look for a strategy that maximizes the probability of a
successful hedge given some initial cash input that the hedger is willing to spend. This is
explicitly computed in the constant volatility framework, and when volatility can jump by a
random amount at a known time. Avellaneda et al. [1] construct worst-case super-replicating
strategies for complex portfolios of options given that volatility lies in a known band.

3 Separation of Time-Scales

Figure 1 shows two simulated realizations of possible volatility paths over the course of a
year. In the first, volatility is low (4-8%) for a large part of that year (roughly ¢ = 0.1 till
t = 0.8 - over 8 months) and then for the rest of the year it is at a higher level. In the
second path, volatility fluctuates between periods of high and periods of low far more often
- it seems to be low for a few weeks and then high for a few weeks, then low again, and so
on. That is, often, when it is low, it stays low for a period, and similarly when it is high.

Empirical studies suggest that the latter realization is a much more typical yearly volatil-
ity pattern than the former - it exhibits volatility clustering, or the tendency of high volatility
to come in bursts.

In fact, the sample paths of the second process can be obtained by simulating the first
process for a much longer time (50 years) and squeezing the realization into one year. That
is, the second process comes from speeding-up the first. Mathematically, if we call the first
process {o(t),t > 0}, it is convenient to denote the second process {o (é) ,t > 0}, where
e > 0 is a dimensionless parameter that represents the speeding-up. Because volatility
clustering is really a distinguishable feature, we shall think of ¢ as being small.

Examples

1. Suppose o(t) is a two-state Markov chain representing a crude model of volatility taking
a high or a low state: o(t) € {01,02}. Then if the generator matrix @ of the process
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Figure 1: The top figure shows a simulated path of o, = e¥*, ¥; a mean-reverting Ornstein-
Uhlenbeck process defined by equation (2), with e = 1, and the bottom one shows a path
with o = 50. Note how volatility ”clusters” in the latter case.

has elements that are O(1) in size (neither big nor small), for example

-2 2
=73 &)

then a typical six-month sample path might look like the first graph of Figure 2. How-
ever, if we consider such a process with a generator having large entries, for example

Q= —200 200
800 —800 )’
then a typical path, shown in the bottom graph, gives a much better description of
high volatility coming in bursts of a few days or weeks, rather than months.

But notice that @' = ——Q, and that if o/(t) := o ({), with ¢ = 0.01, then the
0.01 £

generator of o'(t) is exactly this Q' = %Q. Thus the speeding-up notation o (f) is a

concise description of the fact that such a parametric model of volatility (and indeed
any Markovian model) contains some parameters that are small, if the model is to
reflect clustering periods of lengths that are usually observed. In this representation,
the “smallness” is controlled by the .
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Figure 2: The top figure shows a simulated path of o(t) a two-state Markov chain, and the
bottom one shows a path of o (ﬁ), with € = 0.05.

2. Suppose o(t) = f(Y;), where f(-) is a positive increasing function and Y; is a mean-
reverting Ornstein-Uhlenbeck process: it satisfies

dY; = a(m — Y})dt + BdZ;. (2)

The top graph of Figure 1 shows o(t) for f(y) = e¥ (the expOU model), with parame-
ters @ = 1, 3% = 0.5 and m chosen so that the RMS volatility (or long-run mean level)
is 10%. With these O(1) values, we do not see significant volatility persistence.

Now consider the speeded-up process o (f) = f(Yy/:). The generator of the original ¥;
is

o 1,0
L= a(m—y)a—y+§5 o2y’
while the generator of Y}, is
1 Q 0 1p5% 02
LE = —£ = — _ e _———
€ s(m y)8y+2582y

From this, we see that speeding-up Y; (and hence o(¢)) is analogous to replacing «

by a/e and by (3/y/e. That is, the rate of mean-reversion « is scaled by 1/ with

the noise factor § scaled correspondingly to keep [(3%/2a constant. For example, if
€

this process is shown in the bottom graph of Figure 1, and again, it better captures

volatility clustering.

e = 1/50, we can simulate o (t) by using o = 50 and (3? = 25 in (2). A realization of



In this context, it is then convenient to think of speeding-up as simply the presence of
a large mean-reversion rate: there are always Ito fluctuations in the volatility from the
Brownian motion Z; and it reverts slowly to its mean-level when looked at relative to
this time-scale. But it reverts fast to the mean when looked at over the time-scale of
a year. In the path shown, it crosses the mean-level over thirty times during the year.

