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Abstract

We study Kolmogorov forward equations (KFE) and Zakai equations for diffusion
processes with a fast mean-reverting stochastic volatility component. In the case of the
KFE, a parabolic PDE in divergence form, we perform a matched asymptotic expansion
up to first order in the small mean-reversion time. The solutions are expressed in terms
of suitable PDEs with coefficients averaged over the ergodic distribution, in the spirit
of extensive earlier work on the backward equation (see J.-P. Fouque et al, CUP,
2011 ). We then construct a sequence of approximations to the Zakai equation, a
parabolic stochastic PDE (SPDE), and verify numerically for the first two terms weak
convergence order half and order one, respectively, in the mean-reversion parameter.
To this end, we give a novel numerical scheme for the original two-dimensional SPDE,
which is robust in the small parameter regime, and compare derived functionals of
marginals against those approximated by the solution of a sequence of homogenised
one-dimensional SPDEs.
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1 Introduction

In this work, we consider processes of the form

dXt = µ(Xt, Yt) dt+ σ(Yt)
(
ρx dW

x
t +

√
1− ρ2x dW

x,1
t

)
, X0 = x0,

dYt =
κ

ϵ
(m− Yt) dt+

g(Yt)√
ϵ

(
ρy dW

y
t +

√
1− ρ2y dW

y,1
t

)
, Y0 = y0,

(1)

where (W x,W y,W x,1,W y,1) is a four-dimensional standard Brownian motion, W x and W y

have correlation ρ ∈ (−1, 1), whileW x,1,W y,1 are independent of each other and of (W x,W y);
x0, y0,m ∈ R, ρx, ρy ∈ (−1, 1), ϵ, κ > 0 are all constant; µ : R × R → R and σ, g : R → R+

given functions. For ease of notation, we introduce ρxy = ρxρyρ.
We will study the marginal distribution of (Xt, Yt) at t, and the distribution of (Xt, Yt)

conditional on the natural filtration Fx,y
t of W = (W x,W y) at time t, which is the reason for

writing the Brownian driver in the decomposed way above. Specifically, we are interested
in the setting of small ϵ, a characteristic, dimensionless reversion time of the Y -process to
its mean m, and will derive equations for asymptotic expansions of the probability density
function (PDF) and the conditional PDF. The former leads us to derive matched asymp-
totic expansions of the corresponding Kolmogorov forward equation (KFE, or Fokker–Planck
equation), a two-dimensional parabolic PDE in divergence form, while the latter leads to
expansions of a Zakai-type equation, a parabolic stochastic PDE (SPDE).

Models of the form (1) are used abundantly in financial engineering, where X describes
the log price of a financial asset and σ(Yt) is its instantaneous (stochastic) volatility at time t.
The presence of multiple time scales in market data has been documented extensively in the
literature; see, e.g., [11, 10], and especially the monograph [12] and the references therein.
For higher order expansions with a refined boundary layer analysis close to expiry we refer to
[19] and [8], also [5] for a convergence analysis. The expansion at the level of the underlying
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stochastic processes is analysed in [13] (see also the earlier discussion in the conclusions
of [19]). Among more recent works, [2] performs joint asymptotic expansions of optimal
investment models with fast volatility and small transaction costs, and [7] demonstrates a
multiscale analysis of portfolio optimisation strategies under fast and slow volatilities.

The above Kolmogorov backward equations (KBE) are in non-divergence form and typi-
cally have regular (i.e., continuous) terminal data, while the Kolmogorov forward equations
(KFE) studied here are in divergence form with Dirac delta initial data. Specifically, we will
consider the model where µ is constant, and g = ν

√
2 for constant ν, that is where Y an

Ornstein–Uhlenbeck process, with unique ergodic distribution N (m, ν2).1 In this case, the
KFE is

∂tp
ϵ =

1

ϵ

(
ν2∂yyp

ϵ − κ∂y((m− y)pϵ)
)
+
(1
2
σ2
(
y
)
∂xxp

ϵ − µ ∂xp
ϵ
)

+
1√
ϵ
ρxyν

√
2∂y(g(y)∂xp

ϵ),

pϵ(0, x, y) = δ(x− x0)⊗ δ(y − y0).

(2)

Apart from being of interest in its own right, the analysis of the forward PDE serves as
preparation for that of the Zakai SPDE

duϵ =
1

ϵ

(
ν2∂yyu

ϵ − κ∂y((m− y)uϵ)
)
dt+

(1
2
σ2
(
y
)
∂xxu

ϵ − µ ∂xu
ϵ
)
dt

+
1√
ϵ
ρxyν

√
2∂y(g(y)∂xu

ϵ) dt+ ρxσ(y)∂xu
ϵ dW x

t + ρy

√
2ν√
ϵ
∂yu

ϵ dW y
t ,

uϵ(0, x, y) = δ(x− x0)⊗ δ(y − y0).

(3)

There are at least two motivations for studying (3). First, by general filtering theory (see,
e.g., [1, Section 3.5]), the solution uϵ is the density (if it exists) of the conditional law of
(Xt, Yt) given observation of (W x,W y) up to time t. Second, it is the limit empirical measure
of a large numberN of independent realisations of (1), with independent (idiosyncratic) noise
terms W x,i

t ,W y,i
t , for i = 1, . . . , N , replacing W x,1

t ,W y,1
t , but all with the same common noise

W x
t ,W

y
t (see, e.g., [20]).

This limiting equation has been used to describe the behaviour of large pools of default-
able financial entities, where the process X is replaced by one absorbed at 0 (a ‘default
boundary’), and the absorption of mass is interpreted as a loss to the financial system. The
case of constant σ is analysed in [4] and applications to credit derivative markets are given.
For a (nonlinear) SPDE model for a large pool limit of a default intensity-based credit model
see e.g. [14]. More recently, an extension of the basic model in [4] to stochastic volatilities
is given in [16, 17]. See also [21, 22] for different applications involving filtering of hidden
Markov models with fast mean-reverting states.

We will focus particularly on the regime of small ϵ, as motivated by the empirical evidence
cited above. In practical applications, one is predominantly interested in the behaviour of
X, and in Y only in as much as it affects the dynamics of X. For instance, in credit risk,
it is the firm log value process X which directly affects loss distributions. It is therefore de-
sirable to derive simplified homogenised equations which allow for more efficient analytical

1The factor
√
2 is chosen to ensure the ergodic distribution has a more standard normal form, consistent

with the literature (see [9, 12]).
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or numerical solutions by reducing the dimensionality of the PDE or SPDE. The numeri-
cal approximation of the original two-dimensional KFE or Zakai SPDE, especially, is more
costly computationally than that of the one-dimensional analogue with deterministic (e.g.,
constant) volatility. This is exacerbated by the presence of multiple scales, which may re-
quire a fine time mesh and fine spatial mesh in the second dimension for the stable resolution
of the fast component for small parameter ϵ.

By expansion in ϵ, we will approximate pϵ and uϵ by sequences of KFEs and Zakai
SPDEs, respectively, which have the advantageous feature that the fast varying volatility is
replaced by its ergodic average in the differential operator, and, in the case of the SPDE, the
driving noise term. Moreover, if only functionals of X (and not Y ) are required, these can
be computed by the solution of one-dimensional (S)PDEs, leading to an effective dimension
reduction and complexity advantage.

In the context of (1), [18] consider the case of µ(Xt, Yt) = r − σ2(Yt)/2, for constant r.
2

Under certain recurrence properties of the diffusion Y , and for ρxy = 0, it is shown that as
ϵ → 0, the stopped version of X converges in distribution to a process X∗ which satisfies

dX∗
t = (r − ⟨σ2⟩/2) dt+

√
⟨σ2⟩

(
ρ dW x

t +
√

1− ρ2 dW x,1
t

)
, X0 = x0, (4)

where ⟨σ2⟩ is the expectation of σ2(·) under the invariant distribution of Y .
Moreover, weak limits of uϵ are shown to satisfy the SPDE

du∗ =
(1
2
⟨σ2⟩∂xxu∗ − (r − ⟨σ2⟩/2) ∂xu∗

)
dt+ ρx⟨σ⟩∂xu∗ dW x

t , (5)

where ⟨σ⟩ is the expectation of σ(·) under the invariant distribution of Y .
We note that [18] allow for more general g in (1) than for the Ornstein–Uhlenbeck (O–U)

process considered here. On the other hand, we want to avoid the assumption ρxy = 0,
as the correlation between volatility and stock is an important parameter influencing the
dynamic behaviour of stock price models. In particular, it is used to match the implied
volatility skew in derivatives markets, while a realistic dependence of increments of the two
processes is key for successful hedging. To deal with this dependence, we make more specific
assumptions on the volatility process, and restrict ourselves to O–U processes, which will
allow a decomposition of Y such that the SPDE is driven purely by the slow component,
while fast-mean-reverting term appears explicitly in the coefficients. This helps with the
construction of correction terms for a higher order expansion of the SPDE. However the
function σ is general up to technical restrictions.

