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Abstract

We study the formation of an optimal interbank network in a model where banks control
both their supply of liquidity, through cash reserves, and their exposures to other banks’ risky
projects. The value of each bank’s project may suddenly decline depending on their cash reserves
and both the occurence and magnitude of liquidity shocks. In two distinct settings, we solve
the system-wide optimal control problem and obtain explicit formulas for the unique optimal
allocations of capital. In the first decentralized setting, banks seek only to maximize their own
expected utility. Second, a central planner aims to maximize the sum of all banks’ expected
utilities. Both of the resulting networks exhibit a ‘core-periphery’ structure in equilibrium.
However, in the decentralized setting, banks elect to hold less cash reserves compared to the
centralized setting, leading to greater susceptibility to liquidity shortages. We characterize the
behavior of the planner’s optimal allocation as the size of the system grows. Surprisingly, the
relative welfare gap is of constant order. Finally, we derive co-investment requirements that
allow the decentralized system to achieve the planner’s optimal level of risk. In doing so, we
find that banks in the network’s core are subjected to the highest co-investment requirements
– ensuring that they are sufficiently incentivized to hold significant cash reserves. Our analysis
may inform regulators’ requirements on banks’ liquidity reserves, as have been debated in the
wake of the 2023 regional banking crisis in the US.
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1 Introduction

In this paper, we construct a continuous-time model of a financial system in which banks are exposed
to both their own and possibly each others’ liquidity shocks. We analyze the equilibria in this model
in two distinct settings: decentralized and centralized. In contrast to much of the existing literature
on banking networks, which assumes that the linkages between financial institutions are exogenous,
we allow this network to form endogenously based on optional decisions taken by participating
institutions.

The model proceeds as follows. Banks may specialize in different activities; some collect a large
number of deposits, whereas others specialize in revenue generation. This heterogeneity is modeled
by unique, proprietary, investment opportunities (e.g. a portfolio of commercial loans) available to
each bank. We assume that these opportunities are scalable, and accessible to other banks within
the system. For example, a deposit-collecting bank i can obtain the large returns of investment
bank j’s unique revenue-generating operations by directly investing into project j. We note that
this construction is similar to the single-period models of Rochet and Tirole (1996), Acemoglu et al.
(2015b), and Erol and Ordonez (2017), and we also refer to these unique investment opportunities
as ‘projects’. In these previous models and ours, the riskiness of these projects is tied to some
decision taken by the associated bank.

Although these projects may accrue large rates of return, they are subject to a degree of risk.
More precisely, a bank’s project may be impacted by unpredictable liquidity shocks of random
magnitude. The shocks are assumed to represent, for example, additional liquidity required for
a bank’s project to avoid losses, such as occurs in Rochet and Tirole (1996) and Acemoglu et al.
(2015b), or the withdrawal of a large number of deposits, which triggered the decline and ultimate
failure of Silicon Valley Bank in 2023. If the size of such a shock exceeds the bank’s current supply
of liquidity (i.e. cash reserves), then the project’s value instantaneously drops. We refer to such
an event as a liquidity shortage. When this occurs, all banks investing in this project suffer losses
proportional to their stake in it. Therefore, conditioned on the arrival of a liquidity shock, a bank’s
supply of cash determines their project’s level of risk. Conversely, if a bank has sufficient cash
reserves when a liquidity shock arrives, their project suffers no losses. Figure 1.1 illustrates the
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relationship between a bank’s liquidity supply (i.e. cash reserves), the distribution of a liquidity
shock’s size, and the probability of liquidity shortage conditioned on shock arrival.

0

1 CDF, size of
liquidity shock

Liquidity
supply of firm

Probability of
sufficient liquidity

Probability of
a liquidity shortage

Figure 1.1: For a single bank, the relationship between the cumulative distribution
function (CDF) of the size of a liquidity shock, their supply of cash, and the conditional
probabilities of (in)sufficient liquidity.

Since the original draft of this paper, there have been some notable bank runs on mid-size US
banks in 2023, particularly Silicon Valley Bank (SVB), First Republic Bank (FRB) and Signature
Bank. These seem to have been initiated by interest rate increases by the Federal Reserve in its
efforts to reduce inflation, leading to losses in value to these banks’ bond portfolios. Rising interest
rates also led to higher financing costs on many of their large institutional clients within the Silicon
Valley tech sector, who then began withdrawing their deposits to meet their own liquidity needs.
This impact on banks was then exacerbated, as other large depositors became concerned about the
banks going into distress and their inability to recover beyond the $250K insured by the FDIC.
They withdrew large amounts very quickly, typically using online banking apps, and often outside
of business hours and over weekends. For instance, on March 8, 2023, depositors withdrew $42
billion from SVB in one day.

However, these banks did not have sufficient cash reserves to meet depositors’ demand, with
significant amounts of capital tied up in long-term treasury bonds. These bonds had been purchased
during an earlier low interest rate era and were liquidated at considerable loss. Ultimately this
was not enough to restore depositor confidence, and the banks ended up insolvent due to lack of
liquidity. The run on SVB likely lowered confidence in similar tech industry concentrated banks
such as FRB, which led to a run on these banks. While our model was not designed to capture
this kind of contagion effect, it does indeed focus on the impact and prevention of liquidity shocks
through cash reserves in an inter-connected banking network.

A key focus of this paper is that each bank endogenously chooses to allocate its capital between
cash reserves (i.e. supply of liquidity) and other banks’ risky projects. To that end, we will study
the optimal capital allocations for two extreme settings of the financial system. First, we consider
the decentralized case – wherein each bank freely allocates their capital with pure self-interest. They
seek only to maximize their utility of wealth at a given terminal time. We note that this setting
reflects a game-theoretic equilibrium. Second, we consider a centralized setting – where a single
social planner makes the allocation decisions for all banks concurrently and aims to maximize the
sum of individual banks’ utilities.

In both decentralized and centralized cases, we derive the dynamic programming equations
for the respective value functions, and explicitly compute the optimal allocations, which yield
a core-periphery network structure in both cases. Under stricter technical conditions, we also
prove uniqueness. We observe a discrepancy between the optimal allocations computed in both
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settings: the social planner chooses to hold a greater supply of liquidity. This occurs because
our model captures a simple negative externality: when individualistically determining how much
cash to hold in reserves, a bank sets the level of risk experienced by external investors in its
project. An individual bank, operating in its own interests, fails to internalize these external
investors’ exposures when choosing their supply of cash. In contrast, the planner is cognizant
of the network-wide welfare and acts accordingly by reducing the level of risk through increased
cash reserves according to each project’s degree of external investment. By design, the social
planner achieves the welfare-maximizing (i.e. first-best) allocation for the financial system. As a
consequence of this discrepancy, liquidity shortages are less likely to occur under the social planner
than under decentralized behavior. However, we also observe that interbank exposures are larger in
the centralized setting, and hence each liquidity shortage becomes more damaging to the system.
This tension between the likelihood and severity of extreme events bears a resemblance to the
‘robust yet fragile’ observation made by Gai and Kapadia (2010) and Acemoglu et al. (2015a). In
particular, we find that this feature is associated with the socially optimal allocation of capital in
the financial system.

We also study how the two optimal allocations differ as the financial system’s size increases.
Two natural points of comparison are: 1) the difference in, and 2) the ratio of, social welfare
between both settings. The former comparison measures the nominal size of the inefficiency, and
the latter its relative size (which we refer to as the relative welfare gap and was dubbed the ‘price
of anarchy’ by Papadimitriou (2001)). Perhaps counter-intuitively, we find that the relative welfare
gap remains bounded by a constant as the size of the system grows. Namely, the nominal size of
the system’s inefficiency grows at the same rate as the social welfare itself. These results are first
derived theoretically, and also verified in simulations. Finally, we show that it is possible to alter
banks’ investment constraints to replicate the social planner’s optimal allocation, which requires
increasing restrictions only on banks in the network’s core.

There are several interesting takeaways from this paper. First, we are able to explicitly solve
a continuous-time network optimal control problem and characterize the loss in efficiency due to
decentralized behavior. Our model contains: i) multiple interacting agents, each solving their own
utility maximization Merton problem, ii) uncertainty driven by jump processes rather than stan-
dard Brownian motion, and iii) agents’ ability to control the intensity of their jump process. To the
best of our knowledge, explicit solutions in a model with multiple controlled stochastic intensities
is novel. Second, we find that the planner’s optimal allocation leads to low-frequency and high-
magnitude losses in the system. This may imply that the ‘robust-yet-fragile’ feature of financial
networks is, in some sense, socially optimal. However, we see that the planner compensates for the
larger-magnitude losses by ensuring they are less likely. As a result, the centralized equilibrium is
associated with larger interbank investments throughout the system. Additionally, in both settings
we see that the endogenous financial networks exhibit a ‘core-periphery’ structure, where only a
subset of banks’ projects are invested in by other banks. Intuitively, we show that only banks in the
core of the network must be subjected to stricter regulation to replicate the planner’s optimal allo-
cation. This suggests there is greater value in regulation of banks in the endogenously-determined
core of the network, over those in the periphery.

Indeed, the 2023 failures of banks such as SVB spurred a regulatory response in the US to raise
capital requirements on banks by 19%. This led to an intensive lobbying effort from the banking
sector, which termed the new proposals “Basel Endgame”, and the increase has subsequently been
halved to around 9% at the time of writing. Analysis of the centralized setting can inform regulatory
debates and about what constitutes an adequate supply of liquidity. We refer, for instance, to the
speech Barr (2024) by the Vice Chair for Supervision at the Federal Reserve, which states that:
“To address the lessons about liquidity learned last spring, we are exploring targeted adjustments
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to our current liquidity framework. Over the last year, many firms have taken steps to improve
their liquidity resilience, and the regulatory adjustments we are considering would ensure that all
large banks maintain better liquidity risk management practices going forward. They would also
complement the capital requirements by improving banks’ ability to respond to funding shocks.”

This paper is organized as follows. Section 1.1 reviews several related branches of literature
and background. Section 2 introduces the model of the financial system, the dynamics of each
instrument, and the control problem posed to each bank. In the first part of our main results,
Section 3 derives the endogenous equilibria for interbank networks in the decentralized (Section 3.2)
and centralized (Section 3.3) settings. We compare these two optimal allocations in Section 4,
including an asymptotic analysis of the relative welfare gap. Finally, Section 5 concludes with a
discussion of our results and directions for future work.

1.1 Related Literature

A strong motivation for this paper follows from the systemic risk literature, where much of the
existing work assumes a given or exogenous network structure for the financial system. An early
paper by Allen and Gale (2000) studies several stylized structures of interbank claims, and finds that
the structure determines whether or not a local liquidity shock propagates throughout the system.
Later papers seek to answer similar questions with distinct models. For instance Gai and Kapadia
(2010) and Gai et al. (2011) find that systemic liquidity crises can emerge in highly interconnected
financial networks, albeit with low probability. Caccioli et al. (2014) present a model in which
firms’ overlapping portfolios can lead a single default to cause mark-to-market losses throughout
the system – perhaps leading to additional defaults. In Elliott et al. (2014), firms directly own claims
on each others’ assets and suffer sudden bankruptcy losses if their valuation falls below a threshold.
Battiston et al. (2012) studies a continuous-time process representing financial robustness, and
allows its evolution to depend on a given financial network. Finally, several papers including Amini
and Minca (2016), Detering et al. (2019, 2020) and Detering et al. (2021) seek to characterize
the asymptotic behavior of contagion cascades in random inhomogeneous networks as the system’s
size grows. In their respective studies, these different mechanistic models are investigated both
theoretically and in simulations. In addition, the two-period model of Ramı́rez (2022) shows that
under extreme levels of uncertainty, banks fail to internalize their effect on contagion cascades.
However, the explicit or implicit networks in these papers share one common feature – they are
fixed or generated according to canonical random graph models. As previously highlighted, we
believe this assumption may not be realistic; institutions in the financial system make optimal
investment decisions, and the resulting network is endogenous – not random or otherwise pre-
specified. In contrast to this branch of the literature, our model enables us to investigate how the
organization and fundamental parameters of the financial system can lead to the emergence and
scale of its inefficiencies.

We use several tools from continuous-time portfolio optimization in this work, which begins with
the foundational papers of Merton (1969, 1971). Merton studies the optimal portfolio allocation
between risk-free and risky assets for a investor who maximizes their expected discounted utility of
consumption. In these models, the returns of each risky asset are driven by correlated Brownian
motions. Following from Merton’s seminal papers, there is a wealth of literature on extensions of
the original problem; see Rogers (2013) and references therein. The stochastic control techniques
we use in this paper for deriving the optimal allocations will be similar to Merton’s original work
and its subsequent branch of literature, but here we will be studying a financial system in which
all participants are simultaneously determining their optimal allocations of wealth – not only an
individual. Moreover, to the best of our knowledge, the ability for multiple players to control the
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jump intensity of their the risk to their asset’s returns has not been previously studied in the area
of portfolio optimization. A related mean field game with a continuum of cryptocurrency miners
controlling the intensity of their discovery arrival process is analyzed in Li et al. (2024).

There are, however, several papers that study an individual who incurs a cost to control the
intensity of a jump process, such as Biais et al. (2010), Pagès and Possamäı (2014), Capponi
and Frei (2015), Hernández Santibáñez et al. (2020), and Bensalem et al. (2020). These studies
focus on Principal-Agent models and largely analyze the optimal contract and behavior. Moreover,
they focus on the presence of moral hazard, where the Principal is unable to observe the Agent’s
efforts. Our mathematical approach for determining a bank’s optimal cash reserves is similar to
the models used in these papers. However, there are a few important differences. First, we study
these optimizations performed simultaneously within a large system, and second, we focus on the
inefficiencies that arise when banks optimize only in their self-interest. Additionally, our setting
assumes perfect information, so there is no moral hazard.

We note that the high-level ideas in this paper are similar to the literature on optimal network
formation. For early work in this area, see Jackson and Wolinsky (1996) and Bala and Goyal (2000),
where the authors present a process by which individuals choose to create edges with each other in
a game-theoretic model. In these studies, individuals must balance a trade-off between the cost of
forming an edge and the rewards associated with the edge. Our paper differs primarily from these
studies through our emphasis on the financial features of the model, and the fact that edges are
cost-less to form. A more realistic extension of our work would certainly incorporate these kinds
of fixed costs.

Most closely related to this paper is the study of endogenous financial networks, including Erol
and Ordonez (2017), Zawadowski (2013), Bluhm et al. (2014), Acemoglu et al. (2015b, 2021), Babus
(2016) and Farboodi (2021). Erol and Ordonez (2017) studies the formation of linkages along which
liquidity can flow between banks in a system, where each bank has access to a proprietary project.
They find that excessive restrictions on banks’ liquidity reserves increase the level of systemic
risk. Our model primarily differs from this work in that linkages between banks do not provide
liquidity to either counterparty, and there is no mechanism for contagion. The work of Zawadowski
(2013) shows that individual banks may fail to achieve the socially-optimal outcome by not buying
insurance against their counterparties’ default. While the author’s model differs greatly from ours,
we similarly find that individual banks’ optimal behavior fails to take into account an externality on
the system. A model by Babus (2016) presents an extension of Allen and Gale (2000). Her model
allows banks to make optimal lending and borrowing decisions to redistribute liquidity throughout
the system, and a highly-connected network is again found to be the most resilient to contagion.
We share the idea of idiosyncratic liquidity shocks, but also study the planner’s optimal allocation
and compare it to the case where banks make individualistically optimal decisions.