This class of models is analyzed and estimated from market data in [5, 6].

Characterization in terms of time-scales

In summary, there are three distinct time-scales in the modelling of the underlying asset
price (or exchange rate) {X7,t > 0}, which satisfies

t
dXE = uXedi + o <E) XzdW,. (3)

Firstly, there is the “infinitely small” scale of the “infinitely fast” fluctuations of the Brownian
motion W;. These model the tick-by-tick fluctuations of the price. The volatility process
might also have a component fluctuating on this scale (for example the Z; in the second
example above). However there is a longer time-scale representing volatility persistence
which might be on the order of a few days or weeks (for example, the average mean-reversion
time in the second example). These variations are slow in comparison to the tick-tick scale,
but still fast when looked at over the lifetime of a derivative contract (many months) which
is the long time-scale of our pricing or hedging problems.

Brownian Volatility Option
fluctuations << fluctuations << [0,T]
~ minutes ~ days ~ months.

Such a separation of scales is utilized by the asymptotic analysis of the next section.

4 Hedging

Suppose at time t = 0, we wish to hedge the risk of having written a European call option
with strike price K and expiration date 7" on a stock by buying and selling only the underlying
stock. The problem is to find a hedging strategy H(¢,z) that gives the number of units of
the underlying held at time ¢ (when its price is x) so that at time T, when we might have
to sell the stock to the option holder for price K, we break even or make a profit with high
probability.

In the complete market constant volatility case, a perfect (probability 1) break even
hedging scheme is to hold CP5 (¢, x) units of stock (the delta), where CP* denotes the Black-
Scholes formula. In the stochastic volatility case, the additional source of randomness cannot
be exactly hedged by trading in just the stock, and so we look for strategies with a high
probability of success.



Illustration of Method

To explain how we find such a strategy, consider first the simplified scenario in which the
stock price has a determinsitic volatility oy ()

dXt = /LXtdt + 01 (t)Xtth,

but we hedge with the wrong deterministic volatility function o9(¢). That is, we solve the
(generalized) Black-Scholes PDE

_ 1 _
Ct+§0-2(t)21'20mm = 0, (4)

C(T.x) = (z—K)T,

whose solution we denote C(t,;[09]), and hold C,(t, Xy;[02]) of the stock at time ¢. We
take the interest rate » = 0 here, but our final formulas are given for the general case. At
time ¢ = 0, we put up the amount C(0, X; [09]), the cost of the hedge. The value of the
hedging portfolio V; is

Vi = C(0. Xas o)) + [ Cals, Xei X,

When the wrong volatility os(+) is used, the strategy is not self-financing and V; may be
negative at certain times. We assume we are willing to put up extra cash after ¢ = 0 if the
strategy demands it, but our profit/loss bookkeeping is with respect to the initial cost of the
hedge. The question of interest is how close is V to (X7 — K)*, the payoff of the written
claim?

Following [9], we know that

C(t, Xy;[02]) = C(0, Xo; [02]) + /Ot C.(s, Xy; [09])d X,
+ /Ot <6t(s, Xs; [o9]) + %Ul(s)QXfém(s, X; [02])> ds,

by Itd’s lemma, and the last integral can be re-written as

%/Ot (01(8)2 — 02(8)2) X20,0(5, Xy [02])ds, (5)

using (4). This gives

Vr=(Xr— K)" + % /(]T (02(5)2 - 01(5)2) X Cus (8, X [0n])ds.

