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Abstract

We present an asymptotic analysis of derivative prices arising from a stochastic volatility
model of the underlying asset price that incorporates a separation between the short (tick-by-
tick) time-scale of fluctuation of the price and the longer (less rapid) time-scale of volatility
fluctuations. The model includes leverage or skew effects (a negative correlation between price
and volatility shocks), and a nonzero market price of volatility risk. The results can be used
to estimate the latter parameter, which is not observable, from at-the-money European option
prices. Detailed simulations and estimation of parameters are presented in [6].

1 Introduction

Stochastic volatility models have become popular for derivative pricing and hedging in the last ten
years as the existence of a nonflat implied volatility surface (or term-structure) has been noticed
and become more pronounced, especially since the 1987 crash. This phenomenon, which is well-
documented in, for example, [9, 12], stands in empirical contradiction to the consistent use of
a classical Black-Scholes (constant volatility) approach to pricing options and similar securities.
However, it is clearly desirable to maintain as many of the features as possible that have contributed
to this model’s popularity and longevity, and the natural extension pursued in the literature and
in practice has been to modify the specification of volatility in the stochastic dynamics of the
underlying asset price model.

One approach, termed the implied deterministic volatility (IDV) approach [5, Chapter 8], is to
suppose volatility is a deterministic function of the asset price X;: volatility = o (¢, X;), so that the
stochastic differential equation modeling the asset price becomes

dXt = /.LXtdt + O'(t, Xt)Xtth.

The function C(¢, z) giving the no-arbitrage price of a European derivative security at time ¢ when
the asset price X; = = then satisfies the generalized Black-Scholes PDE

1
C; + 502(t,x)$20m +r(zCy —C) =0,
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with r the constant risk free interest rate and with terminal condition appropriate for the contract.
This has the nice feature that the market is complete which, in this context, means that the
derivative’s risk can (theoretically) be perfectly hedged by the underlying, and there is no volatility
risk premium to be estimated.

However, while attempts to infer a local volatility surface from market data by tree methods
[13] or relative-entropy minimization [2] or interpolation [15] have yielded interesting qualitative
properties of the (risk-neutral) probability distribution used by the market to price derivatives
(such as excess skew and leptokurtosis in comparison to the lognormal distribution), this approach
has not produced a stable surface that can be used consistently and with confidence over time.

For this reason, we concentrate on the “pure” stochastic volatility approach of [8] reviewed in
[16, Section 1.2] or [3], in which volatility o; is modeled as an Ité process driven by a Brownian
motion that has a component independent of the Brownian motion W; driving the asset price.
There has been a lot of analysis of specific Ité6 models in the literature [14, 17, 7] by numerical and
analytical methods, many of which have ignored skew effects and/or the volatility risk premium
for tractability. Our goal [6] is to estimate these parameters from market data and to test their
stability over time and thus the potential usefulness of stochastic volatility models for hedging
derivatives. What is (to our knowledge) new here in comparison with previous empirical work on
stochastic volatility models is our keeping of these two factors, use of high-frequency (intraday)
data, and an asymptotic simplification of option prices predicted by the model that allows for easy
estimation of the volatility risk premium from at-the-money market option prices.

The latter exploits the separation of time-scales first introduced (in this context) in [16]. It is
often observed that while volatility might fluctuate considerably over the many months comprising
the lifetime of an options contract, it does not do so as rapidly as the stock price itself. That
is, there are periods when the volatility is high, followed by periods when it is low. Within these
periods, there might be much fluctuation of the stock price (as usual), but the volatility can be
considered relatively constant until its next “major” fluctuation. The “minor” volatility fluctuations
within these periods are relatively insignificant, especially as far as option prices, which come from
an average of a functional of possible paths of the volatility, are concerned.

Many authors, for example [1], have proposed nonparametric estimation of the pricing measure
for derivatives. The analysis in [16] is independent of specific modeling of the volatility process, but
results in bands for option prices that describe potential volatility risk in relation to its historical
autocorrelation decay structure, while obviating the need to estimate the risk premium. However,
the market in at-the-money European options is liquid and its historical data can be used to estimate
this premium'. For this reason, we shall attempt this with a model that is highly parametric, but
complex enough to reflect an important number of observed volatility features:

1. volatility is positive;
2. volatility is rapidly mean-reverting (see for example [10]);

3. volatility shocks are negatively correlated with asset price shocks. That is, when volatility
goes up, stock prices tend to go down and vice-versa. This is often referred to as leverage [4],
and it at least partially accounts for a skewed distribution for the asset price that lognormal
or zero-correlation stochastic volatility models do not exhibit. The skew is documented in
empirical studies of historical stock data.