The papers most similar to our own are Bluhm et al. (2014), Acemoglu et al. (2015b, 2021)
and Farboodi (2021). Our model is fundamentally different from those in these studies – which are
either static or consist of three distinct time periods. In contrast, we analyze the endogenous finan-
cial network problem in a continuous-time environment, which allows us to leverage the powerful
mathematical tools of stochastic optimal control. First, Bluhm et al. (2014) construct a model of
optimal interbank lending where banks face both liquidity and capital requirement constraints. In
their model, both the interbank lending amounts and the market prices are determined endoge-
nously. The authors show that contagion can occur (1) directly as a result of counterparty losses
in the event of a default, or (2) indirectly through the mark-to-market losses incurred by a bank’s
portfolio in the event of a fire sale. The authors largely focus on numerical and simulation results,
while we are able to provide explicit formulas for the equilibria we study. Moreover, our model
endogenizes the initial sources of disruption to the system.
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The contribution of Farboodi (2021) characterizes how banks optimally lend to each other within
a financial system where there is a strong incentive to serve as intermediaries within the chain of
lending. In her model, as in ours, an interbank exposure will also allow the originating bank to access
the surplus generated by a risky investment of an associated bank. She shows that the resulting
network can have a core-periphery structure, and that due to the benefit of intermediation, banks’
private incentives can fail to achieve the socially optimal outcome. Although there are similarities
between this paper and ours, we do not focus on the incentive of intermediation, but instead on
banks’ optimal decisions to reduce the riskiness of their investments. Our results also replicate the
core-periphery feature in her paper – a small subset of banks with highly profitable investment
opportunities form the financial network’s core.

Finally, Acemoglu et al. (2015b, 2021) endogenize both the decision of interbank lending and
also the interbank interest rates. Acemoglu et al. (2021) build a model whereby linkages between
banks provide liquidity throughout the system, and the anticipation of contagion leads to scarce
or non-existent credit. They study the relationship between the distribution of liquidity shocks
and the occurence of systemic credit freezes, along with the role of different policy interventions in
curbing these inefficiencies. In contrast to this work, our paper focuses on the investment decisions
of participating banks in the financial system, where their liquidity shocks must be satisfied by their
own cash reserves. Acemoglu et al. (2015b) mirrors the work of Rochet and Tirole (1996), where
banks exchange deposits to finance a project that yields high rate of return if run to conclusion,
or low returns if liquidated prematurely. A bank faces external liabilities that may require them
to liquidate these projects – thereby passing losses onto its creditors. The authors find that the
optimal contracts do indeed consider the first-order network effects, wherein a risk-taking bank must
pay large interest rates to its creditors. However, these do not account for the ‘financial network
externality’, which can negatively affect banks that are not party to the contract. It follows that
the resulting financial network may not be efficient (i.e. welfare-maximizing). While their models of
interbank dynamics are similar to ours, the authors’ analysis is largely focused on stylized networks
in which equilibria are shown to exist. In this paper, we will instead allow the sparsity structure
of the financial network to be endogenously determined by the interbank investment opportunities
and other banks’ decisions.

2 Model

Consider a financial system consisting of n different banks. Let (Ω, E ,P) be a probability space,
containing n mutually independent Poisson processes Ñ1

t , ..., Ñ
n
t , t ≥ 0, each of which has corre-

sponding intensity θ1, ..., θn > 0. These counting processes will be used to indicate the arrival times
of liquidity shocks to each respective bank. Define F to be the filtration generated by the full set of
jump processes. Hence, we obtain the filtered probability space (Ω, E ,F ,P). The net capitalization
(i.e. net value or wealth) of bank i is given by the non-negative stochastic process {Xi

t}t≥0, whose
dynamics are described in the following.

2.1 Investment Opportnities

First, the financial system contains a long-term bond, which accumulates a constant, fixed rate
of return r ≥ 0 over all time. Therefore its value at time t, denoted S0

t , evolves according to the

ordinary differential equation
dS0
t

S0
t

= r dt. The rate of return r will be referred to in this paper as

the ‘risk-free rate’, since it is unaffected by any stochastic factors. However, we note that capital
held in the bond is not free from liquidity risk. Namely, we will assume that capital invested in the
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bond cannot be used to satisfy short-term liquidity needs. We think of the rate r as capturing the
rate of return for long-term and less liquid fixed income instruments, such as 5- or 10-year Treasury
bills. Appendix C.2 contains an extension of our model where this assumption is weakened and
the bond can be liquidated for a fraction of its face value. Computationally, we see no significant
differences in large enough banking networks.

Each bank i has access to a unique set of investments henceforth referred to as a ‘project’,
e.g. a collection of commercial loans. These projects are made available for investment to all
other banks j 6= i in the system. However, these projects cannot be shorted, and any capital
invested in them cannot be rapidly liquidated. More precisely, no bank can use this capital to meet
any short-term liquidity needs. While these projects accumulate large constant rates of return
for investors, they will incur losses when the associated bank suffers a liquidity shortage. If such
an event occurs, then the value of the project immediately drops to some non-zero fraction of its
prior value. For instance, it is plausible that a bank’s revenue-generating operations intermittently
require additional liquidity to cover a position or meet regulatory requirements. Failure to do so
may lead to the bank’s inability to realize the investment’s gains, or may even directly cause losses.

Let Sit denote the time-t value of a single unit of capital invested in bank i’s project. Its
dynamics are given by

dSit
Sit

= (µi + r) dt− φi dN i
t , i = 1, . . . , n. (2.1)

We assume that µi > 0, so this project has deterministic rate of return greater than r. The jump
process N i

t is obtained by performing a thinning of the shock arrival process Ñ i
t , and is described

in the next paragraphs. The increment dN i
t takes on values in {0, 1}, and is equal to one if and

only if bank i experiences a liquidity shortage at time t. Finally, 0 < φi < 1 represents the fraction
of project value lost when such an event occurs.

All banks in the system may experience liquidity shocks; if sufficiently large, these shocks
adversely affect the value of their project. A key feature of this paper is each bank’s ability to
control their project’s susceptibility to such events – by holding a greater supply of liquidity in the
form of cash reserves. In our model, this is represented through bank i’s ability to influence the
intensity of the jump process N i

t that appears in (2.1).
A bank may hold a non-negative amount of their capital as cash reserves, which do not accrue

any interest. However, these cash reserves are the only source of short-term liquidity within the
system, and are the sole tool by which a bank can hedge against the arrival of liquidity shocks.
Namely, if a liquidity shock exceeds bank i’s cash reserves, their project experiences a substantial
loss in value, which impacts both their own wealth and that of other banks investing in i’s project.
The jump increment dN i

t in (2.1) equaling one represents the arrival of a shock that overwhelms
bank i’s supply of cash, and its construction follows from a probabilistic model of liquidity shocks
and a bank’s cash reserves.

Recall that our filtered probability space contains n independent time-homogeneous Poisson
processes Ñ i

t , with rates θi > 0. At time t, if Ñ i
t jumps, then bank i experiences a liquidity shock of

size ζit ·Xi
t , where the random variable ζit is Ft-measurable. We assume that these shocks are pro-

portional to a bank’s wealth, and each ζit is independently and identically distributed according to
the cumulative distribution function (CDF) Fi(·). For convenience of notation, the complementary
CDF of ζit is denoted by F̄i(·) = 1− Fi(·).

Let cit ≥ 0 denote the fraction of bank i’s capital held as cash reserves at time t. When the
shock to bank i is larger than these reserves (i.e. ζit > cit), they undergo a liquidity shortage and all
investors in their project i suffer an instantaneous return of −φi on their investment. In particular,
if cit = 0, then any liquidity shock to bank i at time t, no matter how small, results in losses.
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The jump process N i
t is constructed by independently flipping a coin at every jump arrival

time of Ñ i
t , with failure probability given by pit = F̄i(c

i
t). Observe that pit = P

(
ζit > cit

∣∣∣dÑ i
t = 1

)
.

We let dN i
t = 1 if and only if the flip is a failure. It follows from the thinning properties of

Poisson processes that the instantaneous rate at time t of the process N i
t is equal to θiF̄i

(
cit
)
.1 The

second component of the rate, F̄i(c
i
t) = P(ζit > cit), is the probability that bank i suffers a liquidity

shortage, conditioned on the time-t arrival of a liquidity shock with CDF Fi(·). See Figure 1.1 for
an illustration.

Remark 2.1. In the main text, we assume that liquidity shocks smaller than the bank’s cash supply
(i.e. when ζit ≤ cit and dÑ i

t = 1) do not affect the bank’s overall wealth. Appendix C.1 relaxes this
assumption, and this extended model is still solvable up to first-order conditions, which must be
solved numerically. As long as the expected shock size is small, there is no significant difference
caused by this relaxation.

Finally, we will require a few technical conditions on Fi:

Assumption 1. We assume that each Fi is absolutely continuous with respect to the Lebesgue
measure. Its density is given by fi(·) = F ′i (·), which is assumed to be fully supported on R+, and
monotonically decreasing (i.e. f ′i(·) < 0).

If fi(·) had compact support, then it would be possible for a bank’s project to be riskless with
large enough cash reserves. Since the return of this project would be greater than the risk-free rate,
this would lead to all other banks profiting infinitely by borrowing at the risk-free rate and investing
in this riskless project. While the problem may remain analytically tractable, this outcome is not
of practical interest. Our assumption that the density is monotonically decreasing will be used to
establish uniqueness of the optimal controls.

2.2 Dynamics of Wealth

In this model, each bank may invest in any ther banks’ projects. Let wjit ≥ 0 denote the fraction of
bank j’s capital invested in bank i 6= j’s project. The return on this investment is described by (2.1).
Recall that cit equals the fraction of bank i’s wealth held as cash reserves, which accumulates no
return over time.

The final component influencing bank i’s wealth is their degree of investment in their own
project, which is equal to a given and fixed fraction of their current wealth. Unlike exposures to
other banks’ projects, we assume that this quantity cannot be optimized by the bank. For instance,
it may be the case that bank i is required by a regulator to be an investor in its own project. In
principle, we could imagine allowing bank i to also control their exposure to their own project.
However, doing so introduces the possibility for multiple equilibria, as shown in Appendix C.3.

We will use ηi
φi

to denote the fraction of bank i’s wealth that is invested in their own project.
This implies that bank i loses a constant fraction ηi of its total wealth whenever they suffer a
liquidity shortage. The parameter ηi captures the severity of losses on the distressed bank – in
the extreme case of ηi = 1, a single liquidity shortage will wipe out bank i. Conversely, if ηi = 0,
then bank i has no stake in their project and is wholly unaffected by its dynamics. We will take
0 < ηi < 1, away from the two extreme cases.

1This result is a consequence of the thinning properties of Poisson processes. See, for instance, Theorem 1 in Lewis
and Shedler (1979). If {cit}t≥0 is adapted (as we will require), then conditioned on time t, the previous jump process
{N i

s}s∈[0,t] has the desired rate function.
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Due to self-financing constraints, the remaining Xi
t(1− cit −

∑
j 6=iw

ij
t −

ηi
φi

) units of wealth are
held as long or short positions in the interest-bearing bond. Putting together the dynamics for
each component of bank i’s wealth, we see that Xi

t , follows

dXi
t

Xi
t

=


1− cit −

∑

j 6=i
wijt −

ηi
φi


 dS0

t

S0
t

+
∑

j 6=i
wijt

dSjt

Sjt
+
ηi
φi

dSit
Sit

, i = 1, · · · , n.

Using (2.1) and the dynamics of S0
t , we obtain the following simplified expression:

dXi
t

Xi
t

=


(1− cit)r +

∑

j 6=i
wijt µj +

ηi
φi
µi


 dt−

∑

j 6=i
wijt φj dN

j
t − ηi dN i

t , i = 1, · · · , n. (2.2)

A novel contribution of this paper is the control cit; while there is no return accumulated by this
capital held as cash, it serves to reduce the likelihood that bank i suffers a liquidity shortage, which
would cause them to lose a fraction ηi of their wealth.

We say that (ci· , w
i·
· ) is in Ais,t, the set of admissible controls for bank i between times s and t,

if it is adapted to the filtration F and satisfies both ciu ∈ R+ and wiju ∈ [0, φ−1
j ) for all u ∈ [s, t] and

j 6= i. The upper bound on wiju ensures that wealth will always remains positive.
In the first decentralized setting we study, all banks seek to maximize, over their cash reserves

and investments in other banks’ projects, their own expected utility of wealth at a common terminal
time T < ∞: equal to E

[
Ui(X

i
T )
]
. As is relatively standard in the literature, a bank’s utility

function Ui ∈ C∞(R+) is assumed to have constant relative risk aversion of γi > 0, which yields the
following family of utility functions:

Ui(x) =

{
x1−γi
1−γi γi > 0, γi 6= 1

log x γi = 1.
(2.3)

For generality, we will allow banks to have heterogeneous risk-aversion coefficients γi in the de-
centralized network formation of Section 3.2, while in Section 3.3 a central planner will require all
banks to have logarithmic utility.

3 Decentralized and Centralized Financial Networks

We consider two distinct organizations of the financial system. In the first, banks operate only
in their self-interest – seeking to maximize their own expected terminal utility. We call this the
decentralized setting, as there is no coordination between banks. Instead, each bank’s optimal
allocation reflects their best response to the others’ decisions. On the other hand, the centralized
setting in Section 3.3 will consider the perspective of a single social planner who determines all
banks’ allocations to maximize welfare – as measured by the sum of all banks’ utilities.

Both allocations are important to consider. The decentralized optimum reflects a game-theoretic
or market-mediated equilibrium of the financial system, where each bank chooses their controls
optimally given all others’ actions. Therefore, from the perspective of individual banks this is
a stable allocation. In contrast, the centralized optimum reflects the maximum total welfare that
could exist in the financial system if banks’ capital allocations were coordinated by a central planner.
We will study the differences between these two optimal allocations, which reflect the severity of
our model’s externality, in Section 4. Finally, the optimal allocations yield a financial network of
interest, whose edges represent direct exposures between banks.
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3.1 Financial Frictions

It is essential to note that the fundamental financial friction in this model is that markets are
incomplete. Bank i is unable to fully hedge the risk associated with another bank j’s distress
process N j

t . A bank may only partially insure against this risk by holding capital in the risk-free
bond. In contrast, however, bank i can control the risk of their own jump process N i

t by choosing
to hold cash reserves. However, bank i’s motivation for doing so is entirely self-preservational.
They are not punished for the negative externality inflicted on other firms in the system because:
i) there is no contract between banks allowing them to transfer the risk of a jump, and ii) bank i is
itself never responsible for losses to external investors. Given that such a friction exists, it is not a
novel result that the equilibrium obtained by individual agents operating selfishly is distinct from
the ‘welfare-maximizing’ equilibrium obtained by a social planner.

3.2 Decentralized Network

Let us define the value function of bank i to be the supremum over all admissible controls of their
expected utility at the terminal time:

Vi(t, x) = sup
(ci· ,w

i·
· )∈Ait,T

E
[
Ui(X

i
T )
∣∣Xi

t = x
]
. (3.1)

Recall that Ait,T denotes the set of admissible controls for bank i – defined in Section 2.2. Note
also that each bank simultaneously solves their own optimization problem, and therefore the value
function of bank i in (3.1) may depend on the capital allocations chosen by other banks within the
system. In this sense, the decentralized setting reflects a stable game-theoretic equilibrium.