The main contributions and outline of the present paper are the following:

• a matched asymptotic expansion solution of the KFE (2) for small ϵ, identifying the
boundary layer for small t and deriving the expansion up to order 1 for general t
(Section 2);

• the heuristic derivation of a one-dimensional SPDE for a first-order correction to (5)
in ϵ (Section 3);

2In fact, [18] allow that r and other (constant) model parameters are sampled randomly.
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• numerical verification of the SPDE expansion orders (in Section 5) by novel numerical
schemes for (3) and related SPDEs, with a proof of unconditional stability independent
of ϵ (Section 4).

2 Perturbation analysis of the KFE

2.1 Set-up and preliminaries

We derive an expansion for the transition density function of a stochastic volatility process
(X, Y ) satisfying (1) with g = ν

√
2 for constant ν, as the dimensionless parameter ϵ → 0+.

We assume for simplicity that σ is bounded away from zero, such that the process X takes
values on all of R (as does the O–U process Y ).

The transition density pϵ(t0, x0, y0; t, x, y) of (X, Y ) satisfies the forward Kolmogorov
equation (in the variables t, x, y)

∂tp
ϵ −

(
1

ϵ
L∗

0 +
1√
ϵ
L∗

1 + L∗
2

)
pϵ = 0, (6)

with the initial condition

pϵ(t0, x0, y0; t0, x, y) = δ(x− x0)⊗ δ(y − y0). (7)

Here the operators Li and their adjoints L∗
i are defined by

L0 · = ν2∂yy · +κ(m− y)∂y · , L∗
0 · = ν2∂yy · −κ∂y ((m− y) · ) , (8)

L1 · = ρxyν
√
2σ(y)∂xy · , L∗

1 · = ρxyν
√
2∂x∂y (σ(y) · ) , (9)

L2 · =
1

2
σ2(y)∂xx · +µ(x, y)∂x · , L∗

2 · =
1

2
σ2(y)∂xx · − ∂x (µ(x, y) · ) . (10)

We set t0 = 0 for simplicity. We denote by ΦY the probability density function (PDF) of
the ergodic distribution of Y ,

ΦY (y) =
1√

2πν2/κ
e−κ(y−m)2/2ν2 . (11)

We shall frequently average functions of y with respect to the measure ΦY (y) dy and we
use the notation ⟨ · ⟩ = ⟨ · ,ΦY ⟩ for this average, where we denote by ⟨ · , · ⟩ the usual inner
product on L2(R).

In what follows we shall repeatedly seek solutions of equations of the form

−L∗
0 u(y) = h(y), −∞ < y < ∞, (12)

for some given h, that are integrable on R. We note immediately that

−L∗
0Φ

Y = 0, −L∗
0

(
ΦY (y)

∫ y ds

ΦY (s)

)
= 0,
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so that these functions span the null space of L∗
0. However, integration by parts shows that,

as y → ∞, ∫ y ds

ΦY (s)
= constant×

∫ y

eκ(s−m)2/2ν2 ds

∼ constant× eκ(y−m)2/2ν2

y −m

(
1 +O(1/y2)

)
,

and hence the function ΦY (y)
∫ y

ds/ΦY (s) is not integrable. We shall use this fact to elimi-
nate this solution at several points below.

The null space of −L0 is spanned by 1 and eκ(y−m)2/2ν2 , the latter of these being irrelevant
because of its growth at infinity (it is not even integrable against ΦY (y)). It follows from the
Fredholm Alternative that integrable solutions of (12) only exist when the right-hand side
satisfies the solvability condition of being orthogonal to (relevant, ie bounded) solutions of
the homogeneous adjoint equation. That is, from

⟨1, h⟩ = ⟨1,−L∗
0 u⟩ = ⟨−L0 1, u⟩ = ⟨0, u⟩ = 0,

the necessary condition for existence of a solution of (12) is ⟨1, h⟩ =
∫∞
−∞ h(y) dy = 0. When

this is satisfied, the solution is given by

u(y) = −ΦY (y)

∫ y H(s)

ΦY (s)
ds+ cΦY (y),

where the constant c is arbitrary (the second solution of the homogeneous equation is ruled
out as noted above), and where H(·) =

∫ ·
h(s) ds is an antiderivative of h.

2.2 Outer region: t ≫ O(ϵ)

Turning to the evolution of the transition density function, over timescales much longer than
the mean reversion time ϵ, the volatility is effectively sampled from its ergodic distribution,
as is already seen from (4), and will determine the first term of the asymptotic expansion.

We expand

pϵ(0, x0, y0; t, x, y) ∼ p0(t, x, y) +
√
ϵp1(t, x, y) + ϵp2(t, x, y) + ϵ3/2p3(t, x, y) + · · · ,

where here and henceforth we suppress the dependence on x0 and y0 unless it is needed.
Before proceeding, we note that, as pϵ is a probability density,

∫∫
R2 p

ϵ dxdy = 1 for all
t, and that similarly

∫∫
R2 p0 dxdy = 1 for all t (because of the initial condition), whereas∫∫

R2 pi dxdy = 0 for i > 0. Moreover, the marginal densities

pϵXt
(t, x) =

∫ ∞

−∞
pϵ(t, x, y) dy, pϵYt

(t, y) =

∫ ∞

−∞
pϵ(t, x, y) dx

each have their own expansions

pϵXt
(t, x) ∼ pXt,0 +

√
ϵpXt,1 + · · · , pϵYt

(t, y) ∼ pYt,0 +
√
ϵpYt,1 + · · · ,
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and the first term in each expansion integrates in x (resp. in y) to 1 while the remainder
integrate to zero, because each such integral is the double integral of a term in the original
expansion of pϵ. Note, however, that it is possible for any truncated version of any of the
expansions to fail to be a probability density by virtue of being negative somewhere; this is
in practice invariably the case in the far tails of the distributions where a separate (large-
deviations/ray-theory) expansion would be needed to accurately capture the behaviour.

Now substituting into (6) and equating coefficients of powers of ϵ leads immediately to:

At O(1/ϵ): −L∗
0 p0 = 0; (13)

At O(1/
√
ϵ): −L∗

0 p1 = L∗
1 p0; (14)

At O(1): −L∗
0 p2 = −∂tp0 + L∗

2 p0 + L∗
1 p1; (15)

At O(
√
ϵ): −L∗

0 p3 = −∂tp1 + L∗
2 p1 + L∗

1 p2; (16)

the pattern in the last two of these repeats at still higher orders.

Lowest order O(1/ϵ) We have the leading order solution

p0(t, x, y) = f0(t, x)Φ
Y (y) + g0(t, x)Φ

Y (y)

∫ y

−∞

ds

ΦY (s)
,

where f0 and g0 are unknown at this stage; however, because pϵ is a probability density,
and must be integrable in both x and y, we have g0(t, x) = 0, because the function that it
multiplies is not integrable. We shall see later that

∫∞
−∞ f0(t, x) dx = 1 and all other pi then

integrate to zero over R2.
We note immediately that we cannot satisfy the initial condition (7); a separate boundary-

layer analysis, given in Subsection 2.3, is needed to resolve this.

At O(1/
√
ϵ) From (14), we have

−L∗
0 p1 = L∗

1 p0 = ρxyν
√
2 (∂xf0(t, x)) ∂y

(
σ(y)ΦY (y)

)
. (17)

As the y dependence on the right-hand side integrates to zero, this equation does have an
integrable solution, and it is

p1(t, x, y) = −ρxyν
√
2 (∂xf0(t, x)) Σ(y)Φ

Y (y) + f1(t, x)Φ
Y (y), (18)

where Σ(y) =
∫ y

−∞ σ(s) ds (if σ is not integrable at −∞, we simply integrate from (say) zero
and amend f1(t, x) accordingly). Here f1(t, s) is again unknown; the other solution of the
homogeneous equation has been eliminated as above.