1This was suggested to us by Darrell Duffie.



2 Model

The model we choose is that volatility is the exponential of a mean-reverting Ornstein-Uhlenbeck
(OU) process (or, equivalently, log oy is mean-reverting OU). With a suitable initial distribution,
the volatility process is stationary and ergodic which allows us to use averaging principles to ap-
proximate the option price, separating the minor and major fluctuations. This model has been
considered in [14] and it is related to EGARCH models which, as shown in [11], are weak approx-
imations to the continuous-time diffusion. Another model that is stationary and can be similarly
implemented and analyzed is when o; is a mean-reverting Feller (or Cox-Ingersoll-Ross) process [3].
The final ingredient is to model the two time scales described previously. To this end, we
introduce a small parameter ¢ > 0 describing the discrepancy between the scales, and model the
volatility as of = o0/, where oy is exponential OU. Thus the volatility is the oy process “speeded-
up” to reflect that there are many major fluctuations over the life of the options contract (this time
scale is O(1) in the usual time-unit of years), but not as many as there are minor It6 fluctuations.
We define Y; := log oy and suppose it satisfies

dY; = a(m — Yy)dt + BdZ,

for constants o > 0,0 > 0, m and Z; a Brownian motion. Then Y = log oy is described by

e B 4
dYf = —(m =Y )dt + —=dZ
t c ( t ) \/E t
where now « and (3 have been replaced by a/e and 3/+/¢ to model rapid mean reversion and overall
variance of order one. Finally, to incorporate the correlation (skew) effect d(W, Z); = pdt, we write
Zy = pWy + /1 — p?Z;, where W and Z are independent Brownian motions, to arrive at the final
stochastic volatility model for the stock price X7

dX{ = pXidt+ e X{dw, (1)
o B

dYf = —(m—Y§)dt + = ( pdW, 1 — p2dZ 2

t g(m t) + \/E <p t+ P t> ( )

Then, by the usual no arbitrage argument, as detailed for example in [16, Section 1.3], the European
call option price C*(t, z,y) satisfies

1 y 2
G+ Lewprcr, 4 PP ey 52Oy 7 (205 = C)

2 Ve
e ABN e
+<g(m—y)—%>0y =0 (3)
C(T,z,y) = (r—K)*

where ) is the market price of volatility risk which we assume constant. If C*(¢,x,y) satisfies this
equation then from Ito’s formula C¢ = C®(t, X}, Y}?) satisfies the stochastic differential equation

p . p 5
dC® = [rC® + (u—1)X°Cj + A%Cg]dt + €Y X CE AW, + qudzt (4)
(From this expression we see that an infinitesimal change in the volatility risk 3/+/e changes the
infinitesimal rate of return of the option A times the change in volatility risk. This is why A is
called the market price of volatility risk.



3 Asymptotic Analysis

Now, as ¢ | 0, the distinction between the time scales disappears and the major fluctuations occur
infinitely often. In this limit, volatility can be approximated by a constant as far as averages of
functionals of its path are concerned (that is, weakly), and we return to the classical Black-Scholes
setting. What is of interest is the next term in the asymptotic approximation of C®(¢,x,y) valid
for small ¢, that describes the influence of p, A\ and the randomness (5 > 0) of the volatility.

To obtain this, let us write (3) as £L5°C*® = 0, where

1 1
€. = J—
L €£0+ \/g£1+£2,

and
1 02 d
Ly = 55 8—y2+a(m_y)8_y’
y ? 9
L1 = pPxe &an—)\ﬁa—y,
0 1, L, <a )
Ly = gt gz tr%e, =)

Then, constructing an expansion
Cg(ta Zz, y) = CO(ta Zz, y) + \/gcl(ta z, y) + 602(t3 z, y) +oey

we find, comparing powers of ¢ << 1,
LoCo =10

at the O(e7 1) level. Since Ly involves only y-derivatives and is the generator of the OU process
Y;, its null space is spanned by any nontrivial constant function, and it must be that Cy does not
depend on y: Cy = Cy(t, z).

At the next order, O(e~'/?), we have

L£1Cy + LoC = 0, (5)

and since £; takes y-derivatives, £1Cy = 0. By the same reasoning, (5) implies that C; = Ci(¢, z).
Thus, up till O(e), the option price does not depend on the current volatility.
Comparing O(1) terms,
LoCy + LoCy = 0.