Our first result derives the non-local dynamic programming (often referred to as the Hamilton-
Jacobi-Bellman or HJB) equation for the value function under regularity.

Proposition 3.1. If there exist optimal controls and the value function in (3.1) is C1,1([0, T ),R+),
then it solves the following non-local partial differential equation (PDE):

0 = ∂tVi + sup
ci,wi·

{
(1− ci) r +

∑

j 6=i
wijµj +

ηiµi
φi


x∂xVi + θiF̄i(ci)

[
Vi(t, x(1− ηi))− Vi

]

+
∑

j 6=i
θjF̄j(cj)

[
Vi(t, x(1− φjwij))− Vi

]}
,

(3.2)

with terminal condition Vi(T, x) = Ui(x). Where unspecified, the value function and its derivatives
are evaluated at (t, x).

The proof is contained in Appendix A.1, and follows from applying Itô’s formula to the value
function between t and an appropriately defined sequence of stopping times. The assumption that
optimal controls exist is verified by a subsequent result in Corollary 3.3.

Fortunately, it is possible to find a separable solution to (3.2), and explicit solutions for the
optimal allocations. It is convenient to introduce the following notation:

Γ(δ; γ) =

{
1−(1−δ)1−γ

1−γ γ > 0, γ 6= 1

− log(1− δ) γ = 1,
(3.3)

for any δ ∈ [0, 1). Within this range, we note that Γ ≥ 0. There is a natural interpretation of this
object; for a utility function of the form in (2.3), Γ(δ; γ) is proportional to the loss in utility caused
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by losing a fraction δ of one’s wealth. More precisely, Γ(δ; γi) = xγi−1 [Ui(x)− Ui(x(1− δ))] for
any x > 0.

We can now state our second main result, which presents a solution to (3.2) and computes the
optimal decentralized allocation of capital for bank i.

Proposition 3.2. The unique optimal cash reserves and project investment amounts for the max-
imization problem in (3.2) are given by

ĉi =

{
f−1
i

(
r

θiΓ(ηi;γi)

)
if r

θiΓ(ηi;γi)
≤ fi(0)

0 otherwise
∀i = 1, · · · , n

ŵij =





1
φj

(
1−

(
φjθj F̄j(ĉj)

µj

)1/γi
)

if
φjθj F̄j(ĉj)

µj
< 1

0 otherwise.
∀j 6= i.

(3.4)

Furthermore, with the notation

J∗i =
ηiµi
φi

+ (1− ĉi)r − θiF̄i(ĉi)Γ(ηi; γi) +
∑

j 6=i
ŵijµj − θjF̄j(ĉj)Γ(φjŵij ; γi),

the following are explicit solutions to (3.2):

(i) if γi = 1 and Ui(x) = log x, we have Vi(t, x) = gi(t) + log x, where gi(t) = (T − t)J∗i

(ii) for γi 6= 1 and Ui(x) = x1−γi
1−γi , then we have Vi(t, x) = gi(t)Ui(x), where gi = e(1−γi)(T−t)J∗i .

The proof, which is again given in Appendix A.1, follows from plugging in the proposed solution,
simplifying, and then analyzing the necessary and sufficient conditions for optimality of the resulting
maximization problem. A key observation in this proof is that the maximization problem in (3.2)
is additively separable between each of the controls ci, wi·.

Remark 3.1. The optimal interbank investment ŵij depends explicitly on ĉj through the function
F̄j(ĉj). Moreover, for any choice of bank j’s cash reserves, there exists a corresponding optimal value
of wij. In a game-theoretic sense, this would be bank i’s best response to j’s decision. However,
bank j’s optimal value of ĉj depends only on fixed model parameters. This ensures that ĉj is bank
j’s best response to any decisions made by the other banks, and is therefore a dominant strategy.
Hence, the ‘game’ is trivialized – one can compute every other banks’ optimal ĉj, after which the
corresponding ŵij’s can be easily found.

The final result of this subsection verifies that the solution given in Proposition 3.2 is indeed
equal to the value function.

Corollary 3.3. The value function in (3.1) is given by

Vi(t, x) =

{
gi(t) + log x if γi = 1

gi(t)
x1−γi
1−γi otherwise,

where gi(t) and the optimal controls are given in Prop. 3.2.

The proof in Appendix A.1 uses a verification argument. We show that any solution to (3.2)
that is once continuously differentiable in both time and space is equal to the value function. Since
the proposed solutions in Proposition 3.2 satisfy this regularity condition, we conclude the desired
claim. Finally, we note that this result verifies the assumption made in Proposition 3.1 regarding
the existence of optimal controls.
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Analysis of Decentralized Equilibrium

In analyzing our results, we first note that each unit of additional cash provides some quantifiable
marginal benefit by lowering the risk of a liquidity shortage. The quantity Γ(ηi, γi), defined in
(3.3), is closely related to the loss in utility when a bank with risk aversion γi loses a fraction ηi
of their wealth. However, the instantaneous hazard rate of an event in which i suffers this loss
in utility is controlled by i’s cash reserves through the intensity θiF̄i(ci) of the thinned Poisson
process. From the proof of Proposition 3.2, the optimal choice of ĉi will solve the following:

max
ci≥0

{
− rci − θiF̄i(ci)Γ(ηi; γi)

}
,

which indicates that the resulting ĉi achieves the optimal tradeoff between the cost of maintaining
liquidity reserves versus the instantaneous expected losses in utility due to a shortage. In particular,
the optimal ĉi from the first-order condition of r = −θifi(ĉi)Γ(ηi; γi) ensures that the marginal cost
of holding a single additional unit of liquidity (r) equals the marginal reduction in expected losses
provided by that unit of liquidity (θifi(ĉi)Γ(ηi; γi)). In the extreme case where r is large, it may be
too costly (relative to the potential losses) for a bank to hold any amount of cash reserves, leading
to ĉi = 0.

With explicit solutions for the optimal allocations given in Proposition 3.2, it is possible to
analyze their dependence on the exogenous parameters of the system. Due to the monotonicity
assumption on fi(·) in Assumption 1, we can see that the optimal cash reserves ĉi are decreasing
in the liquidity risk premium r: the greater the opportunity cost of holding liquidity, the lower
cash reserves are held by banks. We also see that Γ(ηi; γi) is increasing in ηi. It follows that bank
i’s optimal cash reserves, ĉi increase with the fraction of wealth they stand to lose if a liquidity
shortage occurs. In Section 4.2 we will discuss how a regulator can achieve a more socially-optimal
allocation by stipulating new values for ηi, each bank’s degree of self-investment.

In addition, the optimal project investment by bank i in project j, ŵij , depends on i only
through their risk aversion parameter γi. Hence, if γi = γk then ŵij = ŵkj . Although the fractional
amount of these investments are equal, the nominal amounts may differ because banks i and k
may have different levels of wealth. However, the optimal investment amount is decreasing in the
investing bank’s risk aversion coefficient γi, as we might expect.

The quantity
µj

φjθj F̄j(ĉj)
, which appears in (3.4) for ŵij , is similar to the well-known Sharpe ratio.

However, there is one main difference: the variance of bank j’s project returns can be controlled
by j itself. Nonetheless, notice that the optimal investment ŵij grows with this ‘Sharpe-like’ ratio.
In particular, note that if

µj

φjθj F̄j(ĉj)
< 1, bank i would prefer to short project j. Since this is not

permitted in our model, bank i resorts to an investment of zero. As a direct result, notice that
network’s sparsity structure is dictated by this quantity – a project j has external investors if and
only if

µj

φjθj F̄j(ĉj)
> 1. This implies a ‘core-periphery’ network structure, such that only a subset of

banks’ projects are invested in – an example of such a financial network can be seen in Figure 3.1.
The resulting ‘core-periphery’ structure reflects the fact that in equilibrium, only a subset of

banks’ projects have expected excess return greater than zero. The expected return associated with
the jump term in Eq. (2.1) is equal to −φiθiF̄i(ĉi), whereas the drift is µi+ r. Hence, the condition

µi
φiθiF̄i(ĉi)

> 1 is equivalent to µi + r− φiθiF̄i(ĉi) > r, which implies that only banks whose projects

have expected return greater than r will attract external investors. This is an intuitive consequence
of the model, as otherwise investors would not be rewarded for their exposure to the riskiness of
these projects. Although the core-periphery structure is determined only by the expected return
of a bank’s project, we note that both the volatility and return of a project are impacted through
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Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Figure 3.1: Sample financial network generated by the decentralized optimum. Edges
point from investing banks to projects, and their width indicates the nominal size of
the exposures. Node size indicates to total capitalization.

Table 3.1: Parameters for the financial network in Figure 3.1. The risk-free rate is
r = 5%. Relevant code can be found here.

Bank µi (%) φi ηi θi γi F̄i(x)

1 0.9 0.2 0.5 0.04 0.5 e−0.5x

2 1 0.3 0.6 0.08 1.7 e−0.6x

3 1.5 0.9 0.7 0.12 1 e−0.7x

4 1.3 0.6 0.4 0.05 0.3 e−2x

5 1.3 0.82 0.9 0.02 0.87 e−2.4x

a bank’s cash reserves. Namely, the optimal wji decreases in φiθiF̄i(ĉi) due to the effects of both
lower expected return and increased volatility.

A key feature driving the core-periphery structure is the fact that investing banks are identical
up to their risk aversion level, which affects their decision of how much capital is allocated to a
project. However, whether or not bank i chooses to invest in another project j depends only on the
expected profitability of project j. This reflects a system in which banks operate as ‘price-takers’
in other projects, without the ability to alter the qualities of their investment opportunities.

3.3 Centralized Network

Consider now the perspective of a single social planner of the financial system. In contrast with
Section 3.2, we will see that the planner has two different incentives for maintaining bank i’s cash
reserves. The first is identical – bank i stands to lose wealth when they suffer a liquidity shortage.
The second incentive is concerned with the entire financial system – other banks face losses to their
investments on the very same event. Therefore, we expect the planner to have stronger incentives
to hold cash reserves, and elect for a greater supply of liquidity throughout the system.
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We assume that the planner seeks to maximize social welfare in the system – defined as the
sum of all banks’ utilities. The planner’s value function is therefore given by the following:

V (t, x1, . . . , xn) = sup
(c··,w

··
· )∈At,T

E

[
n∑

i=1

Ui(X
i
T )

∣∣∣∣∣(X
1
t , . . . X

n
t ) = (x1, . . . xn)

]
, (3.5)

where At,T =
∏
iAit,T is the Cartesian product of each bank’s admissible controls.

Remark 3.2. It is important to note that there are many possible social welfare functions for the
planner to consider. In this section, we will see that using the sum of utilities allows for separable
solutions to the value function when all banks have logarithmic utility, i.e. γi = 1 for all i. We note
that if the planner maximized the product of utilities, then we can also find an explicit solution and
optimal controls in the case where γi ∈ (0, 1) for all i, but we omit these calculations for conciseness.

We can relate the planner’s value function to those of individual banks in (3.1). The optimal de-
centralized allocation from Section 3.2 is always feasible for the planner, and therefore the planner’s
value function is bounded from below by the sum of each bank’s value function as follows:

V (t, x1, . . . , xn) ≥
n∑

i=1

Vi(t, xi). (3.6)

This inequality reflects a potential inefficiency of the decentralized setting; the planner’s allocation
is the first-best (i.e. welfare-maximizing) outcome for the system, and decentralized banks may
not achieve this outcome. However, it is not yet clear that the inequality in Eq (3.6) is strict. In
Section 4, we will show that in most cases the decentralized optimum is not welfare-maximizing,
and establish technical conditions under which we can explicitly compute the gap in welfare.

In what follows, we analyze the planner’s optimal allocation by deriving the dynamic program-
ming equation and analyzing the resulting optimization problem. As in the previous section, we
first derive the non-local PDE solved by the planner’s value function.

Proposition 3.4. If there exist optimal controls, and the value function in (3.5) is
C1,1,...,1([0, T ),R+, . . . ,R+), then it solves

0 = ∂tV + sup
c·,w··

{
n∑

i=1

(
(1− ci) r +

∑

j 6=i
wijµj +

ηiµi
φi


xi∂xiV

+ θiF̄i(ci)
[
V (t, x1(1− φiw1i), . . . , xi(1− ηi), . . . , xn(1− φiwni))− V

])}
,

(3.7)

with terminal condition V (T, x1, . . . , xn) =
∑n

i=1 Ui(xi). Where unspecified, the value function and
its derivatives are evaluated at (t, x1, . . . , xn).

The proof of this result can again be found in Appendix A.2. Proposition 3.4 yields an n + 1
dimensional non-local PDE for the planner’s value function. There is one key difference between
Equations (3.7) and (3.2) – when a bank suffers a liquidity shortage, the planner’s value function
is affected by losses occurring throughout the entire financial system. This is not true in the
decentralized setting; an individual bank’s value function only depends on their own losses caused
by such an event.

With specific choices of utility functions, it is possible to find a separable solution to (3.7), and
prove existence of an optimal allocation. However, in order to establish uniqueness, we will need
the following technical assumption.
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Assumption 2. Let each shock density fi(·) satisfy

fi(c)

F̄i(c)
+ 3

f ′i(c)

fi(c)
− f ′′i (c)

f ′i(c)
< 0, ∀c ≥ 0. (3.8)

and, with the notation c̃i = F−1
i

([
1− µi

φiθi

]
+

)
, assume that the following holds for all i

Γ(ηi; 1) >





min
{

(n− 1)
[
log
(
φiθi
µi

)
− fi(0)2

f ′i(0)

]
, r
θifi(0) + (n− 1) log

(
φiθi
µi

)}
if c̃i = 0

min
{
−(n− 1)φiθifi(c̃i)

2

µif ′i(c̃i)
, r
θifi(c̃i)

}
otherwise,

(3.9)

where recall from Eq. (3.3) that Γ(ηi; 1) = log(1)− log(1− ηi) = − log(1− ηi) represents the loss in
utility associated with a loss of ηi fraction of wealth.

Assumption 2 provides sufficient – but not necessary – conditions for uniqueness of the planner’s
optimal allocation. Numerically, we have observed that the optimal solution is often unique, but
the optimization problem in (3.7) is (generally) not convex, and therefore proving uniqueness is
non-trivial. We do, however, note that the inequality (3.8) is always satisfied by exponential and
power distributions. At a glance, Eq. (3.9) requires that each bank’s losses upon a liquidity shortage
not be too small. If bank i loses only a small amount of capital when a liquidity shortage occurs,
then it is possible for there to be two equilibria for the planner: i) project i is profitable and bank
i’s cash reserves are high; and ii) project i is not profitable and bank i’s cash reserves are low.
Since the same rationale holds for all n projects, we could have up to 2n distinct equilibria. In
this paper, we will focus on settings where unique optimal controls can be provably obtained, and
hence require Assumption 2 to hold.

Analogous to Section 3.2, we show there exists a separable solution to the PDE (3.7). Addi-
tionally, we show that the optimal solution will solve a system of algebraic equations.