At O(1) Now we have

−L∗
0p2 = −∂tp0 + L∗

2p0 + L∗
1p1

= −ΦY (y)

(
∂tf0(t, x)−

1

2
σ2(y)∂xxf0(t, x) + ∂x (µ(x, y)f0(t, x))

)
− 2ρ2xyν

2 (∂xxf0(t, x)) ∂y
(
σ(y)Σ(y)ΦY (y)

)
+ ρxyν

√
2 (∂xf1(t, x)) ∂y

(
σ(y)ΦY (y)

)
.
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The terms in the last line satisfy the solvability condition (as, indeed, does any function that
is the result of applying L∗

1 to a function of y which vanishes at ±∞) and so we need that
the terms in the middle line integrate to zero. This leads directly to

∂tf0 =
1

2
⟨σ2(·)⟩∂xxf0 − ∂x (⟨µ(x, ·)⟩f0) = ⟨L∗

2⟩f0(t, x), (19)

where we are introducing the notation ⟨L∗
i ⟩ for operators with coefficients averaged over the

ergodic distribution. Using this to eliminate ∂tf0(t, x), we see that

−L∗
0p2 = (L∗

2 − ⟨L∗
2⟩) p0 + L∗

1p1,

the solution of which consists of a particular solution plus a solution f2(t, x)ϕ
Y (y) of the

inhomogeneous equation, f2(t, x) being as yet unknown.
As expected, p0(t, x, y) is the product of the ergodic density of Y and the density of X

with the stochastic parameters replaced with their means, so X and Y behave independently
at this order.

We need an initial condition for f0(t, x). Given the apparent independence of X and Y at
this order, we suspect that f0(t0, x) = δ(x−x0), and this is confirmed by the boundary-layer
analysis of the next subsection.

At O(
√
ϵ) Here we have

−L∗
0 p3 = −∂tp1 + L∗

2 p1 + L∗
1 p2.

As noted above, the final term on the right-hand side automatically satisfies the solvability
condition and so we fix f1(t, x) by substituting for p1 from (18), integrating over y, and then
solving

∂tf1 − ⟨L∗
2⟩ f1 =

∫ ∞

−∞

[
L∗

2

(
−ρxyν

√
2 (∂xf0(t, x)) Σ(y)Φ

Y (y)
)]

dy (20)

= −ρxyν
√
2

(
1

2
⟨σ2(·)Σ(·)⟩∂xx (∂xf0(t, x))− ∂x (⟨µ(x, ·)Σ(·)⟩∂xf0(t, x))

)
.

As ΦY (y) comes out as a factor, we have an ergodic average as before. The initial condition
for this problem is found via the boundary-layer analysis of the next subsection.

2.3 Boundary layer near t = 0

The analysis above fails when t = O(ϵ), because there is an initial layer in which Yt transits
to its ergodic distribution. The large-time limit of the boundary layer solution provides the
initial conditions for the functions fi(t, x) above, via asymptotic matching.

To capture this behaviour, we rescale time via

t = ϵt′.

Then in the boundary layer the transition density, now denoted p′(0, x0, y0; t
′, x, y), satisfies

1

ϵ
∂t′p

′ −
(
1

ϵ
L∗

0 +
1√
ϵ
L∗

1 + L∗
2

)
p′ = 0, (21)
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with the initial condition

p′(0, x0, y0; 0, x, y) = δ(x− x0)⊗ δ(y − y0). (22)

We proceed exactly as above, expanding

p′(0, x0, y0; t
′, x, y) ∼ p′0(t

′, x, y) +
√
ϵp′1(t

′, x, y) + ϵp′2(t
′, x, y) + ϵ3/2p′3(t

′, x, y) + · · · ,

and again suppressing the dependence on x0 and y0 unless it is needed. Substituting into (21)
and equating coefficients of powers of ϵ leads immediately to:

At O(1/ϵ): (∂t′ − L∗
0) p

′
0 = 0; (23)

At O(1/
√
ϵ): (∂t′ − L∗

0) p
′
1 = L∗

1 p
′
0; (24)

At O(1): (∂t′ − L∗
0) p

′
2 = L∗

1 p
′
1 + L∗

2 p
′
0; (25)

At O(
√
ϵ): (∂t′ − L∗

0) p
′
3 = L∗

1 p
′
2 + L∗

2 p
′
1; (26)

the pattern in the last two of these repeats at higher orders. The initial conditions for the
functions p′i are

p′0(0, x, y) = δ(x− x0)⊗ δ(y − y0), p′i(0, x, y) = 0, i = 1, 2, 3 . . . .

At O(1/ϵ) We have the degenerate (because lacking in x-derivatives) parabolic equation

(∂t′ − L∗
0) p

′
0 = 0, p′0(0, x, y) = δ(x− x0)⊗ δ(y − y0).

Now bearing in mind that for a Brownian motion W we have that (1/
√
ϵ)Wt becomes a

Brownian motion Wt′ under the time-change t = ϵt′, we have in law

dYt′ = κ (m− Yt′) dt
′ + ν

√
2 dWt′ ,

the marginal density of this O–U process at time t′ is Normal with mean and variance

m(t′; y0) = m+ (y0 −m)e−κt′ , var(t′) =
ν2

κ

(
1− e−2κt′

)
,

respectively. It follows that

p′0(t
′, x, y) = δ(x− x0)ϕ

Y (t′, y),

where

ϕY (t′, y) =
1√

2πvar(t′)
e−(x−m(t′;y0))2/2var(t′). (27)

When necessary, this is interpreted in the sense of distributions. Note immediately that

lim
t′→∞

ϕY (t′, y) = ΦY (y)

as defined above. Hence the limit of p1(t
′, x, y) as t′ → ∞ is δ(x−x0)Φ(y) and (by asymptotic

matching) this is the initial condition for f0(t, x),

f0(t, x) = δ(x− x0). (28)
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The interpretation of this result is that, at leading order, Xt stays at its initial value x0

while Yt forgets its initial value and transits to its ergodic distribution. In fact, there is a
small amount of diffusion of Xt, which is resolved by introducing a further (spatial) inner
layer of size O(

√
ϵ) around x0. With x = x0+

√
ϵξ, p′(t′, x, y) = (1/

√
ϵ)P ′(t′, ξ, y), at leading

order we have

∂t′P
′ −

(
1

2
σ2(y)∂ξξ + ρxyν

√
2σ(y)∂ξy + ν2∂yy

)
P ′ + κ∂y ((m− y)P ′) = 0, (29)

P ′(0, ξ, y) = δ(ξ)δ(y − y0) (30)

(note the appearance of the correlation term, brought in by a combination of its original
coefficient of 1/

√
ϵ and a further 1/

√
ϵ from the change of variable to ξ). The solution of

this equation (not, as far as we know, available in closed form) represents the slow (on the
t′ timescale) spreading out of the initial point mass of the marginal density of X, while Y
transits to its ergodic distribution. We do not pursue this further.

At O(1/
√
ϵ) The equation (24) for p′1 now becomes

(∂t′ − L∗
0) p

′
1 = ρxyν

√
2δ′(x− x0)∂y

(
σ(y)ϕY (t′, y)

)
. (31)

As t′ → ∞, ϕY (t′, y) → ΦY (y) and hence the solution of this equation has the limiting
time-independent form

−ρxyν
√
2δ′(x− x0)Σ(y)Φ

Y (y) + c1(x)Φ
Y (y) (32)

for some function c1(x) which provides the initial condition for f1(t, x), while the first term
in (32) matches automatically with the corresponding part of the solution p1(t, x, y) as t ↓ 0.
Fortunately, we can find c1(x) without having to solve for p′1 (which we could do, using the
Green’s function which is, in effect, ϕY (t′, y)). Integrating (31) over y, and noting that both
L∗

0 and the right-hand side integrate to zero, we find

d

dt′

∫ ∞

−∞
p′1(t

′, x, y) dy = 0

(this is essentially the orthogonality we used in the outer region) and hence the integral
is equal to its initial value, namely zero. It follows that (32) must also integrate to zero.
Bearing in mind that ΦY (y) is a probability density and so integrates to 1, we have

c1(x) = −ρxyν
√
2δ′(x− x0)

∫ ∞

−∞
Σ(y)ΦY (y) dy

= −ρxyν
√
2δ′(x− x0)⟨Σ⟩

= f1(0, x). (33)

This is the initial condition for (20).
In summary, we have that p0(t, x, y) = f0(t, x)Φ

Y (y), where ΦY is given by (11) and
f0 solves (19) with initial datum (28); for µ which is constant in x, f0 is simply a normal
density. At O(

√
ϵ), p1 is given by (18) with f1 satisfying (20) with initial condition (33).