Given Cy(t,z), this is a Poisson equation for Cs(¢, z,y) and there will be no solution unless £5Cj
is in the orthogonal complement of the null space of L§ (Fredholm Alternative). This is equivalent
to saying that L£oCy has mean zero with respect to the invariant measure of the OU process. We
denote this

<£200>0u = Oa
where (-),, denotes the expectation with respect to this invariant measure which is N'(m, v?), where

v? = B%/2a:
1

(D= s [ e 02 f)dy,

Since Cj is independent of y and Lo only depends on gy through the e coefficient, (£3C0)oy =
<£2>ouCOa and

(Lodou = Lis(6) i= o + 5672 55+ <x_ _ ) ’



where 62 1= (€2, = €227,

Thus Cy(t,z) = Cps(t,z;6), and the first term in the expansion is the Black-Scholes pricing
formula with the averaged volatility constant 6. The A and p have thus far played no role, and we
proceed to find the next term in the approximation, Ci (¢, ).

Comparing terms of O(e), we find
LoC3 = — (L1Cy + L2CY), (6)

which we look at as a Poisson equation for Cs(t,x,y). Just as the Fredholm solvability condition
for Cy determined the equation for Cj, the solvability for (6) will give us the equation for Ci(¢, z).
Substituting for Cs(t, z,y) with

CQ = —ﬁal (£2 - <£2>ou) 007

this condition is

(£501 = L1£5" (Lo = (L2)ou) Co) =0,

ou
where

<£201>0u = <£2>oucl = EBS(&)Cl

since C1 does not depend on y.
Defining

A= {£1£5 (L2 = (L2)on))

the equation determining C is

Lps(6)C1 = ACy,

as Cp does not depend on y.
Again, using that Ly acts only on y-dependent functions, we can write

0? AWE! 0
A ((ooer 2 =237 ) (3o )

where .
Lod(y) = 55205”(11) +a(m —y)¢'(y) = e* — (%) ou,
and so o o
A=A’ g+ Bal g,
with
1 !
A= B
li >\ /
B o= pBed ) — 2 )en

Thus we must solve
3 2
Lps(6)C1 = A:v?’aciBS(é) + BmQaciBS(&)
0x3 0z?

—d?/2
_ _ﬁg;__<B_AP+Tji_D,
ag

61/21 (T — t) VT —t



where

_log(z/K) + (r + %62)(T — 1)
B oVT —t
and where we have used the explicit expression for the Black-Scholes price Cpg(d). Using the

Green’s function for the Black-Scholes PDE, as given for example in [16, Appendix C], and loga-
rithmic transformations to reduce to Gaussian integrals, we find that

dy

bl

—d2/2
o = (A%Jr(A—B)\/T—t).

oV 2w

Finally, we compute

2¢3m 2 2
<€y¢l>ou - —7 (691/ /2 — 65V /2)
262
I P _—
<¢ >ou = o
and so ,
ze 91/2

C =

(ep (% + m) - %%WT—_Q , (7)

oV 2w

3m(691/2/2 _ e5u‘—’/2)

where 0 := ¢ /(B is a positive constant. Note that to order /e, C¢ is decreasing

in A
We can now calculate the implied volatility I° defined by C° = Cpg(I¢). Constructing an
expansion I¢ = 6 + y/el; + - - -, we find that

L = Cl(t,m)[
= o2 (=) -2 (8)

which shows that

. a. e3V2/2 _ =122 K &2 X a.
=t (2 {pm llog <;) ~ -2y - t)] - \/ima} +o((5) Y, )

where we have used the expression for  above and where 6 = ™ > and 12 = (%/2a. We have
also expressed the expansion for I in terms of inverse of the fast mean reversion rate (2)~'. For
p < 0, which is the usual case, this gives a decreasing implied volatility curve when plotted against
strike price K, that is, a decreasing smirk.

The analysis gives rise to an explicit formula describing the geometry of the implied volatility
surface across strike prices and expiration dates. In particular, the relationship to the risk premium
parameter A in (9) considerably simplifies the procedure for its estimation, which otherwise would

be a computationally-intensive inverse problem for the PDE (3).

4 Conclusions

We have shown that an incomplete market asset modeled by a fast mean reverting stochastic
volatility leads to an asymptotic formula for options pricing and associated implied volatility (9).
This formula involves in a direct way the otherwise unobservable market price of volatility risk



A, which can then be estimated by fitting it to observed smirks (observed implied volatility as a
function of strike price K). The other parameters in the model, the mean and variance of the log
volatility m and v? and the fast mean reversion rate a/e, can be estimated from historical asset
price data. The remaining parameter of the model, the skew p, can in principle also be estimated
from historical asset price data but it is better in practice to estimate it by fitting formula (9) to
option pricing data, as is done for the market price of volatility risk A. This is done in [6].
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