Clearly, taking oo = 07 hedges the claim perfectly. When o4(¢) is a random process, we
want to find a os(+) so that Vp > (X — K)* with a high probability. This reduces to finding
09(+) such that

1 T . 1 T .
- / 9(8)2X2C (5, Xs: [00])ds > = / o1 (8)2X2C 0 (5, X [09])ds (6)
2 Jo 2 Jo
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in some “best” way. This is a stochastic control type problem to find a volatility path that
maximizes a probability and this is the approach of [3, 4]. To our knowledge, the exact
solution is not easily computable, so we will look for a dominating solution: find oy(-) such
that (6) holds with high probability.

The remaining ingredient is to characterize possible hedging strategies in a convenient
way that translates uncertainty in the volatility into uncertainty in the final value Vp. This
is achieved by an asymptotic approximation that exploits the separation of time-scales.

Asymptotic Approximation

We define the stochastic option price C¢(t, x) as the solution to the Black-Scholes PDE with
the random speeded-up volatility coefficient o (t) from (3):

£

e 1 t €
C’t + 50-2 (g) x2cm:c = 0, (7)

C*(T,z) = (z—K)".

This can be thought of as a conditional Black-Scholes PDE with each realization of the
process {C°(t,x),0 < t < T} a call option pricing function given the path of the volatility. As
o (é) and W, are independent, the derivation of this equation exactly follows the derivation
of the classical Black-Scholes PDE.

We are interested in the asymptotic behaviour of C° as ¢ | 0: this approximation will
tell us how to deal with the risk from the randomness of the volatility. We shall make the

following assumptions on the process {o(t),t > 0} (which also hold after speeding-up):

1. {o*(t),t > 0} is wide-sense stationary: it has time-independent mean o2 := E{o?(t)}
and its autocorrelation E{(c?(t) — 02)(0?(s) — 02)} is a function of |t — s| only.

2. It is ergodic and Markov.

As e becomes smaller and smaller, the distinction between the time-scales disappears
and C*(t¢, ) looks more and more like the Black-Scholes formula with a constant averaged
volatility. This is a standard averaging principle result following from the ergodic theorem.
It says that C°(¢,z) converges in probability to CBS(t, z;Vo?), the Black-Scholes formula
with volatility Vo2, which satisfies the (averaged) PDE

CP® + %Fﬁcff = 0, (8)
CP(T,x) = (z—K)*.
That is,
P < sup sup |C%(t, z) — CB5(t, x; \/?) > 6) —0
0<t<T 2>0

as ¢ | 0, for any 6 > 0. A proof is given in [13].

So far we have a crude approximation to possible prices under stochastic volatility by
the Black-Scholes formula. What is of use is the next correction term, valid for small £ > 0,
that quantifies volatility risk.



Let us write
Ce(t,2) = O (1, 05/ o?) + VEZ* (1, ),

which defines the error term Z°(¢,z). Then subtracting (8) from (7), we find that Z°(¢, z)
satisfies

€ 2

2 (1t )
1./t 1({o°(z)—0
Zf+§02 (—) x2Z§$+—(7() )xQCff = 0, (9)
Z5(T,z) = 0.

We shall use two convergence results: the first is weak averaging for stochastic
differential equations which says that as € | 0, the solution to (3) with initial condition
X§ = x converges weakly to the solution of the analogous SDE with the averaged volatility

coefficient vV o2:
dyt = Mytdt + \/;Xtth, (10)

with the same starting value X = z, where {W,,¢ > 0} is a standard Brownian motion.
See, for example, [14] for a proof.