Note that p1(0, x, y) ̸= 0, confirming the need for the inner region.

10



2.4 A global approximation and correction equation

As we know the density of the O–U process Y to be ΦY (t/ϵ, y), from (27), we can define an
approximation globally in time as

p0,ϵ(t, x, y) = ΦY (t/ϵ, y)f0(t, x), (34)

which has the correct initial datum pϵ0(0, x, y) = δ(x − x0) ⊗ δ(y − y0), the exact marginal
density for Yt, and is correct to leading order in ϵ in both the inner and outer layer. By
insertion, we see directly that p0,ϵ from (34) satisfies

∂tp0,ϵ −
(
1

ϵ
L∗

0 + ⟨L∗
2⟩
)
p0,ϵ = 0. (35)

Taking the difference with (6), we have

∂t(p
ϵ − p0,ϵ)−

(
1

ϵ
L∗

0 +
1√
ϵ
L∗

1 + L∗
2

)
(pϵ − p0,ϵ) =

1√
ϵ
L∗

1p0,ϵ + (⟨L∗
2⟩ − L∗

2)p0,ϵ. (36)

Replacing the operator on the left-hand side in (36) by that in (35), we define a correction
to pϵ by p0,ϵ + p1,ϵ, where

∂tp1,ϵ −
(
1

ϵ
L∗

0 + ⟨L∗
2⟩
)
p1,ϵ =

1√
ϵ
L∗

1p0,ϵ + (⟨L∗
2⟩ − L∗

2)p0,ϵ, p1,ϵ(0, x, y) = 0. (37)

This approach will be useful for the SPDE in the next section.

3 Perturbation analysis of the Zakai SPDE

3.1 Set-up and preliminaries

The matched asymptotic expansion analysis for the KFE (2) shows the different ansatz
needed for small times (the ‘inner layer’ in subsection 2.3), where the process Y transits
from its initial value to the stationary distribution, and for all times after this initial transit
(the ‘outer layer’ in 2.2). These two expressions can be reconciled by using the analytical
exact form for the marginal law of Y and an expansion for the effect of Y on X only (see
subsection 2.4).

For the SPDE (3), the presence of a fast driving process correlated to a slow driving
process creates extra difficulties for a direct asymptotic expansion. In a formal expansion
of the SPDE similar to that in Section 2 for the KFE, the appearance of O(1/

√
ϵ) terms

multiplying both W y
t and the ∂x∂y terms makes it difficult to transfer the multiple scales

expansion from the KFE to the Zakai SPDE. We note that [18] has to restrict the derivation
of the limiting SPDE for ϵ → 0 (determining the zero order term) to the case ρ = 0.

To avoid this last issue and take advantage of a global approximation, we split Y into a
component U which has the correct instantaneous correlation with X and a component Y †

which is independent of X. We then study the joint dynamics of X and Y † conditional on
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(W x,W y), keeping track of the dynamics of (U, Y †) and its law exactly, while we approximate
the generator of X by an expansion.

Specifically, we introduce a process U as the (strong) solution to

dUt = −κ

ϵ
Ut dt+

ν
√
2√
ϵ
ρy dW

y
t , U0 = 0. (38)

Then Y † := Y − U −m satisfies

dY †
t = −κ

ϵ
Y †
t dt+

ν
√
2√
ϵ

√
1− ρ2y dW

y,1
t , Y †

0 = y0 −m,

where W y,1 is independent of W x and W x,1, and W x,W y have correlation ρ. We set in the
following m = 0 without loss of generality, as it simply results in a constant shift of the OU
process; this can be accounted for in X by a horizontal translation of the function σ.

We will therefore study the two-dimensional Zakai SPDE for (X, Y †), describing the
marginal probability distribution of (Xt, Y

†
t ) conditional on the natural filtration Fx,y

t of
W = (W x,W y),

dv =
1

ϵ

(
ν2(1− ρ2y)∂yyv + κ∂y(yv)

)
dt

+
(1
2
σ2
(
y + Ut

)
∂xxv − µ ∂xv

)
dt− ρxσ

(
y + Ut

)
∂xv dW

x
t

=
(1
ϵ
L̃∗

0 + L̃∗
2

)
v dt− ρxσ(y + Ut)∂xv dW

x
t ,

v(0, x, y) = δ(x− x0)⊗ δ(y − y0),

(39)

where, in analogy to earlier,

L̃∗
0 · = ν2(1− ρ2y)∂yy · −κ∂y(y ·), L̃∗

2 · =
1

2
σ2
(
y + Ut

)
∂xx · −µ ∂x · ,

and where ν > 0, κ > 0, ρx ∈ (−1, 1), 0 < ϵ ≪ 1 are fixed constants, σ : R → R+ is a
real-valued function of which we will specify later any conditions needed. For simplicity, we
consider µ ∈ R a given constant.

We aim to find an expansion of the solution v to the SPDE (39) as ϵ → 0.

3.2 Zero order term

Following [18], and in line with the findings of Section 2, we introduce the following SPDE
akin (5), by averaging the coefficients over the stationary distribution,

dvx0 =

(
1

2
⟨σ2⟩∂xxvx0 − µ ∂xv

x
0

)
dt− ρx⟨σ⟩∂xvx0 dW x

t

= ⟨L∗
2⟩vx0 dt− ρx⟨σ⟩∂xvx0 dWX

t ,

vx0 (0, x) = δ(x− x0),

(40)
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where ⟨σ⟩ and ⟨σ2⟩ are again the averages over the ergodic distribution and the operator

⟨L̃∗
2⟩ is defined as

⟨L̃∗
2⟩ · :=

1

2
⟨σ2⟩∂xx · −µ ∂x · . (41)

The SPDE (40) has the analytic solution

vx0 (t, x) = Ψ(t, x) (42)

:= f0(t, x− ρx⟨σ⟩W x
t ) (43)

=
1√

2π
(
⟨σ2⟩ − ρ2x⟨σ⟩2

)
t
exp

(
− (x− x0 − µt− ρx⟨σ⟩W x

t )
2

2
(
⟨σ2⟩ − ρ2x⟨σ⟩2

)
t

)
,

where f0 has been introduced earlier as solution to (19).
Now we include the initial transient of the processes Y † and U to their stationary dis-

tribution. The marginal density of the O–U process Y † at time t is known to be Φ†(t/ϵ, y)
with

Φ†(t′, y) =
1√

2πσ2
† (t

′)
exp

(
−

(
y − µ†(t

′)
)2

2σ2
† (t

′)

)
, (44)

where µ†(t
′) and σ2

† (t
′) have the form

µ†(t
′) = y0e

−κt′/ϵ, σ2
† (t

′) =
(1− ρ2y)ν

2

κ

(
1− e−2κt′/ϵ

)
, (45)

and it satisfies the PDE

∂tΦ =
1

ϵ
L̃∗

0Φ =
1

ϵ

(
ν2(1− ρ2y)∂yyΦ + κ∂y (yΦ)

)
,

Φ(0, y) = δ(y − y0).

Next, we follow the principle in Subsection 2.4 to define an approximation v0,ϵ for which
we track U and keep the marginal density of Y † exact, but approximate the density of X
given (Y †, U), and hence the joint density. Therefore, we consider the equation

dv0,ϵ =
1

ϵ

(
ν2(1− ρ2y)∂yyv0,ϵ + κ∂y (yv0,ϵ)

)
dt

+

(
1

2
⟨σ2⟩∂xxv0,ϵ − ∂x(µv0,ϵ)

)
dt− ρx⟨σ⟩∂xv0,ϵ dW x

t

=

(
1

ϵ
L̃∗

0 + ⟨L̃∗
2⟩
)
v0,ϵ dt− ρx⟨σ⟩∂xv0,ϵ dW x

t .

(46)

Moreover, equation (46) has the closed-form solution

v0,ϵ(t, x, y) = Ψ(t, x)Φ†(t/ϵ, y), (47)

where Ψ(t, x) is defined in (42), and Φ†(t, y) is defined in (44). Note that v0,ϵ satisfies the
correct initial condition

v0,ϵ(0, x, y) = δ(x− x0)⊗ δ(y − y0).