Proposition 3.5. Let each bank have a logarithmic utility function (i.e. γi = 1 ∀i). Then, there
exist optimal cash reserves and project investment amounts for the planner, which solve the following
system of equations:

c∗i =




f−1
i

(
r

θi[Γ(ηi;1)+(n−1)Γ(φiw∗·i;1)]

)
if fi(0) ≤ r

θi[Γ(ηi;1)+(n−1)Γ(φiw∗·i;1)]

0 otherwise,

w∗·i =

{
1
φi

(
1− φiθiF̄i(c

∗
i )

µi

)
if

φiθiF̄i(c
∗
i )

µi
< 1

0 otherwise.

(3.10)

We define

J∗C =

n∑

i=1

([
(1− c∗i ) r + (n− 1)w∗·iµi +

ηiµi
φi

]
− θiF̄i(c∗i )

[
Γ(ηi; 1) + (n− 1)Γ(φiw

∗
·i; 1)

])
, (3.11)

and g(t) = (T − t)J∗C . The solution to (3.7) is given by

V (t, x1, . . . , xn) = g(t) +
n∑

i=1

log xi. (3.12)

Furthermore, under Assumption 2, the optimal controls (c∗i , w
∗
·i) are unique.
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The proof is again given in Appendix A.2. We note that a separable solution using logarithmic
utility functions is only possible because the planner aims to maximize the sum of banks’ expected
utilities. See Remark 3.2 for a brief discussion of other settings where a separable solution can be
obtained.

In contrast to the decentralized setting, the maximization in (3.7) is not additively separable
between each optimization variable. Nonetheless, each of the i subsets {ci, w1i, . . . , wni}, i =
1, . . . , n can be analyzed separately, which greatly simplifies our analysis. However, the coupling
between ci and w·i leads to the need for additional assumptions to establish uniqueness.

The system of equations in (3.10) admits a block coordinate descent approach. Namely, for any
fixed ci, the maximization problem for w·i is strictly concave and admits a unique solution (these
can be seen in the proof of Proposition 3.5). Conversely, for given values of w·i, the maximizing
of ci shares these features. As a result, we can iteratively update these variables to solve for the
planner’s optimum numerically. Upon convergence, we are guaranteed to have found the uniquely
optimal allocation.

Since we have shown existence of an optimal allocation, and the proposed solution in (3.12) is
continuously differentiable, then we are able to verify that it is indeed equal to the planner’s value
function.

Corollary 3.6. The planner’s value function in (3.5) is given by (3.12). Furthermore, the optimal
project investment and cash reserves solve (3.4).

As with previous results, the proof is presented in Appendix A.2.

Analysis of Centralized Equilibrium

There is one main difference between the system of equations in (3.10) and the optimal solutions
from the decentralized setting in (3.4). Here, the expression for the planner’s optimal cash reserves
c∗i contains an additional term of (n− 1)Γ(φiw

∗
·i; 1). This term directly captures the externality –

when bank i suffers a liquidity shortage and their project incurs losses, the planner is congnizant
of losses in utility experienced by all banks. As a result, with more banks the planner maintains
larger cash reserves to compensate for greater system-wide losses. In contrast, bank i’s decentralized
optimization problem considers only changes to their own wealth, and therefore their optimal ĉi
will be indifferent to the system’s size.

Since we will have w∗·i ≥ 0 in (3.10), the planner has no weaker an incentive to hold liquidity
than an individual bank.2 Hence, the planner will hold no smaller cash reserves than banks in the
decentralized setting – this difference will be studied more closely in the following section. Finally,
we also notice that given some fixed cash reserves, the optimal project investments w∗·· and ŵ·· are
computed identically in both settings. It follows that any differences between the optimal project
investments in (3.4) and (3.10) must be driven only by differences in optimal cash holdings, which
we proceed to analyze in Section 4.

Finally, we note that only in the case where w∗·i equal zero for all i will the planner’s optimal
allocation coincide with that of the decentralized system. In such a case, bank i’s cash reserves
are dictated only by their own losses, which implies that ĉi = c∗i . In other words, as long as at
there is least one project within the planner’s optimum that has positive expected excess return,
the market-mediated equilibrium from Section 3.2 is inefficient, and the inequality in Eq. (3.6) is
strict. This suggests that there is value to be obtained from regulating the system.

2This observation may not be the case if, for example, short-selling were allowed. Qualitatively, the planner may
choose to have a single bank i hold zero cash, while others in the system maintain large, short positions in i’s project.
In this case, the total utility of the system may actually increase when bank i’s project incurs losses. However, clearly
this result may not align with the best outcome for bank i itself.
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4 Differences in Equilibria

It is natural to compare the two optimal allocations from Sections 3.2 and 3.3. In particular, we
may be interested in computing the gap in welfare from the inequality (3.6). Figure 4.1 illustrates
a sample path for the wealth of three banks, where in Fig. 4.1a the controls are given by (3.4), and
in Fig. 4.1b by (3.10). Qualitatively, there are higher-frequency jumps in 4.1a, but the jumps are
of larger size in 4.1b. With the remainder of this section, we study these differences more precisely.
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Figure 4.1: An example of wealth dynamics under the both optimal allocations for a
system of n = 3 banks. The same random seed is used in both simulations, so that
the size and arrival times of liquidity shocks are identical. For conciseness, we do not
include the parameters, but the code to reproduce these figures can be found here.

In what follows, we will assume that all banks have logarithmic utility (i.e. γi = 1 for all i).
Recall that ĉi, ŵji denote the optimal decentralized allocations given in (3.4). Note that for all
j, k 6= i we will have ŵki = ŵji, so we will denote these fractional amounts to be ŵ·i (this follows
from γj = 1 for all j). Additionally, recall that c∗i , w

∗
·i denotes the optimal solution from (3.10).

Finally, we use the asymptotic notation g(n) = Θ(h(n)) to denote that there exist positive constants

A1, A2 such that A1 ≤ limn→∞
g(n)
h(n) ≤ A2. If A1 = A2, then we will write g(n) � h(n).

Comparing the two optimal allocations, since w∗·i ≥ 0, it will necessarily be the case that c∗i ≥ ĉi.
Our first core result establishes the asymptotic rate at which the planner’s optimal cash reserves
grow as the size of the system increases, when liquidity shocks follow an exponential distribution.
More precisely, we show that the planner’s cash holdings must grow at logarithmically in the system
size n. In contrast, if w∗·i = 0, then we would have c∗i = ĉi, which is of constant order.

Proposition 4.1. If Fi(x) = 1− e−
x
λi , then

λi log

(
θi(n− 1)

λir

[
log(n− 1)− log

(
Γ(ηi; 1)

Γ(φiŵ·i; 1)

)])
≤ c∗i ≤ λi log

(
θiCU (n− 1)

λir
log(n)

)
,

where Γ(· ; 1) is defined in Eq. (3.3).
In particular, c∗i � λi log(n).

The proof follows from Lemma A.1 in Appendix A, which establishes upper and lower bounds
on super- and sub-exponentially distributed liquidity shocks.
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This result highlights a substantial discrepancy between the planner’s optimum and that of
individual banks. Since the losses to an individual bank are not affected by the number of external
investors, their cash reserves are dictated only by their own losses and are of constant order. In
contrast, the planner observes losses throughout the system, which grow at least linearly in the
system size, and hence chooses to hold greater cash reserves to compensate for the greater losses
upon a liquidity shortage to any particular bank.

Proposition 4.1 is a useful tool for comparing the two optimal allocations, as all differences are
driven by the distinct cash reserves. The following result compares the asymptotic rates for various
quantities in both the centralized and decentralized equilibrium.

Corollary 4.2. Under the conditions of Proposition 4.1, and when ŵ·i > 0, we have:

(i) Likelihood of Liquidity Shortage:

F̄i(c
∗
i ) = Θ

(
1

n log(n)

)
, F̄i(ĉi) = Θ(1).

(ii) Optimal Project Investment:

w∗·i =
1

φi
−Θ

(
1

n log(n)

)
, ŵ·i = Θ(1).

(iii) Expected System-wide Loss in Utility (due to bank i):

F̄i(c
∗
i )(n− 1)Γ(w∗·i; 1) = Θ(1), F̄i(ĉi)(n− 1)Γ(ŵ·i; 1) = Θ(n).

The proofs require only plugging in the asymptotic rate for c∗i from Proposition 4.1 into F̄i(·),
the expression for w∗·i, and Γ(w·i; 1).

Notice that we must have w·i < φ−1
i to ensure wealth remains positive, yet we can still pin

down the rate at which the optimal project investments approach their upper bound. The term
F̄i(c

∗
i )(n − 1)Γ(w∗·i; 1) appears in Eq. (3.11), the value function for the planner. It represents the

expected loss in utility to all of bank i’s external investors when i suffers a liquidity shortage:
Γ(w∗·i; 1) captures the loss in utility to a single investing bank, of which there are n− 1 within the
system, and F̄i(c

∗
i ) is proportional to the likelihood of such an event. It is particularly interesting

that this quantity is of constant order, as it shows that the planner perfectly compensates for larger
possible losses in utility in the system through its reduction of the probability of such an event.

The results in Corollary 4.2 allow us to analyze differences in welfare between the two settings
in the following section.

4.1 Welfare Gap

We now turn to the gap between value functions from (3.6). It will be useful to have Mn denote
the set of banks whose projects are invested in by other firms in the planner’s optimal allocation,
i.e. Mn = {i ∈ {1, . . . , n} : w∗·i > 0}. Banks in Mn form the ‘core’ of the financial network. If for

some i we have w∗·i = 0, then it must be the case that c∗i = ĉi and
φiθiF̄i(c

∗
i )

µi
> 1. For such a bank

i, the planner’s optimal c∗i would remain constant at ĉi, even as n grows.
In this model, we define the welfare ratio as:

WR =
V∑n
i=1 Vi

.
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This quantity is occasionally referred to as the ‘price of anarchy’, and reflects how greedy decen-
tralized behavior leads to lesser welfare in the system (Papadimitriou 2001). In the following result,
we characterize its asymptotic behavior.

Proposition 4.3. Assume that γi = 1 and Fi(x) = 1− e−
x
λi for all i. Then, as n→∞, we have

WR = Θ(1).

The proof is found in Appendix A.3, and uses the results from Corollary 4.2.
It is particularly interesting that the welfare ratio does not grow with the system size n, nor

the remaining time horizon (T − t). A more precise result can be obtained if banks are sufficiently
homogeneous, where we can compute the limiting value.

Corollary 4.4. In the setting of Proposition 4.3, assume further that all banks inMn are identical
(i.e. µj = µ, φj = φ, θj = θ, ηj = η, and λj = λ for some given constants µ, φ, θ, η and λ). If
|Mn| →

n→∞
∞, then

Vi
|Mn|(T − t)

→
n→∞

µ

φ
+ θF̄ (ĉ))

[
log

(
φθF̄ (ĉ)

µ

)
− 1

]
, ∀i = 1, . . . , n

V

n|Mn|(T − t)
→

n→∞

µ

φ
.

where ĉ is given in (3.4) and F̄ (ĉ) = e−
ĉ
λ . As a result, we have:

WR →
n→∞

1

1 + φθF̄ (ĉ)
µ

[
log
(
φθF̄ (ĉ)
µ

)
− 1
] . (4.1)

Corollary 4.4 verifies that the welfare ratio is of constant order in n, and the proof is found in
Appendix A.3. Of particular interest, the rate at which |Mn| grows in n does not appear in our
result. This implies that the limiting welfare ratio is independent from the fraction of the system
that operates as its ‘core’. Notice also that φθF̄ (ĉ) < µ, and hence the right-hand side in (4.1)

is greater than one. Moreover, the limiting welfare ratio is increasing in φθF̄ (ĉ)
µ . Therefore, as the

profitability of projects in the decentralized setting is reduced, the limiting welfare ratio grows to
infinity.

Corollary 4.4 is verified numerically. Using the parameters in Table 4.1, we compute the in-
dividual and collective value functions. The resulting welfare ratio is plotted in Figure 4.2, along
with the limiting value in (4.1). We see that this quantity quickly converges to its limit.

4.2 Replicating the Centralized Allocation

Finally, we may be interested in studying how banks in the decentralized setting can be incentivized
or forced to replicate the planner’s optimal allocation. We could approach this regulatory question
in one of two ways – either directly enforcing a liquidity requirement on individual banks (corre-
sponding to the planner’s optimal c∗i ), or allowing regulators to control the previously exogenous
parameter ηi, which dictates how much of bank i’s wealth must be invested in their own project.
In this section, we choose to pursue the latter approach. The rationale for this is twofold: first,
ηi plays the fundamental role in decentralized banks’ choice of optimal cash reserves. From the
analysis near the end of Section 3.2, we observed that by increasing ηi, banks will increase their cash
holdings and therefore reduce their projects’ riskiness, which can lead them to eventually match the
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Figure 4.2: Simulating the Welfare Ratio for a system of identical firms as n grows.
Uses parameters shown in Table 4.1.

Table 4.1: System parameters used in simulations for Figures 4.2 and C.1. Relevant
code is available here.

Notation Value Description

r 0.01 Risk-free rate
µ 0.045 Excess drift
φ 0.4 Losses to External Investors
η 0.5 Losses to Associated Bank

F (x) 1− e−
x
λ CDF of shock size

λ 1 Parameter of F (·)
θ 0.1 Shock arrival rate
γ 1 Relative risk aversion coefficient

planner’s optimal liquidity reserves. Second, we can imagine that externally investing banks are
permitted to write a contract stipulating the associated bank’s degree of co-investment. This kind of
contracting is not a focus of our paper, but is instead analyzed in more detail with Principal-Agent
problems such as Hernández Santibáñez et al. (2020). Nonetheless, the co-investment contract can
be designed to ensure that individual banks hold sufficient reserves of cash.

There are several other strategies used by regulators in practice to reduce inefficiencies in the
financial system, such as bail-in or bail-out policies, or government intervention (Bernard et al.
2022, Kanik 2019). While these strategies are fruitful directions for future work, we will focus on
how co-investment requirements can be used to reduce the riskiness of core banks in the system,
since these parameters are already integrated into the model and directly imply equilibirum levels
of liquidity reserves.

Let ηCi (respectively ηDi ) denote the fraction of bank i’s wealth lost upon liquidity shortage in
the centralized (resp. decentralized) setting. We would like to choose ηDi so that decentralized
banks replicate the planner’s optimum with given values ηCi . More precisely, we seek to find ηDi
solving c∗i (η

C
i ) = ĉi(η

D
i ) for all i, where we write the optimal controls in a way that highlights

their dependence on the underlying values of η. Even though the optimal allocations are identical,
however, we note that the decentralized optimum is still inefficient (with respect to the optimal
centralized allocation corresponding to ηDi ). Using equations (3.4) and (3.10), we find that:
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ηDi = 1− (1− ηCi )
(
1− φiw∗·i(ηCi )

)n−1
.

First, notice that whenever w∗·i(η
C
i ) > 0, the resulting value of ηDi will grow with n towards

its upper bound of 1. This is intuitive – banks whose projects are highly invested in require the
strongest incentive to reduce their project’s riskiness. It is precisely these banks that comprise
the ‘core’ of the financial network, and will be subjected to the strictest regulations. In contrast,
banks in the periphery (with w·i(η

C
i ) = 0) are no more strictly regulated (ηDi = ηCi ), since their

liquidity shortages cause only localized losses. Second, we see that for banks to replicate the
planner’s optimum, it is necessary for bank i’s degree of co-investment to depend on their liabilities
throughout the system. It is therefore necessary to know the complete structure of the financial
network to determine the value of ηDi , which may not be known to individual investing banks.
Finally, an interesting case occurs when we choose ηCi = 0. In this case, the value of ηDi is only
non-zero if w∗·i(0) > 0. Namely, banks in the periphery would not be required to hold any stake in
their own projects.