This weak approximation of X¢ by X can then be combined with the central limit
theorem for Markov processes to show that the scaled fluctuation of the volatility process
behaves weakly like the increment of a Brownian motion {By,t > 0}:

/tTg(S,XsE) <02L\/f> ds — ’y/tTg(s,Ys)st, (11)

for bounded non-anticipating functions g; see [10], for example. The Brownian motion B,
is standard and 7 contains the remaining trace of the original volatility process through the
integral of its correlation function:

=2 [ B{(e*(s) - 7)(0*(0) ~ o?)}ds. (12)

It is shown in [13] that Z°(t,z) converges weakly to the Gaussian process Z(t,z) that
satisfies the linear stochastic PDE

1— 1
dZt + §U2x2Zmdt - _ifnyCmB;:SdBtﬂ (13)

the limit equation of (9), with Z(T,z) = 0. Thus we have the approximation

Co (1, ) = CP5 (1, w: o) + VEZ(t,2) + Oe), (14)

for small € > 0: possible option prices are decomposed as the sum of a Black-Scholes price
and a normally distributed random function Z(¢,x) no matter what the original volatility
distribution. All that is left is 4% (known as the power spectral density at zero frequency of
the volatility), a statistic whose estimation from data is considered in Section 6.

Similar approximations are derived in [13] in the more general situation that volatility is
of the form o(t, z), a function-space-valued random process.
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Hedging Strategy

How now does this representation help with the hedging problem? Motivated by the simple
form of (14), let us look for a strategy H (¢, ) that is the delta of a correction to the Black-
Scholes delta with the averaged volatility coefficient:

H(t,x) = O (t, 7,V 02) + VEFy (1, ). (15)
To measure the performance of such strategies, it is convenient to define the effective
volatility function E°(t,r). We want to write CP%(t, x;Vo?) + eF (t,z) as O(t, z;[E*)),
the solution to (4) with E(¢,z) instead of oy(t). Expanding E°(t,z) in the form Vo2 plus
correction, substituting into (4) and comparing powers of € gives
LBSF(t, )
22V 02CBS(t, 1)

E(t,2) = oo - Ve +0(e),

where

Now H(t,z) = C,(t,z;[E?]) and, given an initial cash input V; (to be determined), the
value of our hedging portfolio is
t__
Vi = Vot [ Culs, X5 [EAX;
0
= Vo — C(0, X5 [E7]) + C(t, XT3 [E7])

_% olt (UQ G) N EE(SaXﬁ)Q) (X5)*Caals, X5: [EF])ds,

analogous to (5). Therefore, the final value is

Ve = Voo (CP0,X5V/%) + VEFO.Xp) + (X7 - K)*

LT 5s —5 ﬁBSF(SaXsE) 27 €
s (7 (5) = 74 2vE ) (X6 Tl X+ 0),

So the replication error, which determines whether the strategy yields a profit or a loss is
weakly approximated by

Vi— (X5 - K)' = Voo (CPS(0,2:/0) + VEF(0,2) (16)
_VE ( /0 ' LB P(s, X, )ds + %’y /0 T(Ys)Zcf;S(s,Ys)st> +O(),

where x = X§, the observed current stock price, and we have used (11) and the weak
approximation of X¢ by X, the solution of (10), and that C,, = C25 + O(\/¢) within our
region of asymptoticity.

Let us choose Vo = CB%(0, x; \/?) +1/eF (0, ), defined to be the cost of the hedge, and
find an F' that, with respect to the probability measure defined by the Brownian motion

10



{By,t > 0} (on some abstract space to which we do not make specific reference) makes the
combined last two terms positive, given the path of X.

Suppose we knew the path of the average (Black-Scholes) stock price X;,0 < s < T.
Since

/ LBSF(s,X,)ds + 7/ \)2CBS(s,X,)dB,
0

is, given this path, a Gaussian random variable with mean M := fOT LP5F(s, X,)ds and
variance

—'y/ (XE)*OBS (5, XE)2ds,

our choice of F' is based on a quantity that makes M negative (so that the average profit in
(16) is positive). We also want —M to be a number p times the standard deviation S. We
can then choose p > 0 depending on how much risk we are prepared to allow of the normal
random variable exceeding that number of its standard deviations.