We will later show numerically that v0,ϵ − v → 0 in a weak sense as ϵ → 0.
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3.3 Correction terms

The goal of this section is to construct successively better approximations. We first derive
an inhomogeneous SPDE for v−v0,ϵ. Taking the difference between (39) and (46), we obtain

d(v − v0,ϵ) =
(1
ϵ
L̃∗

0 + L̃∗
2

)
(v − v0,ϵ) dt− ρxσ(y + Ut)∂x(v − v0,ϵ) dW

x
t

− 1

2

(
⟨σ2⟩ − σ2(y + Ut)

)
∂xxv0,ϵ dt+ ρx

(
⟨σ⟩ − σ(y + Ut)

)
∂xv0,ϵ dW

x
t ,

(v − v0,ϵ)(0, x, y) = 0.

(48)

Intuitively, the effect of the terms in the second line in (48) is expected to be small for
small ϵ, as the fast process U averages the terms involving σ(·+ Ut) and σ2(·+ Ut) over the

stationary distribution of U , while the presence of the dominant term L̃∗
0 on the left-hand

side effects an additional averaging over the stationary distribution of Y †; the combined
effect is an averaging over the stationary distribution of Y over timescales of order 1, so that
the right-hand side, and hence the solution v − v0,ϵ, will be small.

Similar to before, we define v1,ϵ as the leading order approximation to v − v0,ϵ,

dv1,ϵ =
(1
ϵ
L̃∗

0 + ⟨L̃∗
2⟩
)
v1,ϵ dt− ρx⟨σ⟩∂xv1,ϵ dW x

t

− 1

2

(
⟨σ2⟩ − σ2(y + Ut)

)
∂xxv0,ϵ dt+ ρx

(
⟨σ⟩ − σ(y + Ut)

)
∂xv0,ϵ dW

x
t ,

v1,ϵ(0, x, y) = 0.

(49)

In this definition, coming from (48), which describes the exact error, we have approximated

L∗
2 by ⟨L̃∗

2⟩ and σ by ⟨σ⟩ in the first line.
Given v0,ϵ in (46), and v1,ϵ in (49), we can recursively find higher order corrections as

follows:

dvn+1,ϵ =
(1
ϵ
L̃∗

0 + ⟨L̃∗
2⟩
)
vn+1,ϵ dt− ρx⟨σ⟩∂xvn+1,ϵ dW

x
t

− 1

2

(
⟨σ2⟩ − σ2(y + Ut)

)
∂xxvn,ϵ dt+ ρx

(
⟨σ⟩ − σ(y + Ut)

)
∂xvn,ϵ dW

x
t ,

vn+1,ϵ(0, x, y) = 0.

(50)

3.4 Approximation to the marginal density of X

One would hope that the expansion in subsection 3.3 allows a computationally more effi-
cient approximation to the solution than solving the original two-dimensional SPDE directly
numerically.

This is not clear when considering (49) directly, as the solution still depends on x and y.

If we were to drop L̃∗
0 in (49), justified after the initial transient, the SPDE is parametrised

by y, so essentially two-dimensional if the solution for all x and y is needed.
However, in practical applications (see, e.g., Section 5), one is often only interested in

the marginal law of X, characterised by the marginal density

vx(t, x) =

∫ ∞

−∞
v(t, x, y) dy.
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Integrating (46) over y gives the zero order approximation

vx0 =

∫ ∞

−∞
v0,ϵ(t, x, y) dy = Ψ(t, x),

where Ψ(t, x) is given by (42).
As for the first order term v1,ϵ, we similarly define vx1 as

vx1 =

∫ ∞

−∞
v1,ϵ(t, x, y) dy.

If we assume limy→±∞ v1,ϵ(t, x, y) = 0, limy→±∞ ∂yv1,ϵ(t, x, y) = 0, it follows that∫ ∞

−∞
L̃∗

0v1,ϵ dy = 0.

Moreover, from (47) and (44),∫ ∞

−∞
σ2(y + Ut)∂xxv0,ϵ(t, x, y) dy =

∫ ∞

−∞
σ2(y + Ut)∂xxΨ(t, x)Φ†(t, y) dy

= ∂xxΨ(t, x)

∫ ∞

−∞
σ2(y + Ut)Φ

†
∞(y) dy + o(ϵr)

= ⟨σ2(·+ Ut)⟩†∂xxΨ(t, x) + o(ϵr), ∀r > 0,∫ ∞

−∞
σ(y + Ut)∂xv0,ϵ(t, x, y) dy =

∫ ∞

−∞
σ(y + Ut)∂xΨ(t, x)Φ†

∞(y) dy + o(ϵr)

= ⟨σ(·+ Ut)⟩†∂xΨ(t, x) + o(ϵr), ∀r > 0,

(51)

for fixed t > 0, and where Φ†
∞ = limt→∞Φ†(t/ϵ, ·) = limϵ→0Φ

†(t/ϵ, ·), the stationary density
of Y †, ⟨·⟩† the average over that distribution, and noting from (44), (45) that convergence of
Φ†(t/ϵ, ·) to Φ†

∞ is exponential in ϵ.
Integrating (49) over y yields an SPDE for a first order approximation vx1,ϵ(t, x) to v

x(t, x),

dvx1,ϵ = ⟨L̃∗
2⟩vx1,ϵ dt− ρx⟨σ⟩∂xvx1,ϵ dW x

t

− 1

2

(
⟨σ2⟩ − ⟨σ2(·+ Ut)⟩†

)
∂xxΨ(t, x) dt

+ ρx (⟨σ⟩ − ⟨σ(·+ Ut)⟩†) ∂xΨ(t, x) dW x
t ,

vx1,ϵ(0, x) = 0.

(52)

4 Numerical schemes for the Zakai SPDEs

In this section, we present numerical schemes for the SPDEs introduced in the previous
section. We will use these in Section 5 to test the accuracy of the expansion solutions.

15



The most challenging equation among those considered is the original SPDE (39), re-
peated here for convenience,

dv =
1

ϵ

(
ν2(1− ρ2y)∂yyv + κ∂y(yv)

)
dt

+
(1
2
σ2
(
y + Ut

)
∂xxv − µ ∂xv

)
dt− ρxσ

(
y + Ut

)
∂xv dW

x
t , (53)

v(0, x, y) = δ(x− x0)⊗ δ(y − y0),

dUt = −κ

ϵ
Ut dt+

ν
√
2√
ϵ
ρy dW

y
t , U0 = 0. (54)

A principal difficulty in solving this two-dimensional SPDE arises from the fact that we seek
numerical solutions which are stable and accurate uniformly across all ϵ.

We will also be solving the SPDE (48) to determine the error of the zero-order approx-
imation, and the SPDE (49) for the first order correction, by straightforward modifications
of the scheme for (39).

The zero-order marginal approximation in x, vx0 , is given in analytic form by Ψ in (42),
while the correction term vx1,ϵ is given by (52) and can be found by a one-dimensional SPDE
scheme.

We apply a Milstein ADI scheme to the SPDE (53), and an Euler scheme to the SDE
(54), taking care to maintain uniform stability and accuracy for small ϵ. We achieve this by
a semi-implicit approximation of the Zakai SPDE and an approximation of the SDEs on a
time mesh that scales with ϵ, as detailed below.

4.1 Simulation of the OU–process

We simulate the Ornstein–Uhlenbeck process (54) with timestep kϵ. It was found empirically
in [6] that the simulated process using the Euler–Maruyama scheme then has a strong error
independent of ϵ. This does not change the total computational effort significantly since the
cost of simulating U is typically much smaller than solving the SPDE for v.

The discrete-time approximation of (Ut) is thus generated by

Ûn = Ûn−1 − κ k Ûn−1 + ν
√
2ρy

(
W y

tn −W y
tn−1

)
,

Û0 = 0,
(55)

where n = 1, 2, . . ., tn − tn−1 = kϵ.
In practice, we first generate the bivariate standard normal random variables (Zn,x, Zn,y)

with correlation ρ, where n = 1, 2, . . . , NNϵ, Nϵ = 1/ϵ, and where we assume for simplicity
1/ϵ ∈ Z. We generate

Ûn = Ûn−1 −
κ

ϵ
k Ûm−1 +

ν
√
2√
ϵ
ρy
√
k
(
Zn,y − Zn−1,y

)
,

where Û0 = 0 and n = 1, 2, . . . , NNϵ. Then we take

Un = ÛnNϵ , n = 1, 2, · · · , N, (56)
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as the approximation to the process Ut at time t = nk, i.e., at the n-th time step on the
coarser time mesh with width k, on which we will approximate the SPDE.