This discrepancy suggests that while stricter regulations on core banks can improve the efficiency
of the financial system, there is little if any value to be gained by increasing restrictions on banks
in the periphery. When increasing the self-investment requirement of some bank in the periphery,
one of two will occur: i) this increase causes i to have large enough cash reserves for other banks
in the system to invest in project i, or ii) the increase in ηi is not sufficiently large for i’s project
to be profitable for other banks in the system. In case i), bank i moves into the ‘core’ of the
financial system, as their project is now capitalized by other firms. In this case, it is not possible to
conclusively state whether or not this increase in ηi yielded higher or lower social welfare. However,
in case ii), the small increase to ηi serves only to push bank i’s capital towards less efficient
investments – they are obligated to hold additional capital in a project whose expected return
is less than r, and they choose to hold greater cash reserves to compensate for this heightened
exposure – which also provides lower returns than r. In this case, both effects serve only to reduce
i’s wealth and hence the total welfare in the financial system.

5 Conclusion

In this paper, we present a model in which banks in a financial system control both their own
levels of cash reserves, and their investment in each others’ risky projects. We compute the unique
optimal allocations of capital for two distinct organizations of the system, and study their differ-
ences qualitatively and quantitatively. First, we analyze the setting where each bank acts with pure
self-interest. We compute explicitly the optimal allocation, and find that the size of project invest-
ments are closely related to a Sharpe-like ratio – which is controlled by the bank associated with
a particular project. In particular, the equilibrium financial network exhibits a ‘core-periphery’
structure, in which only a subset of banks serve as valid investment targets. Second, we formulate
the optimization problem of a social planner, who seeks to maximize the total welfare in the sys-
tem. Under a few technical assumptions, we are able to prove the existence of a unique optimal
allocation. A substantial technical contribution of this paper is to provide explicit solution of a
multi-player game of intensity control in a CRRA-utility maximization setting. We also also able
to solve explicitly the associated social planner’s problem, and characterize the asymptotics of the
system’s inefficiencies. Finally, we can also extend the model in various directions described in the
Appendices, which can be solved up to numerical solution of systems of algebraic equations.

In particular, we find that the planner’s optimum exhibits low-frequency and high-severity
events of distress, which aligns with the ‘robust-yet-fragile’ feature observed by Gai and Kapadia
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(2010). The difference in these two optimal allocations is driven by a negative externality, where
individual banks are excessively risky given the potential losses that they may induce.

In the case where shocks are exponentially distributed, we can precisely compute how the
externality’s severity depends on the system’s size. We see that the planner compensates for an
increased number of investors by reducing the risk of a bank’s project. The planner perfectly
balances the two effects, so that the expected losses in utility remain of constant order – regardless
of the system size. We are also able to see that the absolute loss in welfare due to decentralized
behavior grows with the size of both the financial system and its core. However, and perhaps
counterintuitively, the welfare ratio, also known as the price of anarchy, is of constant order. Finally,
we show that it is possible, through regulation or contracting between banks, to replicate the
planner’s optimal interbank allocation.

Banks in the core of the system must be subjected to the strictest requirements, and will
therefore have the strongest incentive to reduce their project’s riskiness. This highlights both i)
the danger of government bailouts, which can cause perverse incentives for individual banks, and
ii) the heterogeneous impact of regulation on social welfare.

In the wake of the regional banking crisis in 2023, the widespread financial distress was addressed
with forms of bailouts and takeovers of, for instance, Silicon Valley Bank and First Republic Bank.
Subsequently, regulators are discussing revisions to capitalization and liquidity requirements of
banks contained in Basel III (Basel Committee on Banking Supervision 2017), which led to a
debate and substantial lobbying from large, central banks such as JP Morgan. This resulted in US
regulators lowering their initial proposed increases to capital and liquidity requirements. Our work
strongly supports the idea of different degrees of regulation imposed on banks in the core and the
periphery.

We believe there are several interesting continuations of this work. First, a notable limitation
of this model is that it does not contain a mechanism of contagion. For instance, Aı̈t-Sahalia and
Hurd (2015) consider a portfolio optimization problem where assets’ jump components are self-
and mutually exciting. An immediate extension of our work may be to incorporate jump processes
with these features directly into the model. It may also be possible to show that self- and mutually
exciting jumps can endogenously emerge, e.g. if an investing bank suffers losses to liquidity when
the bank associated with this project suffers. Second, we assume that the liquidity risk premium
r is fixed and exogenous, so that banks may borrow as much as they like at this rate. In practice,
this rate would be determined endogenously by the relative supply and demand of liquidity, and
substantially affected by market conditions. Additionally, financial crises are heavily destabilizing,
and it is natural to assume that it is challenging (or impossible) to quickly rebalance a portfolio
in the wake of such an event. Therefore, it is practical to prevent banks from instantaneously re-
weighting their portfolios. This feature may lead to further inefficiencies caused by banks’ inability
to establish an optimal allocation of wealth shortly after a shock occurs. Furthermore, our model
differs from the literature on strategic network formation in that creating an ‘investment linkage’ to
another bank is costless. It is natural to incorporate these costs into banks’ optimization problems,
for example, as there is a cost to performing due diligence on a potential investment opportunity
to assess its profitability.
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bility, and Dynamic Moral Hazard. Econometrica, 78(1):73–118, 2010.

Marcel Bluhm, Ester Faia, and Jan Pieter Krahnen. Endogenous Banks’ Networks, Cascades and Systemic
Risk. SAFE Working Paper, 2014.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Fabio Caccioli, Munik Shrestha, Cristopher Moore, and J. Doyne Farmer. Stability Analysis of Financial
Contagion due to Overlapping Portfolios. Journal of Banking and Finance, 46(1):233–245, 2014.

Agostino Capponi and Christoph Frei. Dynamic Contracting: Accidents Lead to Nonlinear Contracts. SIAM
Journal on Financial Mathematics, 6(1):959–983, 2015.

Rama Cont and Peter Tankov. Financial Modelling with Jump Processes. Chapman and Hall/CRC, 2003.

Nils Detering, Thilo Meyer-Brandis, Konstantinos Panagiotou, and Daniel Ritter. Managing Default Conta-
gion in Inhomogeneous Financial Networks. SIAM Journal on Financial Mathematics, 10(2):578–614,
2019.

Nils Detering, Thilo Meyer-Brandis, Konstantinos Panagiotou, and Daniel Ritter. Financial Contagion in a
Stochastic Block Model. International Journal of Theoretical and Applied Finance, 23(08), 2020.

Nils Detering, Thilo Meyer-Brandis, Konstantinos Panagiotou, and Daniel Ritter. An Integrated Model for
Fire Sales and Default Contagion. Mathematics and Financial Economics, 15(1):59–101, 2021.

Matthew Elliott, Benjamin Golub, and Matthew O Jackson. Financial Networks and Contagion. American
Economic Review, 104(10):3115–53, 2014.

Selman Erol and Guillermo Ordonez. Network reactions to banking regulations. Journal of Monetary
Economics, 89:51–67, 2017.

24

https://www.federalreserve.gov/newsevents/speech/barr20240520a.htm
https://www.federalreserve.gov/newsevents/speech/barr20240520a.htm
https://www.bis.org/bcbs/basel3.htm


Maryam Farboodi. Intermediation and Voluntary Exposure to Counterparty Risk. NBER Working Paper,
(w29467), 2021.

Prasanna Gai and Sujit Kapadia. Contagion in Financial Networks. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 466(2120):2401–2423, 2010.

Prasanna Gai, Andrew Haldane, and Sujit Kapadia. Complexity, Concentration and Contagion. Journal of
Monetary Economics, 58(5):453–470, 2011.
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A Proofs

A.1 Decentralized Network

Proof of Proposition 3.1. First, we use the dynamic programming principle to consider only the
optimal control over the time interval [t, τ ], for a stopping time τ < T to be defined later. We can
write the value function recursively as

Vi(t, x) = sup
(ci· ,w

i·
· )∈Ait,T

E
[
Vi
(
τ,Xi

τ

) ∣∣∣Xi
t = x

]
, (A.1)

which holds for all t < T and τ ≤ T .
Next, we for each bank k we fix some admissible control (ck· , w

k·
· ) ∈ Akt,T . By assumption, Vi

is once differentiable in both time and space, and using Itô’s formula (see for instance Cont and
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Tankov (2003)) we can write:

Vi
(
τ,Xi

τ

)
− Vi

(
t,Xi

t

)
=

∫ τ

t

[
∂tVi(s,X

i
s) + ∂xVi

(
s,Xi

s

)
bi(c

i
s, w

i·
s )Xi

s

]
ds

+

n∑

j=1

∫ τ

t

[
Vi
(
s,Xi

s

)
− Vi

(
s,Xi

s−
)]
dN j

s .
(A.2)

where bi(c
i
t, w

i·
t ) is the coefficient on the dt term in (2.2).

Recall that the jump process N j
t has instantaneous intensity θjF̄j(c

j
t ). Therefore, the compen-

sated process M j
t = N j

t −
∫ t

0 θjF̄j(c
j
s)ds is a martingale. Rewriting the integrals in (A.2) in terms

of dM j
t and taking expectation conditioned on Xi

t = x (denoted Et,x) of both sides yields:

Et,x
[
Vi
(
τ,Xi

τ

)]
− Vi

(
t,Xi

t

)
= Et,x

[∫ τ

t
Lcis,wi·s Vi(s,Xi

s−)ds

]

+ Et,x
[∫ τ

t

[
Vi
(
s,Xi

s− − ηiXi
s−
)
− Vi

(
s,Xi

s−
)]
dM i

s

]

+
∑

j 6=i
Et,x

[∫ τ

t

[
Vi
(
s,Xi

s− − φjwijs Xi
s−
)
− Vi

(
s,Xi

s−
)]
dM i

s

]
,

(A.3)

where the generator Lci,wi· is defined to be

Lci,wi·ψ(t, x) = ∂tψ(t, x) +


(1− ci)r +

∑

j 6=i
wijµj +

ηiµi
φi


x∂xψ

+ θi (1− Fi(ci))
[
ψ(t, x(1− ηi))− ψ(t, x)

]

+
∑

j 6=i
θj (1− Fj(cj))

[
ψ(t, x(1− φjwij))− ψ(t, x)

]
,

(A.4)

for any ψ ∈ C1,1([0, T ),R+).
Next, we need to show that the expectation of the stochastic integrals with respect to dMk

s are
equal to zero. To do so, it is sufficient to have the integrand bounded for s ∈ [t, τ ]. Define the
stopping time τ to be:

τ = (t+ δ) ∧ inf

{
s ∈ [t, T ], Xi

s ≤ ε or Xi
s ≥

1

ε

}
, (A.5)

for some small δ > 0 and ε > 0. Then, since Xi
s is bounded away from zero in [t, τ ], the size in

the jump of the value function is bounded. Therefore the stochastic integrals in (A.3) have zero
expectation. We obtain:

Et,x
[
Vi
(
τ,Xi

τ

)]
− Vi

(
t,Xi

t

)
= Et,x

[∫ τ

t
Lcis,wi·s Vi(s,Xi

s−)ds

]
.

Take the supremum on both sides over the admissible controls (ci· , w
i·
· ) ∈ Ait,T . Recall that the

dynamic programming principle in (A.1) implies that for any stopping time τ , we have

sup
(ci· ,w

i·
· )∈Ait,τ

Et,x
[
Vi
(
τ,Xi

τ

)]
= Vi

(
t,Xi

t

)
.
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Therefore, we arrive at:

0 = sup
(ci· ,w

i·
· )∈Ait,τ

Et,x

[∫ τ

t
Lcis,wi·s Vi(s,Xi

s−)ds

]
. (A.6)

We note that this step required existence of an optimal control. For small enough δ and ε
in (A.5), we will have τ = t+ δ. Therefore, (A.6) yields

0 = sup
(ci· ,w

i·
· )

lim
δ→0

1

δ
Et,x

[∫ t+δ

t
Lcis,wi·s Vi(s,Xi

s−)ds

]
.

Finally, applying the Dominated Convergence Theorem gives

0 = sup
(ci· ,w

i·
· )

Lci,wi·Vi(t, x),

which equals (3.2) after plugging in the definition of Lci,wi· from (A.4).

Proof of Proposition 3.2. Both parts of this Proposition are proved nearly identically. For concise-
ness, full detail is only provided for case (i) where γi = 1.

(i): We first show that (3.2) has a separable solution. Next, the internal optimization problem is
shown to be convex, and its objective function strictly concave. Finally, we show that the proposed
solution is optimal.

Separability of the PDE: First we show the value function is separable. Plugging the ansatz
Vi(t, x) = gi(t) + log x into (3.2) and performing some simplification, we have:

0 = g′i(t) + sup
ci,wi·



(1− ci) r +

∑

j 6=i

wijµj +
ηiµi
φi

+ θiF̄i(ci) log

(
x− ηix

x

)∑

j 6=i

θjF̄j(cj) log

(
x− φjwijx

x

)
 .

Observe we can cancel out all remaining x’s, and obtain the following ODE for gi:

0 = g′i(t) +
ηiµi
φi

+ sup
ci,wi·



(1− ci)r +

∑

j 6=i

wijµj + θiF̄i(ci) log(1− ηi) +
∑

j 6=i

θjF̄j(cj) log(1− φjwij)



 (A.7)

with terminal condition gi(T ) = 0. If ĉi and ŵij are indeed the optimal solutions to the maximiza-
tion in (A.7), gi solves g′i(t) = −J∗i with gi(T ) = 0, to which the solution is gi(t) = (T − t)J∗i as
desired.

Strict Concavity: Now we analyze the resulting optimization problem for ci, wi·. Let Ai =
R+ ×

∏
j 6=i[0, φ

−1
j ) be the feasible set for this optimization problem. Clearly, Ai is a convex set.

We aim to solve

sup
(ci,wi·)∈Ai

(1− ci)r +
∑

j 6=i
wijµj + θiF̄i(ci) log(1− ηi) +

∑

j 6=i
θjF̄j(cj) log(1− φjwij). (A.8)

Let h(ci, wi·) denote the function to be maximized in (A.8). It is critical to observe that h is
additively separable in each of its optimization variables. Therefore, we can solve for each optimal
control independently. Namely, all cross-derivatives of h equal zero, which greatly simplifies the
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proof of strict concavity. We begin by computing partial derivatives of h with respect to each
variable, which gives

∂h

∂ci
= −r − θifi(ci) log(1− ηi)

∂2h

∂c2i
= −θif ′i(ci) log(1− ηi)

∂h

∂wij
= µj − φjθj

F̄j(cj)

1− φjwij
∂2h

∂w2
ij

= −φ2
jθj

F̄j(cj)

(1− φjwij)2
∀j 6= i.

(A.9)

Observe that within Ai, we have (1 − φjwij)2 > 0. Recall that by Assumption 1, the density
function fj(·) is fully supported on R+, and f ′i(·) < 0. Therefore, it must be the case that F̄j(cj) > 0
for any admissible cj and ∂2

wij ,wijh < 0. Additionally, ∂2
ci,cih < 0 because ηj > 0.