First we solve

LO((ta) = —5y2°Cr(t o) (17)
C(T7 ','E) = 07
and then taking (at time ¢ = 0),
F(t.2) = —=((t.2) (18)

VT

for some p > 0 (the number of standard deviations we want), we have

/TEBSF(S,YS)ds =P [NR)CPS (5, X, ds
0 2v/T Jo
> pS. (19)

The last inequality follows from the Cauchy-Schwarz inequality

( | Tf(S)dS>2 > [ fs)ds

for nonnegative functions f(-).

Note that from (17) and (18), LBSF < 0 so that M < 0 and the average replication
error is positive. Thus, with this choice of F', the replication error is weakly approximated
by a random variable that, conditional on the path X,,0 < s < T, is normal with mean p
times the standard deviation. Because the convergence is weak, this cannot be translated
into a result along almost all paths of the Brownian motion {W;,¢ > 0}. Thus we can
say the chosen hedging strategy dominates the perfect hedging strategy with B-probability
(probability with respect to the limiting volatility fluctuation measure defined by B;) along
almost all paths of the average stock price X, but as the individual paths of X may not be
close to the paths of X°, we cannot make a precise quantification in terms of the joint law of
X¢. The simulations of the next section will demonstrate the effectiveness of the strategy.
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In practice, p controls the lower bound on the risk: taking more standard deviations
increases the probability of a successful hedge. Choosing p = 2 means the hedging strategy
dominates the perfect strategy with B-probability 95%. Again, we stress that this is proba-
bility on the space of paths of the limiting Brownian motion B;. We expect that the hedge
success probability will also be high although we cannot quantify it exactly. A higher p also
increases the cost of the hedge, as seen from the choice of 1} above.

It remains to compute F(t,x) by solving (17). Using the Green’s function for the Black-
Scholes PDE (see, for example [13, Appendix C]), we find

T Ka+1 L2
F(t,z) = s exp | —vr — —|,
(t.2) = py \ 2702T ¢ P < 2027)

where L = log(z/K),7 =T —t,a = r/o? — 1/2. This is the formula incorporating a nonzero
interest rate r which was omitted from the equations so far for simplicity of presentation.
The hedging strategy is given by (15), where

T KNt (log(x/K) r 1 L?
P — (2 Oe\/R) T2 P 20
PN aror < x > < ot * 2 2) P T T o (20

5 Simulations

In this section, we demonstrate the effectiveness of the hedging strategy derived above by
simulating many stock price paths in a stochastic volatility environment, and presenting
profit/loss histograms with respect to these realizations. We simulate (3) in which o(t/¢) is
a rapidly fluctuating two-state Markov chain volatility process. This is not proposed as a
realistic model of volatility, but we use it here to illustrate the performance of the asymptotic
theory.

We compare two alternative hedging strategies in the underlying stock, the first with
the Black-Scholes strategy using the averaged volatility @, in which the option writer holds
CB5(t, X¢) units of the stock at time ¢. The cost of the strategy is CP(0, z), where x is the
observed stock price at £ = 0.

The second strategy incorporates the asymptotic correction for the randomly fluctuating
volatility: it involves holding H (¢, X;) of the stock, where H is defined by (15), and we
choose p = 1 in (18). That is, the strategy dominates the perfect hedging strategy with
B-probability 67%. The cost of this hedge is larger than the Black-Scholes hedge: it is
CB5(0,2) + /eF(0, ).

In Figure 3, we show the stock, volatility and hedging processes along a typical realization,
and in Figure 4 the profit-loss histograms from 3000 runs implementing the two strategies
over the length of a twelve-month (7" = 1) contract with 200 equally spaced re-hedgings.
The profits/losses are with respect to the different costs of each strategy.