The Brownian increment of W x over a “large” timestep k is thus

W x
nk −W x

(n−1)k =
√
kZ̃n,x :=

Nϵ∑
i=1

√
kϵZNϵ(n−1)+i,x,

which has the correct correlation ρ with W y. Hence, we get

Z̃n,x =
√
ϵ

Nϵ∑
i=1

ZNϵ(n−1)+i,x.

To simplify the notation, we write Zn,x instead of Z̃n,x in the following.

4.2 Approximation of the one-dimensional SPDE

The scheme we use for the marginal SPDE for vx1,ϵ(t, x) from (52) is an adaptation of the
schemes proposed in [23, 24]. We consider a mesh X = (xi)−I≤i<I for some integer I, hx > 0
given, and define an approximation V n

i,1,x to vx1,ϵ(tn, xi) by(
I − ⟨σ2⟩

2

k

h2
x

Dxx + µ
k

2hx

Dx

)
V n+1
1,x

=

(
I − ρx⟨σ⟩

√
kZn,x

2hx

Dx + ρ2x⟨σ⟩2
k(Z2

n,x − 1)

2h2
x

Dxx

)
V n
1,x

− 1

2

(
⟨σ2⟩−⟨σ2(·+ Un)⟩†

)
kΨxx(nk,X )+ρx

(
⟨σ⟩ − ⟨σ(·+ Un)⟩†

)
Ψx(nk,X )

√
kZn,x

+
1

2
ρ2x

(
⟨σ⟩ − ⟨σ(·+ Ut)⟩†

)2

Ψxx(nk,X )k(Z2
n,x − 1),

(57)

where the operators Dx and Dxx are defined as the standard finite difference matrices with

(DxV )i = Vi+1 − Vi−1, (DxxV )i = Vi+1 − 2Vi + Vi−1,

Un is found from (56), and where Ψx(nk,X ) and Ψxx(nk,X ) are the value of the functions
applied on the mesh X, i.e., Ψx(nk,X ) is the vector of values Ψx(nk, xi), with Ψ from (42).

The scheme is semi-implicit to ensure stability in L2 irrespective of the step sizes. The
terms in the first line of (57) hence come from an implicit finite difference discretisation
of the operator ⟨L∗

2⟩; the second line contains an Euler–Maruyama term for the Brownian
integral, and the Milstein correction for strong first order in k; the last two lines use the exact
expressions of Ψ and its derivatives in the inhomogeneous terms and a Milstein approximation
to the Brownian integral.

4.3 Approximation of the two-dimensional SPDEs

Original SPDE

We approximate the SPDE (39) with an alternating direction implicit (ADI) scheme of the

operators L̃∗
0 and L̃∗

2, and a Milstein approximation of the Brownian integral.
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We use a spatial mesh with uniform spacing hx, hy > 0, and, for T > 0 fixed, N time
steps of size k = T/N . Let V n

i,j be the approximation to v(nk, ihx, jhy), n = 1, . . . , N ,
i, j ∈ Z.

Adapting the schemes from [25] to our setting,(
I −

ν2(1− ρ2y)

ϵ

k

h2
y

Dyy −
κ

ϵ

k

2hy

DyY
)(

I − σ2(Y + Un+1)

2

k

h2
x

Dxx + µ
k

2hx

Dx

)
V n+1

=

(
I − ρxσ(Y + Un)

√
kZn,x

2hx

Dx + ρ2xσ
2(Y + Un)

k(Z2
n,x − 1)

2h2
x

Dxx

)
V n,

(58)

where Un is from (56), and D·, D·· standard finite difference matrices defined by

(DxV )i,j = Vi+1,j − Vi−1,j, (DyV )i,j = Vi,j+1 − Vi,j−1,

(DxxV )i,j = Vi+1,j − 2Vi,j + Vi−1,j, (DyyV )i,j = Vi,j+1 − 2Vi,j + Vi,j−1,

(DxyV )i,j = Vi+1,j+1 − Vi−1,j+1 − Vi+1,j−1 + Vi−1,j−1.

Moreover, Y is the diagonal matrix such that each element of the diagonal corresponds to a
mesh point (xi, yj) = (ihx, jhy), ordered the same way as V , so that for instance, by slight
abuse of notation, σ(Y + Un) is a diagonal matrix where the entry corresponding to point
(ihx, jhy) is (σ(Y + Un))i,j = σ(yj + Un). V 0 is an approximation of the initial condition to
the SPDE (39).

The implicit treatment of L̃∗
2 and particularly L̃∗

0 is important for stability for all mesh
parameters and especially for all ϵ, as demonstrated by Proposition 4.1 below. The ADI
factorisation allows an efficient solution of the implicit scheme by a sequence of tridiagonal
systems.

Proposition 4.1. Provided that

|ρx| ≤
1
4
√
2

infy∈R σ(y)

supy∈R σ(y)
, (59)

the scheme (58) is stable in the ℓ2-norm, |V |22 :=
∑

i,j V
2
i,j. Specifically, for all ϵ > 0,

hx, hy > 0 and k,N with kN = T , kϵy2max ≤ ν2(1− ρ2y), we have

E|V n|22 ≤ exp

(
Tϵ y2max

ν2(1− ρ2y)

)
|V 0|22. (60)

Proof. We consider the discrete-continuous Fourier pair

V n
l,j =

∫ π

−π

Ṽ n
j (ω)e

iωl dω, Ṽ n
j (ω) =

1

2π

∞∑
l=−∞

V n
l,je

−iωl.

By insertion and standard algebraic manipulations,(
(I − kLy)Ṽ

n+1(ω)
)
j
=

L̃ex,n
x,j

L̃im,n
x,j

Ṽ n
j (ω), (61)
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where (
LyṼ

n
)
j
=

ν2(1− ρ2y)

ϵ

1

h2
y

(
Ṽ n
j+1− 2Ṽ n

j + Ṽ n
j−1

)
− κ

ϵ

1

2hy

(
yj+1Ṽ

n
j+1 − yj−1Ṽ

n
j−1

)
L̃ex,n
x,j = 1− i ρxσ(yj + Un)

√
k

hx

sin(ω)Zn − 2ρ2x
k

h2
x

sin2(ω/2)(Z2
n − 1),

L̃im,n
x,j = 1 + 2σ2(yj + Un+1)

k

h2
x

sin2(ω/2) + i
k

hx

sin(ω).

Multiplying the left-hand side of (61) by Ṽ n+1,∗
j , with ∗ denoting the complex conjugate,

summing over j and carrying out summation by parts,

−
∑
j

(
LyṼ

n+1
)
j
Ṽ n+1,∗
j =

ν2(1− ρ2y)

ϵ

|Ṽ n+1
j+1 − Ṽ n+1

j |2

h2
y

+
κ

ϵ
yjṼ

n+1
j

(Ṽ n+1
j+1 − Ṽ n+1

j−1 )∗

2hy

.

Writing in the last term Ṽ n+1
j+1 − Ṽ n+1

j−1 = (Ṽ n+1
j+1 − Ṽ n+1

j ) + (Ṽ n+1
j − Ṽ n+1

j−1 ), shifting the index
in the summation, apply Young’s inequality as

1

2
(yjṼ

n+1
j + yj+1Ṽ

n+1
j+1 )

(Ṽ n+1
j+1 − Ṽ n+1

j )∗

hy

≥

−
ν2(1− ρ2y)

ϵ

|Ṽ n+1
j+1 − Ṽ n+1

j |2

h2
y

−
ϵ |yjṼ n+1

j + yj+1Ṽ
n+1
j+1 |2

8ν2(1− ρ2y)
.

Upon a further application of Young’s inequality and insertion,

∑
j

(
(I − kLy)Ṽ

n+1
)
j
Ṽ n+1,∗
j ≥

∑
j

|Ṽ n+1
j |2 − k

∑
j

ϵ |yjṼ n+1
j |2

2ν2(1− ρ2y)

≥
(
1− k

ϵ y2max

2ν2(1− ρ2y)

)∑
j

|Ṽ n+1
j |2. (62)

To estimate the right-hand side of (61),

E[|L̃ex,n
x,j |2|Ftn ] = 1 + ρ2xσ

2(yj + Un)
k

h2
x

sin2(ω) + 8ρ4x
k2

h4
x

sin4(ω/2)

≤
(
1 + 2

√
2 sup

y∈R
σ2(y)

k

h2
x

sin2(ω/2)

)2

,

|L̃im,n
x,j |2 ≥

(
1 + 2 inf

y∈R
σ2(y)

k

h2
x

sin2(ω/2)

)2

.