As a result, the Hessian matrix of the objective function is negative definite in the feasible
region, i.e. ∇2h ≺ 0 everywhere in Ai. Hence h is a strictly concave function; if an optimal solution
to problem (A.8) exists, it is unique (Boyd and Vandenberghe 2004).

Optimality of Given Solution: To conclude, we must prove that (3.4) is optimal for bank i.
Note that −r

θi log(1−ηi) > 0. Since fi is monotonically decreasing and positive valued on R+, its

inverse f−1
i

(
−r

θi log(1−ηi)

)
is well-defined if and only if −r

θi log(1−ηi) ≤ fi(0).

Since optimization problem (A.8) is convex, the first-order condition for constrained optimiza-
tion is sufficient. We need only check that y∗ = (ĉi, w

∗
i·) ∈ Ai satisfies

∇h(y∗)T (y − y∗) ≤ 0, ∀y ∈ Ai.

The optimization problem for h is additively separable, so this condition is equivalent to the fol-
lowing:

∂cih(ĉi)(ci − ĉi) ≤ 0, ∀ci ∈ R+,

∂wijh(ŵij)(wij − ŵij) ≤ 0, ∀wij ∈
[

0, φ−1
j

)
, ∀j 6= i.

(A.10)

Note that the partial derivative ∂cih in (A.9) is a function of only ci. The same holds for the
partials with respect to each wij . Note that these derivatives will depend on cj , but this value is
not controlled by bank i. Therefore, we will omit the dependence of these derivatives on the other
optimization variables.

We begin with optimality of the proposed ĉi. Consider the case where −r
θi log(1−ηi) ≤ fi(0), and

observe that ∂cih(ĉi) = 0 using (A.9). As a result, this choice of ĉi satisfies the first-order condition
for ĉi in (A.10). Conversely, let us have −r

θi log(1−ηi) > fi(0). Since fi is assumed to be monotone

decreasing, it must be the case that −r
θi log(1−ηi) > maxc∈R+ fi(c). Using again (A.9), we obtain

that ∂cih(c) < 0 for every c ∈ R+. In particular, we will have ∂cih(0) < 0, and the first-order
condition (A.10) is satisfied by ĉi = 0. The proof of optimality for ŵij in (3.4) follows exactly the
same steps. If it is non-zero, then the proposed value solves ∂wijh(ŵij) = 0. If not, then we know
that this partial derivative is negative everywhere in the feasible region for wij . Choosing ŵij = 0
satisfies the corresponding equation in (A.10).

Concluding, we have shown that the solution given in (3.4) satisfies (A.10). Since it lies within
Ai, it is optimal for problem (A.8). Recall that strict concavity provides uniqueness of this solution.
Finally, since all banks optimize concurrently, (3.4) is obtained by plugging the optimal value c∗j
into ŵij .
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(ii): The proof of this result will largely mirror that of part (i). We first check separability of

the PDE. If Vi(t, x) = gi(t)
x1−γi
1−γi , then we have:

∂tVi(t, x) = g′i(t)
x1−γi

1− γi
, ∂xVi(t, x) = gi(t)

x1−γi

x
, Vi(t, (1− c)x) = gi(t)

x1−γi

1− γi
(1− c)1−γi ,

for all c < 1. Plugging these expressions into (3.2) and dividing by x1−γi removes any spatial
variables, and we are left with the following ordinary differential equation for gi:

0 =
g′i(t)

1− γi
+ gi(t) sup

ci,wi·

{
(1− ci)r +

∑

j 6=i
wijµj +

ηiµi
φi

+ θiF̄i(ci)
(1− ηi)1−γi − 1

1− γi

+
∑

j 6=i
θjF̄j(cj)

(1− φjwij)1−γi − 1

1− γi

}
,

with gi(T ) = 1.
Let ĉi and ŵij be the optimal solutions to the maximization. Then we see that gi will solve

g′i(t) = −(1− γi)J∗i gi(t) with gi(T ) = 1, whose solution is gi(t) = exp((1− γi)(T − t)J∗i ).
The optimality and uniqueness of the solution in (3.4) will be proved analogously to part (i),

but by analyzing a different objective function. We are now interested in:

sup
(ci,wi·)∈Ai

(1− ci)r +
∑

j 6=i
wijµj + θiF̄i(ci)

(1− ηi)1−γi − 1

1− γi
+
∑

j 6=i
θjF̄j(cj)

(1− φjwij)1−γi − 1

1− γi
.

Again, this optimization problem is additively separable, which will simplify the proof of strict
concavity. As before, let h(ci, wi·) denote the function to be maximized. We compute its partial
derivatives to be:

∂h

∂ci
= −r − θifi(ci)

(1− ηi)1−γi − 1

1− γi
∂2h

∂c2i
= −θif ′i(ci)

(1− ηi)1−γi − 1

1− γi
∂h

∂wij
= µj − φjθjF̄j(cj)(1− φjwij)−γi

∂2h

∂w2
ij

= φ2
jθjF̄j(cj)(−γi)(1− φjwij)−γi−1

Under Assumption 1, we will have both ∂2
ci,cih < 0 and ∂2

wij ,wijh < 0, since wij < φ−1
j everywhere

in Ai. Therefore, h is strictly concave on Ai and the optimization problem is convex. As a result,
any optimal solution must be unique.

The remaining part of the proof mirrors that of part (i). Computing the gradient of h at the
candidate solution in (3.4) and using the same argument will show that the first-order conditions
in (A.10) are satisfied. Since this point is feasible, it must be optimal.

Proof of Corollary 3.3. We proceed with a standard verification argument. We need to show that
if ψ is a solution to the PDE (3.2) and it is C1,1 ([0, T ),R+), then it is equal to the value function.
Since the proposed solutions solve the PDE and they are indeed C1,1, this will conclude.

Fix t < T , and choose {cis, wi·s }s∈[t,T ] be some admissible controls. We apply Itô’s formula to
ψ(s,Xi

s) between t and some stopping time τn – to be chosen optimally later. This yields, using
the notation introduced in the proof of Proposition 3.1, the following:

ψ(τn, Xi
τn) = ψ(t,Xi

t) +

∫ τn

t
Lcis,wi·s ψ(s,Xi

s)ds+

∫ τn

t

[
ψ
(
s,Xi

s− − ηiXi
s−
)
− ψ

(
s,Xi

s−
)]
dM i

s

+
∑

j 6=i

∫ τn

t

[
ψ
(
s,Xi

s− − φjwijs Xi
s−
)
− ψ

(
s,Xi

s−
)]
dM j

s .
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Recall that the compensated jump process
{
Mk
t

}
t≥0

is a martingale. Taking the expectation

conditioned on Xi
t = x, we obtain:

Et,x
[
ψ(τn, Xi

τn)
]

= ψ(t, x) + Et,x
[∫ τn

t
Lcis,wi·s ψ(s,Xi

s)ds

]

+ Et,x
[∫ τn

t

[
ψ
(
s,Xi

s− − ηiXi
s−
)
− ψ

(
s,Xi

s−
)]
dM i

s

]

+
∑

j 6=i
Et,x

[∫ τn

t

[
ψ
(
s,Xi

s− − φjwijs Xi
s−
)
− ψ

(
s,Xi

s−
)]
dM j

s

]
.

If we choose τn =
(
T − 1

n

)
∧ inf

{
s ∈ [t, T ], Xi

s ≤ 1
n or Xi

s ≥ n
}

, then for every n the expectation
of each stochastic integral is zero and we have:

Et,x
[
ψ(τn, Xi

τn)
]

= ψ(t, x) + Et,x
[∫ τn

t
Lcis,wi·s ψ(s,Xi

s)ds

]
.

Taking the limit as n → ∞, we will have τn → T . Furthermore, since ψ satisfies the terminal
condition (by assumption) and everything is bounded, an application of dominated convergence
yields:

Et,x
[
Ui(X

i
T )
]

= ψ(t, x) + Et,x
[∫ T

t
Lcis,wi·s ψ(s,Xi

s)ds

]
. (A.11)

First, we choose the controls in (A.11) to be given by the optimal solution of Proposition 3.2.
Then, we will have Lĉis,ŵi·s ψ(s,Xi

s) = 0 for all s ∈ [t, τn], and consequentially:

ψ(t, x) = Et,x
[
Ui(X

i
T )
]
.

Note that only the terminal wealth Xi
T in the right-hand side depends on the controls (ĉis, ŵ

i·
s ).

After taking the supremum we obtain

ψ(t, x) ≤ sup
{cis,wi·s }s∈[t,T ]

Et,x
[
Ui(X

i
T )
]

= Vi(t, x). (A.12)

Next, we fix any control (cis, w
i·
s ). Then, in (A.11) we will have Lcis,wi·s ψ(s,Xi

s) ≤ 0, and the
result is:

ψ(t, x) ≥ Et,x
[
Ui(X

i
T )
]
.

Note again that only Xi
T depends on the controls. However, since this inequality holds for any

admissible control we can take the supremum over both sides to give

ψ(t, x) ≥ sup
{cis,wi·s }s∈[t,T ]

Et,x
[
Ui(X

i
T )
]

= Vi(t, x). (A.13)

Combining (A.12) and (A.13) shows that ψ = Vi. This implies that the optimal values to the
maximization problem in the PDE for ψ are indeed the optimal controls. Since the explicit solutions
given by Proposition 3.2 are once continuously differentiable in both time and space, then they are
equal to the value function.

30



A.2 Centralized Network

Proof of Proposition 3.4. This proof is only a minor adaptation of the proof of Proposition 3.1.
First, the application of Itô’s formula to the value function V (t,X1

t , . . . , X
n
t ) yields more terms,

but remains simple as the jump processes are mutually independent. Namely, the generator is given
by

Lc·,w··ψ = ∂tψ +

n∑

i=1

(
(1− ci)r +

∑

j 6=i
wijµj +

ηiµi
φi


xi∂xiψ

+ θiF̄i(ci)
[
ψ(t, x1(1− φiw1i), . . . , xi(1− ηi), . . . , xn(1− φiwni))− ψ

])
,

where ψ is evaluated at (t, x1, . . . , xn) where unspecified.
Next, to apply dominated convergence, the choice of the stopping time τ must ensure that all

stopped processes X1
τ , . . . X

n
τ are bounded away from zero. We can therefore choose:

τ = (t+ δ) ∧min
i

{
inf

{
s ∈ [t, T ], Xi

s ≤ ε or Xi
s ≥

1

ε

}}
,

and conclude as in the previous result.

Proof of Proposition 3.5. The outline of this proof is similar to that of Prop. 3.2, but with greater
complexity, and hence requiring additional assumptions to establish our results. We begin by
discussing each of these. First, logarithmic utility functions are needed so that (3.7) admits a
separable solution. We note that if the planner sought to maximize the product of banks’ utilities,
it would be necessary to assume that γi 6= 1 for all i. This assumption is used for existence of a
separable solution to (3.7).

The first condition in Assumption 2 concerns the shock densities fi. In particular, (3.8) is

satisfied by the family of exponential distributions (fi(x) = λ−1
i e
− x
λi , for some parameter λi > 0)

and power distributions
(
fi(x) =

(α−1
i −1)x

α−1
i
−1

0

(x+x0)α
−1
i

, for any x0 > 0 and αi < 1
)

. We note that this

condition is not necessary for uniqueness, but is used for establishing monotonicity of a first-order
condition for optimality by bounding the second derivative with an exponentially decaying function.

Finally, the inequalities on Γ(ηi; 1) will ensure that either (i): strict concavity of the objective
function holds, or (ii) there exists only a single solution to the necessary first-order conditions.
However, these inequalities do not rule out the possibility of a corner solution of c∗i = 0 or w∗·i = 0
– as shown in (3.10). Of particular interest, the optimal decentralized and centralized allocations
for ci and w·i will coincide whenever either c∗i = 0 or w∗·i = 0 in the planner’s optimum.

Separability of PDE and Maximization: Recall that the PDE for the value function derived
in Proposition 3.4 is:

0 = ∂tV + sup
c·,w··

{
n∑

i=1

(
(1− ci) r +

∑

j 6=i
wijµj +

ηiµi
φi


xi∂xiV

+ θiF̄i(ci)
[
V (t, x1(1− φiw1i), .., xi(1− ηi), .., xn(1− φiwni))− V

])}

V (T, x1, . . . , xn) =

n∑

i=1

Ui(xi).

(A.14)
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By assumption, each bank’s utility function is given by Ui(xi) = log xi, i.e. γi = 1 for all i. Consider
the following ansatz: V (t, x1, .., xn) = g(t) +

∑
i log xi. Substituting into (A.14), we obtain:

0 = g′(t) + sup
c·,w··

n∑

i=1

(1− ci) r +
∑

j 6=i
wijµj +

ηiµi
φi
− θiF̄i(ci)


Γ(ηi; 1) +

∑

j 6=i
Γ(φiwji; 1)


 (A.15)

with g(T ) = 0. The spatial variables will cancel and we are left with an ordinary differential
equation for g. We now rewrite the following sum:

n∑

i=1

∑

j 6=i
wijµj =

n∑

i=1

∑

j 6=i
wjiµi.

Observe that for k, j 6= i, we will have wji = wki. That is, all j 6= i banks will invest the same
fraction of their wealth in bank i’s project. This can be seen in two ways. First, in the decentralized
setting, the amount wji depended on bank j only through their risk aversion coefficient γj . Since in
this Proposition we have assumed that γi = 1 for all i, the result follows. This can also be seen by
computing the first-order conditions in (A.15) for wji and wki, and noticing that they are identical.
Let this fraction be denoted by w·i. This allows us to further simplify (A.15) and obtain

0 = g′(t) +

n∑

i=1

ηiµi
φi

+ sup
c·,w··

n∑

i=1

(1− ci) r + (n− 1)w·iµi − θiF̄i(ci)
[
Γ(ηi; 1) + (n− 1)Γ(φiw·i; 1)

]
.

This maximization is additively separable between each pair (ci, w·i), indexed by i. Let Ai =
R+ × [0, φ−1

i ) denote the admissible values for (ci, w·i). Then, the optimal allocation is found by
solving:

n∑

i=1

sup
(ci,w·i)∈Ai

hi(ci, w·i), (A.16)

where hi(ci, w·i) = −rci + (n− 1)µiw·i − θiF̄i(ci)
[
Γ(ηi; 1) + (n− 1)Γ(φiw·i; 1)

]
for each i.

Reduction to Univariate Optimization: We first maximize over w·i and then ci given the
optimal w·i. Given a value of ci, we seek to find the optimal value of w·i. We can compute

∂hi
∂w·i

(ci, w·i) = (n− 1)µi − (n− 1)
φiθiF̄i(ci)

1− φiw·i
∂2hi
∂w2
·i

(ci, w·i) = −(n− 1)
φ2
i θiF̄i(ci)

(1− φiw·i)2
.

(A.17)

Notice that the second derivative in this expression is always strictly negative. Hence, given ci, the
optimization problem over w·i is strictly concave. This implies that the first-order conditions are
sufficient, and that any optimal solution is unique. Let w∗·i(ci) denote the optimal solution given
ci. It must satisfy the following necessary first-order condition:

∂hi
∂w·i

(ci, w
∗
·i(ci))(w·i − w∗·i(ci)) ≤ 0, ∀w·i ∈ [0, φ−1

i ).