We see that the conservative second strategy yields profits much more often. On average,
the profit is $3.19 with respect to the initial cost of $16.38. The Black-Scholes strategy
produces an average profit of $0.28 with respect to the lower cost of the strategy of $13.32.
An even more successful strategy would be to take p = 2, for example, though of course the
cost will be much higher.

12
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Figure 3: Stock price X7, volatility o(¢/e) and hedging ratios along one path. The parameter
values are ¢ = 0.0005,p = 1, K = 100,7 = 1. Volatility is a two-state Markov chain with
values 0.1 or 0.4 and v = 1. In the bottom graph, the dotted line shows the asymptotics-
adjusted hedging ratio H (¢, X;) and the solid line is the Black-Scholes strategy C2%(t, X,).

6 Estimation of Parameters

We now present a simple algorithm to estimate o2 and e7? using long-run historical stock
price data. The method exploits the conditional lognormal distribution of X in the model
(3). These are the only parameters needed in the asymptotic theory.

Suppose we have discrete observations X¢(t,) of the stock price at evenly-spaced times
tn =nAt, n=0,---,N. Then, as Y*(¢) := log X°(t) satisfies

dY*(t) = <,u — %02 <£>> dt +o (é) dWi,

the discrete increments of the logs of the observations satisfy

tn 1 tn
D, =Y,-Y, =0 <—> AW, + (u — —o? (—)) At,
€ 2 €

where AW, is a (0, At) random variable.
Then the quantities
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meter values listed in Figure 3. The adjusted hedge is sucessful more often. Note that this
does not imply an arbitrage as the cost of the secong hedge is greater.

for k=1,---,N — 1, can be used to estimate o2 because
E{M,} = 20°At + O (At*?)

where we have used the stationarity of o2(-).
Similarly, the quantities

1 N—k
Ty = > DiD;
N—kQ= """
can be used to estimate the (non-centred) autocorrelation of o because

E{T,}=F {02 (%) 02(0)} AP +0 (AP1),

where we have used the fact that E{o*(t + h)o?(t)} depends only on h (second-order sta-
tionarity).
From our observations, we calculate the empirical autocorrelation

2
1/1&
T, — = =S MM, .

14

1

R, = —
FTOAR




The expected value of each R; approximates the autocorrelation:

E{R,} = E {02 <k—m> 02(0)} - (F)2 +0 (ar'?)

9

= E{(02 (%At) —F) ((0) —?)} +0 (At?)
n/UOOE{<02 (g) —ﬁ> (0(0) —?)}ds:g/omE{(UQ (s) — 07) (0°(0) — %) } ds

by a change of variable, it follows that twice the area under the curve obtained by interpo-
lating the empirical autocorrelation {R;} is an estimate of ev?2.

This procedure is tested on simulated data in [13] and practical issues (such as adaptation
to nonevenly-spaced high-frequency data) are addressed there. We are presently working
with real market data.

7 Conclusions

The family of hedging strategies computed here (distinguished by the number p(py)) dom-
inate the perfect hedging strategy (which depends on the realized volatility path) with B-
probability py. This approximate bound comes from two modelling features: separation of
time-scales and the generality of studying the Black-Scholes pricing PDE with a random
volatility coefficient, allowing the results to apply for a large class of possible stochastic
volatility processes, with unspecified distribution. The result is restricted to uncorrelated
volatility (no skew or leverage effect) which is realistic in F/X and some equity markets.
The simulations demonstrate the effectiveness of the p = 1 strategy, although a precise
analytical quantification of the success probability is not possible because the asymptotic
approximations converge weakly and not pathwise.

Greater precision in the quantification of the risk of an unsuccessful hedge would require
a more detailed (parametric) description of volatility and the market pricing measure. This
is studied in [6] using an additional feature of volatility that it is mean-reverting. The
separation of scales analysis then aids estimation of the additional parameters of the model
from S&P 500 index data.

The major benefit of the asymptotic analysis is computability, and it is a topic of future
work to apply it to the stochastic control problems that arise when one wants to maximize
a probability over possible hedging strategies.
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