Hence, assuming (59),

E

[
|L̃ex,n

x,j |2

|L̃im,n
x,j |2

∣∣∣∣∣Ftn

]
≤ 1.
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On the right-hand side of (61), we have

∑
j

L̃ex,n
x,j

L̃im,n
x,j

Ṽ n
j Ṽ

n+1,∗
j ≤ 1

2

∑
j

∣∣∣∣∣ L̃
ex,n
x,j

L̃im,n
x,j

∣∣∣∣∣
2

|Ṽ n
j |2 +

1

2

∑
j

|Ṽ n+1
j |2. (63)

From (61), (62) and (63),(
1− k

ϵ y2max

2ν2(1− ρ2y)

)∑
j

E[|Ṽ n+1
j |2|Ftn ] ≤

1

2

∑
j

|Ṽ n
j |2 +

1

2

∑
j

E[|Ṽ n+1
j |2|Ftn ].

Rearranging, using Parseval’s identity, and 1 − δ/2 ≥ exp(−δ) for any 0 ≤ δ ≤ 1, we
obtain (60) by induction over n.

The proof of Proposition 4.1 is more complicated than similar results in the literature,
in that

• we seek stability with a constant independent of ϵ,

• the coefficients depend on the fast process Y , and

• the coefficients are variable in y.

We address this by a combination of a Fourier transform in x to take advantage of the
constant coefficients as in a standard von Neumann stability analysis, and an energy-type
argument for the y direction as is common in the finite element and finite difference literature.

Remark 4.1. Note that (59) could be replaced by the simpler condition
√
2ρ2x ≤ 1 if the

term σ2(Y + Un+1) on the left-hand side of (58) was replaced by σ2(Y + Un). The need to
use the crude bounds on σ comes from the fact that we cannot control the difference between
Un+1 and Un, especially for small ϵ.

Zero-order approximation (in ϵ)

For the zero order term v0,ϵ, we denote the corresponding numerical solution as V0, with the
scheme (

I −
ν2(1− ρ2y)

ϵ

k

h2
y

Dyy −
κ

ϵ

k

2hy

DyY
)(

I − ⟨σ2⟩
2

k

h2
x

Dxx + µ
k

2hx

Dx

)
V n+1
0

=

(
I − ρx⟨σ⟩

√
kZn,x

2hx

Dx + ρ2x⟨σ⟩2
k(Z2

n,x − 1)

2h2
x

Dxx

)
V n
0 ,

(64)

with notation as earlier. Note that the closed-form solution to V0 is (47), and ⟨σ⟩, ⟨σ2⟩ will
be computed analytically for specific choices of σ(·) in the next section.
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To determine the error (in ϵ) of the zero-order approximation, we can directly solve the

SPDE for v − v0,ϵ from (48). Denoting the solution as Ṽ0, we have the scheme(
I −

ν2(1− ρ2y)

ϵ

k

h2
y

Dyy −
κ

ϵ

k

2hy

DyY
)(

I − σ2(Y + Un+1)

2

k

h2
x

Dxx + µ
k

2hx

Dx

)
Ṽ n+1
0

=

(
I − ρxσ(Y + Un)

√
kZn,x

2hx

Dx + ρ2xσ
2(Y + Un)

k(Z2
n,x − 1)

2h2
x

Dxx

)
Ṽ n+1
0

− 1

2

(
⟨σ2⟩ − σ2(Y + Ut)

)
k
(
∂xxV

n
0

)
+ ρx

(
⟨σ⟩ − σ(Y + Ut)

)(
∂xV

n
0

)√
kZn,x

+
1

2
ρ2x

(
⟨σ⟩ − σ(Y + Ut)

)2(
∂xxV

n
0

)
k(Z2

n,x − 1),

(65)

where we use the analytic solution (47) to compute ∂xV
n
0 = (∂xv0,ϵ(tn, xi, yj))i,j, and similarly

for ∂xxV0, and the initial condition Ṽ 0
0 = 0.

First-order correction (in ϵ)

Similarly, the scheme for the approximation of the first-order term (49), denoted by V1, is(
I −

ν2(1− ρ2y)

ϵ

k

h2
y

Dyy −
κ

ϵ

k

2hy

DyY
)(

I − ⟨σ2⟩
2

k

h2
x

Dxx + µ
k

2hx

Dx

)
V n+1
1

=

(
I − ρx⟨σ⟩

√
kZn,x

2hx

Dx + ρ2x⟨σ⟩2
k(Z2

n,x − 1)

2h2
x

Dxx

)
V n
1

− 1

2

(
⟨σ2⟩ − σ2(Y + Ut)

)
k
(
∂xxV

n
0

)
+ ρx

(
⟨σ⟩ − σ(Y + Ut)

)(
∂xV

n
0

)√
kZn,x

+
1

2
ρ2x

(
⟨σ⟩ − σ(Y + Ut)

)2(
∂xxV

n
0

)
k(Z2

n,x − 1),

(66)

with zero initial condition, V 0
1 = 0. We also use the analytic solution for ∂xV0 and ∂xxV0 in

the scheme (66).
In the computations below, we make some further specifications.

5 Numerical results

In this section, we illustrate the convergence of the expansion for the model (39) by way
of numerical tests. For illustration, we use the following Gaussian distribution as initial
condition:

v(0, x, y) = Ψ
(
t0, x ;W x

t0
= 0

)
Φ†(t0, y), (67)

where t0 > 0 is a fixed constant, and Ψ, Φ are defined in (42) and (44), respectively. We
choose this smooth initial condition so that when we numerically approximate v1,ϵ in (49),
the approximation is stable when taking the partial derivatives of v0,ϵ.

3

3If we initialised with Dirac data, further stabilisation may be needed, and the analysis in ℓ2 would not
carry over; see the Fourier analysis in [15, 25] for schemes for simpler SPDEs with Dirac initial data.
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Moreover, we can still obtain a closed-form solution to v0,ϵ in (46),

v0,ϵ(T, x, y) = Ψ
(
t0 + T, x ;W x

t0
= 0

)
Φ†(t0 + T, y). (68)

For analytical convenience, we further specify σ(x) = exp(αx), where α > 0, such that
exp(Y ) follows an exponential OU process. This is also a popular stochastic volatility model
in investment banks. Then we have by direct integration

⟨σ⟩ =
∫ ∞

−∞

κ

ν
√
2π

exp
(
αx− κx2

2ν2

)
dx = exp

(α2ν2

2κ

)
, ⟨σ2⟩ = exp

(4α2ν2

2κ

)
, (69)

and

⟨σ(·+ Ut)⟩† = exp

(
α2ν2(1− ρ2y)

2κ
+ αUt

)
,

⟨σ2(·+ Ut)⟩† = exp

(
4α2ν2(1− ρ2y)

2κ
+ 2αUt

)
,

where ⟨·⟩ denotes as earlier the average over the ergodic distribution of Y , and ⟨·⟩† over that
of Y † only.

As a base case, we choose the parameters T = 1, x0 = y0 = 2, µ = 0.05, ρx = 0.3, ρy =
0.2, ρ = 0.5, κ = 0.2, ν = 0.5, α = 0.1, and t0 in the initial condition (67) as 0.2. We then
vary ϵ and estimate the contribution of v0,ϵ and v1,ϵ to expected functionals of the solution.
Later on, we will also test the effect of different parameters, in particular negative ρ, and
different ratios of κ and ν.

For the computations, we truncate the domain to [−10, 10] × [−10, 10], chosen large
enough that the effect of truncation with zero Dirichlet boundary conditions on the solution
was found negligible for the tested parameter values.

To study the convergence ϵ → 0, we consider the linear functional

PT (v) =

∫ ∞

0

∫ ∞

−∞
v(T, x, y) dy dx, T < ∞. (70)

There are two motivations for this. First, convergence in distribution of P[XT ∈ I|W x,W y]
for intervals I is theoretically supported by [18] (albeit for the process with absorption at
x = 0). Second, PT models the aggregate loss in credit portfolio models as e.g. in [4, 3, 16, 18],
and is therefore of practical interest.