Using (A.17), it is easy to check that this condition is satisfied by the following:

w∗·i(ci) =

{
1
φi

(
1− φiθiF̄i(ci)

µi

)
if φiθiF̄i(ci)

µi
≤ 1

0 otherwise.
(A.18)
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This value is uniquely defined, and exists for any choice of ci. We then rewrite each maximization
in (A.16) as

sup
(ci,w·i)∈Ai

hi(ci, w·i) = sup
ci≥0

h∗i (ci), (A.19)

where h∗i (ci) = hi(ci, w
∗
·i(ci)).

Existence of an Optimal Solution: We now prove existence of an optimal solution to (A.19).

Observe that for large enough ci, we will have w∗·i(ci) = 1
φi

(
1− φiθiF̄i(ci)

µi

)
. For such ci we obtain

h∗i (ci) =− rci + (n− 1)µi

[
1

φi

(
1− φiθiF̄i(ci)

µi

)]

− θiF̄i(ci)
[
Γ(ηi; 1)− (n− 1) log

(
φiθiF̄i(ci)

µi

)]
.

As ci →∞, we will have F̄i(ci)→ 0. Since we can write

F̄i(ci) log

(
φiθiF̄i(ci)

µi

)
= F̄i(ci)

[
log

(
φiθi
µi

)
+ log F̄i(ci)

]
,

and x log x →
x→0

0, we will have limci→∞ h
∗
i (ci) = −∞.

This limit is sufficient for existence of an optimal solution to (A.19). Fix some K < 0. Since we
have shown h∗i (ci) →ci→∞

−∞, we know that ∃C ∈ R+ : h∗i (ci) < K, ∀ci > C. By continuity of h∗i ,

the set B = {ci ∈ R+ : h∗i (ci) ≥ K} is compact. We can conclude by the Extreme Value Theorem
that there exists a globally optimal value of h∗i within B. Moreover, as long as B is non-empty, any
point in B achieves higher objective value than any point in its compliment. By taking K to be a
large enough negative number, we can ensure that B 6= ∅.

System of Equations for Optimum: The expression (A.18) gives us the second equation in
the system (3.10). For the other equation, we must analyze the first-order condition for ci in (A.16).
Taking derivatives with respect to ci, we obtain

∂hi
∂ci

(ci, w·i) = −r + θifi(ci)
[
Γ(ηi; 1) + (n− 1)Γ(φiw·i; 1)

]

∂2hi
∂c2i

(ci, w·i) = −θif ′i(ci)
[
Γ(ηi; 1) + (n− 1)Γ(φiw·i; 1)

]
.

(A.20)

Notice that the second derivative is also negative everywhere – although this does not imply that
the objective function hi is concave. We proceed similarly as before, seeking to define an optimal
value of ci for any given w·i. Let this be denoted c∗i (w·i). It must satisfy:

∂hi
∂ci

(c∗i (w·i), w·i)(ci − c∗i (w·i)) ≤ 0, ∀ci ∈ R+.

Using (A.20), we can see that this will be satisfied whenever

c∗i (w·i) =

{
f−1
i

(
r

θi[Γ(ηi;1)+(n−1)Γ(φiw·i;1)]

)
if fi(0) ≤ r

θi[Γ(ηi;1)+(n−1)Γ(φiw·i;1)]

0 otherwise.

With (A.18), we obtain the system (3.10).
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Uniqueness: It remains only to show that the optimal solution to (A.19) is unique. We return to
our analysis of the univariate optimization problem in (A.19). The necessary first-order condition
for optimality of c∗i is

dh∗i
dci

(c∗i )(ci − c∗i ) ≤ 0, ∀ci ∈ R+. (A.21)

We proceed by showing that there exists only a single c∗i satisfying this expression, and since

existence has been proved, it must be the optimal solution. Recall that c̃i = F−1
i

([
1− µi

φiθi

]
+

)
,

and we have w∗·i(ci) = 0 if and only if ci ≤ c̃i.
The reduced objective function h∗i (ci), after substituting in (A.18), can be written as:

h∗i (ci) = −rci − θiF̄i(ci)Γ(ηi; 1)

+

{
(n− 1)

[
µi
φi

+ θiF̄i(ci)
(

log
(
φiθiF̄i(ci)

µi

)
− 1
)]

if ci ≥ c̃i
0 otherwise.

Taking the derivative with respect to ci, we obtain

dh∗i
dci

(ci) = −r + θifi(ci)Γ(ηi; 1)−

{
θifi(ci)(n− 1) log

(
φiθiF̄i(ci)

µi

)
if ci ≥ c̃i

0 otherwise,

and the second derivative equals

d2h∗i
dc2
i

(ci) = θif
′
i(ci)Γ(ηi; 1) + θi(n− 1)

{
fi(ci)

2

1−Fi(ci) − f
′
i(ci) log

(
φiθiF̄i(ci)

µi

)
if ci ≥ c̃i

0 otherwise.
(A.22)

Note that we are evaluating the right derivatives at ci = c̃i, where this function is not differentiable.

In the regime ci < c̃i, we will always have
d2h∗i
dci2

(ci) < 0. If this were also true for ci ≥ c̃i, then
the objective function would be strictly concave, and uniqueness would follow. We now prove that

if
d2h∗i
dc2i

(x) < 0, then h∗i (·) is strictly concave on [x,∞). In particular, by plugging in x = c̃i we

conclude uniqueness of the optimum.
Let us compute an additional derivative of h∗i (·):

d3h∗i
dc3
i

(ci) = θif
′′
i (ci)Γ(ηi; 1)

+ θi(n− 1)

{
fi(ci)

2

F̄i(ci)

[
fi(ci)
F̄i(ci)

+ 3
f ′i(ci)
fi(ci)

]
− f ′′i (ci) log

(
φiθiF̄i(ci)

µi

)
if ci ≥ c̃i

0 otherwise.

Observe that when we have ci ≥ c̃i, a bit of algebra yields

d3h∗i
dc3
i

(ci) =
f ′′i (ci)

f ′i(ci)

d2h∗i
dc2
i

(ci) +
(n− 1)θifi(ci)

2

F̄i(ci)

[
fi(ci)

F̄i(ci)
+ 3

f ′i(ci)

fi(ci)
− f ′′i (ci)

f ′i(ci)

]
.

If, as assumed in this Proposition, we have fi(ci)
F̄i(ci)

+ 3
f ′i(ci)
fi(ci)

− f ′′i (ci)
f ′i(ci)

< 0 for all ci ≥ 0, then it will

follow that
d3h∗i
dc3
i

(ci) <
f ′′i (ci)

f ′i(ci)

d2h∗i
dc2
i

(ci).
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Applying Grönwall’s inequality, we see that

d2h∗i
dc2
i

(b) <
d2h∗i
dc2
i

(a) exp

(∫ b

a

f ′′i (s)

f ′i(s)
ds

)
,

for any c̃i ≤ a < b. As a consequence, if
d2h∗i
dc2i

(a) ≤ 0, then
d2h∗i
dc2i

(b) < 0 for all b > a.

Rewriting (A.22), we obtain:

d2h∗i
dc2
i

(c̃i) =




θif
′
i(0)

[
Γ(ηi; 1)− (n− 1) log

(
φiθi
µi

)]
+ θi(n− 1)fi(0)2 if c̃i = 0

θif
′
i(c̃i)Γ(ηi; 1) + θi(n− 1)φiθifi(c̃i)

2

µi
otherwise.

For i satisfying

Γ(ηi; 1) >





(n− 1)
[
log
(
φiθi
µi

)
− fi(0)2

f ′i(0)

]
if c̃i = 0

−(n− 1)φiθifi(c̃i)
2

µif ′i(c̃i)
otherwise.

(A.23)

in the assumption (3.9), we see that
d2h∗i
dc2i

(c̃i) < 0. By our application of Grönwall’s inequality, we

can conclude that h∗i must be strictly concave, and hence the optimum is unique.
Now, we turn to the banks i satisfying

Γ(ηi; 1) >





r
θifi(0) + (n− 1) log

(
φiθi
µi

)
if c̃i = 0

r
θifi(c̃i)

otherwise.
(A.24)

We can compute:

dh∗i
dci

(c̃i) = −r +

{
θifi(0)

[
Γ(ηi; 1)− (n− 1) log

(
φiθi
µi

)]
if c̃i = 0

θifi(c̃i)Γ(ηi; 1) otherwise.

By (A.24), we have
dh∗i
dci

(c̃i) > 0. Since
d2h∗i
dc2i

(ci) < 0 for all ci < c̃i, we cannot have any points

satisfying the first-order condition (A.21) in [0, c̃i]. However, we do know that there must exist
an optimal solution, so therefore it must lie within (c̃i,∞). At such a point c∗i , we must have
dh∗i
dci

(c∗i ) = 0, and also
d2h∗i
dc2i

(c∗i ) ≤ 0, which are the two necessary conditions for optimality of

c∗i when it lies in the interior of the feasible region. By the same conclusion using Grönwall’s

inequality, we must have
d2h∗i
dc2i

(ci) < 0, and hence
dh∗i
dci

(ci) < 0 for any ci > c∗i . Hence, only this

choice of c∗i will satisfy the necessary first-order conditions, and as a result it must be unique.
Since we require all i to satisfy at least one of (A.24) or (A.23), the optimal solutions to each

of the n optimization problems in (A.16) must be unique.

Proof of Corollary 3.6. The proof of this result mirrors the proof of Corollary 3.3, and therefore
we omit many details.

Fix some time t < T , at which we have Xi
t = xi. We again choose some admissible controls

{c·s, w··s}s∈[t,T ]. We then apply Itô’s formula, which only differs in yielding a few more terms.
Namely, we will need to use the generator defined in Section (A.2), and the stochastic integrands
will be slightly more complex. Next, to apply dominated convergence, our choice of the stopping
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time τn must ensure that each of the wealth processes
{
X1
s

}
s≥0

. . . {Xn
s }s≥0 , is bounded at time

τn. Therefore, we choose

τn =

(
T − 1

n

)
∧min

i

{
inf
{
s ≥ t, |Xi

s −Xi
t | ≥ n

}}

and conclude identically.

A.3 Differences in Optima

Lemma A.1. Assume that w∗·i > 0. If the shock density satisfies: fi(x) ≥ κi,Le
− x
λi,L , for all x and

fixed constants λi,L > 0 and κi,L > 0, then

c∗i ≥ λi,L log

(
θiκi,LΓ(φiŵ·i; 1)

r

)
+ λi,L log(n− 1).

In particular, the planner’s optimal cash reserves asymptotically grow at least logarithmically in n.
Furthermore, if for all x we also have:

fi(x) ≤ κi,Ue
− x
λi,U

for λi,L ≤ λi,U and κi,L ≤ κi,U , then

(i) Upper Bound:

c∗i ≤ λi,U log

(
θiκi,UCU

r

)
+ λi,U log ((n− 1) log(n)) ,

where CU > 3 depends on all model parameters (including λi,L and λi,U ), but does not explicitly

grow with n. As a result, limn→∞
c∗i

log(n) ≤ λi,U .

(ii) Lower Bound:

c∗i ≥ λi,L log

(
θiκi,Lλi,L
rλi,U

)
+ λi,L log

(
(n− 1)

[
log(n− 1)−

λi,U
λi,L

log (CL)
])

,

for CL > 0 depending only on i’s parameters. Hence, limn→∞
c∗i

log(n) ≥ λi,L.

Combining the two limiting bounds, we have c∗i = Θ
(

log(n)
)
.

The proof follows from iterating through upper (and lower) bounds for c∗i using the system of
equations in (3.10), and beginning from crude estimates. It is possible to use the same techniques
in this proof to obtain bounds when the density has power-law tails. While the results are not
qualitatively different, we are unable to achieve the tight bound that appears in Proposition 4.1
when the shock distribution is itself a power-law. The main result can be seen in Appendix B.

Proof of Lemma A.1. The main idea in this proof is to first establish crude bounds of:

ĉi ≤ c∗i ≤ Kn2,

for a suitable choice of K. This then allows us to improve the bounds on c∗i itself through the
relationship

c∗i = f−1
i


 r

θi

[
Γ(ηi; 1)− (n− 1) log

(
φiθiF̄i(c∗i )

µi

)]


 ,
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using the assumptions of a super- and sub-exponential density.
Through a direct computation with the explicit solutions in Propositions 3.2 and 3.5, we can

write

V (t, x1, . . . , xn)−
n∑

i=1

Vi(t, xi) = (T − t)

[
J∗C −

n∑

i=1

J∗i

]

= (T − t)
n∑

i=1

[
− r(c∗i − ĉi) + (n− 1)µi(w

∗
·i − ŵ·i)

− θiF̄i(c∗i )
[
Γ(ηi; 1) + (n− 1)Γ(φiw

∗
·i)
]

+ θiF̄i(ĉi)
[
Γ(ηi; 1) + (n− 1)Γ(φiŵ·i)

]

Observe that using the definitions, we have w∗·i−ŵ·i = θi
µi

(
F̄i(ĉi)− F̄i(c∗i )

)
. Plugging this expression

in and rearranging terms, we obtain:

g(t)−
∑n

i=1 gi(t)

T − t
=

n∑

i=1

[
− r(c∗i − ĉi) + θi

(
F̄i(ĉi)− F̄i(c∗i )

) [
(n− 1) + Γ(ηi; 1)

]

+ θi(n− 1)
[
F̄i(ĉi)Γ(φiŵ·i; 1)− F̄i(c∗i )Γ(φiw

∗
·i; 1)

]]
.

(A.25)

Since we know the gap in (A.25) must be positive, we can write:

n∑

i=1

rc∗i ≤
n∑

i=1

[
rĉi + θi

(
F̄i(ĉi)− F̄i(c∗i )

) [
(n− 1) + Γ(ηi; 1)

]

+ θi(n− 1)
[
F̄i(ĉi)Γ(φiŵ·i; 1)− F̄i(c∗i )Γ(φiw

∗
·i; 1)

]]

≤
n∑

i=1

[
rĉi + θiF̄i(ĉi)

[
(n− 1) + Γ(ηi; 1)

]

+ θi(n− 1)
[
F̄i(ĉi)Γ(φiŵ·i; 1)

]]
,

which follows by dropping the final term and since F̄i(c
∗
i ) ≥ 0. A crude bound implies that

rc∗i ≤
n∑

i=1

(n− 1)
[
rĉi + θiF̄i(ĉi)

[
1 + Γ(ηi; 1) + Γ(φiŵ·i; 1)

]]

c∗i ≤ Kn2,

where K = maxi

{
ĉi + θi

r F̄i(ĉi)
[
1 + Γ(ηi; 1) + Γ(φiŵ·i; 1)

]}
does not depend explicitly on n. Since

w∗·i ≥ 0, it is also easy to see that c∗i ≥ ĉi. Both these bounds will be useful starting points for the
proof.

(i) Upper Bound: We first prove the upper bound for c∗i . First, since fi(x) ≤ κi,Ue
− x
λi,U and

both functions are decreasing, we will have f−1
i (y) ≤ λi,U log

(
κi,U
y

)
, and it follows from the

37



system of equations (3.10) that

c∗i ≤ λi,U log



θiκi,U

[
Γ(ηi; 1)− (n− 1) log

(
φiθi
µi
F̄i(c

∗
i )
)]

r


 .