To approximate PT (v) in (70), we use the trapezoidal rule for the numerical integration.

5.1 Weak convergence of PT (v0,ϵ)

We first analyse the numerical convergence of E[PT (v)−PT (v0,ϵ)], where PT is the functional
from (70). Since PT is linear, we have PT (v) − PT (v0,ϵ) = PT (v − v0,ϵ). We use the scheme
(65) to directly approximate v− v0,ϵ, and estimate E[PT (v− v0,ϵ)] by standard Monte Carlo
sampling as detailed below. While simulating v − v0,ϵ from (48), compared to simulating v
in (39) and v0,ϵ in (46) separately, lead to the same E[PT (v − v0,ϵ)] for hx, hy, k → 0, the
former choice has computational savings and is hence faster by a constant factor.4

4Using the same Brownian paths for v and v0,ϵ leads to a variance reduction and less paths are needed.
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Given M Brownian paths, the Monte Carlo estimator for E[PT (v − v0,ϵ)] is

∆P̂0 =
1

M

M∑
i=1

PT (Ṽ
(i)
0 ),

where Ṽ
(i)
0 is the numerical solution to v − v0,ϵ for the i-th path of (W x,W y) in (65).

For each ϵ, the numerical error between ∆P̂0 and E[PT (v−v0,ϵ)] consists of discretisation

error in h and k (bias), and Monte Carlo noise (variance). If h, k → 0, and M → ∞, ∆P̂0

is expected to converge to E[PT (v− v0,ϵ)], and we treat ∆P̂0 as the weak error in ϵ for small
h, k and large M .

Figure 1(a) shows the convergence to zero of ∆P̂0, with ϵ = 0.1×2−3, 0.1×2−4, . . . , 0.1×
2−7, and error bars with 3 standard deviations. For each ϵ, we let hx = hy = 2−l, and
k = 0.5 · 4−l, where l = 1, 2, 3, 4. We use M = 106 for l = 1, 2, and M = 105 for l = 3, 4,
as the computational cost for finer meshes is large. For l = 4 with M = 105, the run time
of the Matlab code is up to around 72 hours with 36 cores in parallel (speed 2300 RPMs,
RAM 768GB, Linux system). We take the results from l = 4 as numerical approximation
to E[PT (v − v0,ϵ)], shown as the black solid line in the loglog plot in Figure 1(a). One can
identify from the figure that the slope is slightly less than 1/2 (see the dashed line), and
linear regression gives a slope of 0.4237. A plausible reason is that for l = 4 the error in
h and k is not small enough to be neglected. We deduce empirically that the weak error
E[PT (v − v0,ϵ)] is O(

√
ϵ).

(a) ∆P̂0. (b) ∆P̂0 − P̂1.

Figure 1: Weak convergence of ∆P̂0 and ∆P̂0 − P̂1.

5.2 Weak convergence of first order approximation

To verify PT (v1,ϵ) is indeed the leading order approximation to PT (v)− PT (v0,ϵ), we further

exhibit ∆P̂0 − P̂1, which is the Monte Carlo estimator for PT (v − v0,ϵ − v1,ϵ). Note that we

have used the same Brownian paths for ∆P̂0 and P̂1 to reduce the variance.
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Figure 1(b) shows the loglog plot of the convergence of E[∆P̂0− P̂1] to zero, with respect
to ϵ, with the error bars being three standard deviations away. Similar to previous tests,
here we stop at l = 5 with 1000 Monte Carlo samples, and linear regression yields a fitted
slope of 1.0092.

We can thus deduce empirically that PT (v1,ϵ) is the leading order approximation to PT (v−
v0,ϵ), with PT (v − v0,ϵ − v1,ϵ) = O(ϵ).

5.3 Convergence of E[PT (v1,ϵ)]

We now analyse E[PT (v1,ϵ)], where v1,ϵ satisfies the SPDE (49), and compare it to P x
T (v

x
1 ),

where vx1 is the solution to the marginal SPDE (52), and P x
T (·) is defined by

P x
T (v

x) =

∫ ∞

0

vx(T, x) dx, T < ∞.

We expect these two values should be approximately the same.
From the derivation of the SPDE for vx1 in Section 3.4, when we integrate over the

y-dimension in (51), we replace ΦY (T, y) in the analytic solution (47) by the invariant dis-
tribution ΦY

∞(y), which yields a more concise analytical form. This does not change the
convergence order, as for ϵ → 0, ΦY (T, y) converges to ΦY

∞(y) exponentially fast. Hence, to
make sure PT (v1,ϵ) gives the same results as PT (v

x
1 ), we also use v0(T, x, y) = Ψ(T, x)ΦY

∞(y)
as the analytic solution for the zero order term v0,ϵ in the schemes (65) and (66).

GivenM Brownian paths, we define Monte Carlo estimators for E[PT (v1,ϵ)] and E[PT (v
x
1 )]

by

P̂1 =
1

M

M∑
i=1

PT (V
(i)
1 ), P̂ x

1 =
1

M

M∑
i=1

PT

(
(V x

1 )
(i)
)
, (71)

where V1 obeys the scheme (66), and V x
1 the scheme (57).

Figure 2(a) shows P̂1, with ϵ = 0.1 × 2−3, 0.1 × 2−4, . . . , 0.1 × 2−7, and the error bars
with 3 standard deviations. Similar to Figure 1(a), for each ϵ, we let hx = hy = 2−l, and
k = 0.5 · 4−l, where l = 1, 2, 3, 4. We use M = 106 for l = 1, 2, and M = 105 for l = 3, 4.
We take the results from l = 4 as numerical approximation to E[PT (v1,ϵ)], shown as the black
solid line in the loglog plot in Figure 2(a), comparing it to a dashed line with slope 1/2.

We further include the approximation P̂ x
1 from the marginal SPDE (52), and compare

P̂ x
1 with P̂1 in Figure 2(b). For P̂ x

1 , we use a multilevel Monte Carlo method, with prescribed
1% relative error (the ratio between root mean-square error and true value). We do not give
any details on the multilevel construction here (see, e.g., [24]), and only note that, unlike
approximating E[PT (v)] by a standard Monte Carlo method, and discretising with mesh size
hl = h0× 2−l and timestep kl = k0× 4−l, approximating by MLMC requires a good coupling
between fine path and coarse path. Therefore, when we apply MLMC to estimate E[PT (v

x
1 )],

the timestep is set as kl = k0 × ϵ× 4−l, proportional to ϵ.
Linear regression yields that the fitted slope for P̂1 is 0.4855, and for P̂ x

1 it is 0.4792.
This is consistent with the finding from the previous section that inclusion of the first order
term approximately cancels the error of the zero order approximation, which is of order√
ϵ. Moreover, since vx1 is the solution to a one-dimensional SPDE, the computational cost
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(a) P̂1 defined in (71). (b) Comparing P̂1 with P̂ x
1 from (71).

Figure 2: Weak convergence of P̂1 for hx = hy = 2−l, k = 0.5·4−l, ϵ = 0.1×2−3, · · · , 0.1×2−7.

is much lower for E[PT (v
x
1 )] with the same accuracy than for E[PT (v1,ϵ)], which shows the

benefit of our asymptotic expansion.

5.4 Parameter studies

Finally, we test the effect of the ratio between ν and κ, and of the correlation ρ. Figure 3(a)
shows the effect of different ν/κ, by varying ν ∈ {0.05, 0.5, 2, 5}, while keeping other param-
eters fixed. We choose the numerical parameters to ensure that the relative error is below
1%. We can see from Figure 3(a) that |P̂ x

1 | increases as ν/κ increases. From the raw data

we found approximately that for fixed ϵ, |P̂ x
1 (ν/κ; ϵ)| = O(ν/κ), which is consistent with the

previous tests where ϵ varies, through the scaling relationship (ν/
√
ϵ)/(κ/ϵ) =

√
ϵ ν/κ. A

point to note is that the values for ν = 5 are negative, whereas the others are positive.
Figure 3(b) shows the effect of changing the parameter ρ, where we make sure to keep the

relative error less than 5%. We can see from Figure 3(b) that |P̂ x
1 | increases as |ρ| increases;

inspection of the raw data shows that P̂ x
1 is positive when ρ is positive, and vice versa.

This effect is similar to the asymptotic expansion of the backward PDE for the stochastic
volatility model [9], where the leading order correction term is proportional to the correlation
between the two Brownian motions involved.
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