Now, using fi(x) ≥ κi,Le
− x
λi,L , we know that F̄i(c

∗
i ) =

∫∞
c∗i
fi(u)du ≥ κi,Lλi,Le

− c∗i
λi,L , and write:

c∗i ≤ λi,U log



θiκi,U

[
Γ(ηi; 1)− (n− 1) log

(
φiθiκi,Lλi,L

µi

)
+ (n− 1)

c∗i
λi,L

]

r




≤ λi,U log



θiκi,U

[
Γ(ηi; 1)− (n− 1) log

(
φiθiκi,Lλi,L

µi
∧ 1
)

+ (n− 1)
c∗i
λi,L

]

r


 .

(A.26)

Since each of the three terms in the brackets is non-negative, we can upper bound this quantity
by:

c∗i ≤ λi,U log



θiκi,U

[
Γ(ηi; 1)− log

(
φiθiκi,Lλi,L

µi
∧ 1
)

+ λ−1
i,L

]
nc∗i

r


 ,

and we define D = Γ(ηi; 1) − log
(
φiθiκi,Lλi,L

µi
∧ 1
)

+ λ−1
i,L for convenience. Recall that we

obtained a crude upper bound of c∗i ≤ Kn2, which, when plugged in, yields:

c∗i ≤ λi,U log

(
θiκi,UDKn

3

r

)
.

This is a significantly tighter bound than Kn2. Therefore, we plug it back into (A.26). By
simplifying and bounding the term in the logarithm, we compute:

c∗i
λi,U

≤ log



θiκi,U

[
Γ(ηi; 1)− (n− 1) log

(
φiθiκi,Lλi,L

µi

)
+ (n− 1)

λi,U
λi,L

log
(
θiκi,UDKn

3

r

)]

r




≤ log




θiκi,U

[
Γ(ηi; 1) + (n− 1)

[
log

(
µi

φiθiκi,Lλi,L

(
θiκi,UDK

r

)λi,U
λi,L ∨ 1

)
+ 3

λi,U
λi,L

log(n)

]]

r



.

Notice that Γ(ηi; 1) ≥ 0, log

(
µi

φiθiκi,Lλi,L

(
θiκi,UDK

r

)λi,U
λi,L ∨ 1

)
≥ 0. Therefore, we can write

c∗i
λi,U

≤ log




θiκi,U

[
Γ(ηi; 1) + log

(
µi

φiθiκi,Lλi,L

(
θiκi,UDK

r

)λi,U
λi,L ∨ 1

)
+ 3

λi,U
λi,L

]
(n− 1) log(n)

r



,

and after simplification we obtain the desired bound of:

c∗i ≤ λi,U log

(
θiκi,UCU

r

)
+ λi,U log ((n− 1) log(n)) ,
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where CU = Γ(ηi; 1) + log

(
µi

φiθiκi,Lλi,L

(
θiκi,UDK

r

)λi,U
λi,L ∨ 1

)
+ 3

λi,U
λi,L

. Observe that CU does

not depend explicitly on n, but through K it will be a function of parameters throughout the
system.

Finally, it follows that limn→∞
c∗i

log(n) ≤ λi,U .

(ii) Lower Bound: We proceed with the lower bound identically. With our assumption of

fi(x) ≥ κi,Le
− x
λi,L , we know

c∗i ≥ λi,L log



θiκi,L

[
Γ(ηi; 1)− (n− 1) log

(
φiθi
µi
F̄i(c

∗
i )
)]

r


 . (A.27)

Moreover, since Γ(ηi; 1) ≥ 0 this term can be dropped to obtain:

c∗i ≥ λi,L log



−θiκi,L(n− 1) log

(
φiθi
µi
F̄i(c

∗
i )
)

r


 . (A.28)

By plugging in the initial crude bound of c∗i ĉi, and since Γ(φiŵ·i; 1) = − log
(
φiθi
µi
F̄i(ĉi)

)
by

definition, we can compute a tighter lower bound for c∗i of

c∗i ≥ λi,L log

(
θiκi,L(n− 1)Γ(φiŵ·i; 1)

r

)
. (A.29)

This is precisely the lower bound in the first part of Lemma A.1. Note that for this result,
we needed only the lower bound on fi(·), through which (A.27) follows.

We now continue and prove the tighter lower bound, which requires the upper bound on fi(·).

In particular, we assumed that fi(x) ≤ κi,Ue
− x
λi,U , and it follows that F̄i(c

∗
i ) ≤ κi,Uλi,Ue

− c∗i
λi,U .

With (A.29), we can compute an improved upper bound of:

F̄i(c
∗
i ) ≤ κi,Uλi,U

(
r

θiκi,L(n− 1)Γ(φiŵ·i)

) λi,L
λi,U

.

This upper bound on fi(·) also implies that ĉi ≤ λi,U log
(
θiκi,UΓ(ηi;1)

r

)
. Similarly, the assumed

fi(x) ≥ κi,Le
− x
λi,L will give us F̄i(ĉi) ≥ κi,Lλi,Le

− ĉi
λi,L . Putting the two together, we will have

F̄i(ĉi) ≥ κi,Lλi,L
(

r

θiκi,UΓ(ηi; 1)

)λi,U
λi,L

,

and it follows that

F̄i(c
∗
i ) ≤ F̄i(ĉi)

κi,Uλi,U
κi,Lλi,L

(
r

θi

) λi,L
λi,U
−
λi,U
λi,L (κi,UΓ(ηi; 1))

λi,U
λi,L

(κi,LΓ(φiŵ·i; 1))
λi,L
λi,U

(n− 1)
−
λi,L
λi,U .
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Let CL =
κi,Uλi,U
κi,Lλi,L

(
r
θi

) λi,L
λi,U
−
λi,U
λi,L (κi,UΓ(ηi;1))

λi,U
λi,L

(κi,LΓ(φiŵ·i;1))
λi,L
λi,U

. Plugging this bound into (A.28), we ob-

tain:

c∗i ≥ λi,L log




−θiκi,L(n− 1) log

(
φiθi
µi
F̄i(ĉi)CL(n− 1)

−
λi,L
λi,U

)

r




≥ λi,L log




−θiκi,L(n− 1) log

(
CL(n− 1)

−
λi,L
λi,U

)

r



,

since − log
(
φiθi
µi
F̄i(ĉi)

)
= Γ(φiŵ·i; 1) ≥ 0, and hence this term can be dropped. Simplifying,

we arrive at the desired bound of:

c∗i ≥ λi,L log

(
θiκi,Lλi,L
rλi,U

)
+ λi,L log

(
(n− 1)

[
log(n− 1)−

λi,U
λi,L

log (CL)
])

,

from which it follows that limn→∞
c∗i

log(n) ≥ λi,L.

Putting both (i) and (ii) together, we see that c∗i = Θ
(

log(n)
)
.

Proof of Proposition 4.3. Using Propositions 3.2 and 3.5, we can compute

V −
∑n

i=1 Vi
T − t

=
n∑

i=1

[
− r(c∗i − ĉi) + θi

(
F̄i(ĉi)− F̄i(c∗i )

) [
(n− 1) + Γ(ηi; 1)

]

+ θi(n− 1)
[
F̄i(ĉi)Γ(φiŵ·i; 1)− F̄i(c∗i )Γ(φiw

∗
·i; 1)

]]
,

where V and Vi are evaluated at (t, x1, . . . , xn) and the difference becomes independent of wealths
because of logarithmic utility. Notice that any of the terms in the sum will equal zero if w∗·i = 0 (in
which case we also must also have ŵ·i = 0, and hence ĉi = c∗i ). If not, then using the results from
Section 4 we see that

−r(c∗i − ĉi) + θi
(
F̄i(ĉi)− F̄i(c∗i )

) [
(n− 1) + Γ(ηi; 1)

]

n
→

n→∞
θiF̄i(ĉi),

since c∗i � log(n) and F̄i(c
∗
i ) → 0. Moreover, we have seen that (n − 1)F̄i(c

∗
i )Γ(φiw

∗
·i; 1) = Θ(1).

Since the sum is now of order |Mn|, putting the two together yields

V −
∑n

i=1 Vi
T − t

= Θ (n|Mn|) .

In Proposition 3.2, it is easy to see that Vi = (T − t)Θ (|Mn|), and therefore we obtain

V∑n
i=1 Vi

= 1 + Θ(1),

as desired.

40



Proof of Corollary 4.4. This proposition is proved easily by analyzing the value functions in Propo-
sitions 3.2 and 3.5. We will use the notation of Section 4, where ĉ· indicates the decentralized
optimum, and c∗· indicates the centralized optimum (likewise for w··).

We begin by analyzing the decentralized value function Vi. Using the explicit formula in Corol-
lary 3.3, we write:

Vi
|Mn|(T − t)

=
J∗i
|Mn|

+
log x

|Mn|(T − t)
,

and see that the second term will go to zero as n→∞. Moreover, by assumption that all banks in
Mn are homogeneous, we will have ŵij = ŵik for any j, k ∈Mn. This yields:

J∗i = (1− ĉi)r − θiF̄i(ĉi)Γ(ηi; 1) + |Mn|
[
µŵ − θF̄ (ĉ)Γ(φŵ; 1)

]
,

where ĉ denotes the optimal liquidity supply held by any bank in Mn, and ŵ denotes the optimal
investment made by any bank to those in Mn. By using Eq (3.4) to compute ŵ, we obtain:

J∗i = (1− ĉi)r − θiF̄i(ĉi)Γ(ηi; 1)

+ |Mn|
[
µ

φ

(
1− φθF̄ (ĉ)

µ

)
+ θF̄ (ĉ) log

(
φθF̄ (ĉ)

µ

)]
,

and the desired limit follows. We note that this expression for J∗i is only correct for i /∈ Mn,
otherwise we would have a factor of |Mn| − 1 in front of the term in brackets. However, in the
limit this difference disappears.

The analysis of the centralized setting is almost identical, using the value function in Proposi-
tion 3.5, we have:

V

n|Mn|(T − t)
=

J∗C
n|Mn|

+

∑n
i=1 log xi

n|Mn|(T − t)
.

The only term of interest for large n will be J∗C , and by homogeneity within Mn we can see that:

J∗C = |Mn|(n− 1)w∗µ+
n∑

i=1

(
(1− c∗i ) r − θiF̄i(c∗i )

[
Γ(ηi; 1) + (n− 1)Γ(φiw

∗; 1)
])
,

where w∗ denotes the optimal fractional amount invested into each bank in Mn. Notice that only
for bank in Mn will we have c∗i growing with n (logarithmically). Moreover, from the analysis in
Section 4, we also know that (n−1)F̄i(c

∗
i )Γ(φiw

∗
·i; 1) is of constant order. Therefore, when dividing

by n|Mn| and taking the limit, the sum will go to zero. Only the first term will remain, and we
also know that w∗ → φ−1 as n→∞, which concludes.

In order to show the limit for the price of anarchy, it is only necessary to sum Vi over n and
divide.

B Price of Anarchy: Super-/Sub-Power Distribution

In this section, we perform similar calculations to the main result of Section 4, but for shock size
densities bounded by power law distributions. In particular, we have the following analogue of
Lemma A.1:
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Proposition B.1. If for all x we have fi(x) ≥ κi,L(ζ0
i + x)

− 1
αi,L , for some constants αi,L < 1,

κi,L > 0, and ζ0
i ≥ 1, then

c∗i ≥



−κi,Lθi(n− 1) log

(
φiθi
µi
F̄i(ĉi)

)

r



αi,L

− ζ0
i .

If, furthermore, the density satisfies fi(x) ≤ κi,U (ζ0
i + x)

− 1
αi,U , with κi,U ≥ κi,L and αi,L ≤

αi,U < 1, then:

(i) Upper Bound:
c∗i ≤ CU

[
(n− 1) log(n)

]αi,U − ζ0
i ,

where CU depends on all model parameters, but does not explicitly grow with n. As a result,

limn→∞
c∗i[

(n−1) log(n)
]αi,U ≤ CU .

(ii) Lower Bound:

c∗i ≥
(
κi,Lθi
r

(n− 1)

[(
αi,L
αi,U

− αi,L
)

log(n− 1)− log(CL)

])αi,L
− ζ0

i ,

for CL > 0 depending only on i. Hence, limn→∞
c∗i[

(n−1) log(n)
]αi,L ≥

(
κi,Lθi
r

(
αi,L
αi,U
− αi,L

))αi,L
.

The proof follows an identical technique. In the special case where the shock density is indeed
a power distribution, we have the following analogue of Proposition 4.1.

Corollary B.2. If fi(x) =

(
1
αi
−1

)
(ζ0i )

1
αi
−1

(ζ0i +x)
1
αi

, then

c∗i = Θ
([

(n− 1) log(n)
]αi) .

This result can be seen by simply plugging αi,L = αi,U = αi into Proposition B.1.
This Corollary can be used to replicate the remaining analysis in Section 4, but as the results

are qualitatively similar, we omit these calculations.

B.1 Proof of Proposition B.1

Proof. The proof of this result largely mirrors the proof of Lemma A.1. Recall that we have shown
that

ĉi ≤ c∗i ≤ Kn2,

for a suitable choice of K. By our assumptions on the density, it also follows that:

(
y

κi,L

)−αi,L
− ζ0

i ≤ f−1
i (y) ≤

(
y

κi,U

)−αi,U
− ζ0

i ,

and
κi,L

1
αi,L
− 1

(ζ0
i + x)

1− 1
αi,L ≤ 1− Fi(x) ≤

κi,U
1

αi,U
− 1

(ζ0
i + x)

1− 1
αi,U .

We can then follow the proof of Lemma A.1 identically, but using these bounds instead.
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C Model Extensions

C.1 Liquidity Loss on Shock Arrival

In the main text of the paper, we make the assumption that the magnitude of a liquidity shock is
important only if it exceeds the firm’s cash reserves. We present an extension to our model that
incorporates the magnitude of this loss directly into the dynamics of each firm’s net capitalization.

Specifically, consider the event dÑ i
t = 1, where a shock arrives for firm i. In the main text, this

event induces a jump in firm i’s capitalization process Xi
t if and only if the size of the shock ζit

is larger than the firm’s available cash reserves cit. However, we can build a model in which firms
must themselves pay out any liquidity shocks, but only up to their maximum available supply of
cit. This feature is captured in the following equation for the dynamics of Xi

t .

dXi
t

Xi
t

=


(1− cit)r +

∑

j 6=i
wijt µj +

ηi
φi
µi


 dt−

∑

j 6=i
wijt φj dN

j
t

− (ηi + cit) dN
i
t − ζit(dÑ i

t − dN i
t ) , i = 1, · · · , n.

Notice that: i) when dN i
t = 1, and a shock is larger than the firm’s available liquidity, this liquidity

is immediately lost to cover the shock, and ii) if dÑ i
t = 1 but dN i

t = 0, and the shock was smaller
than the firm’s supply of liquidity, then the firm only loses exactly ζit – corresponding to their
obligation to pay for the shock.

The value function for individual firm i, denoted Vi(t, x) in the decentralized case, can be written
identically to (3.1), but under the same regularity conditions of Proposition 3.1, the associated non-
local PDE it solves is now given by:

0 = ∂tVi + sup
ci,wi·

{
(1− ci) r +

∑

j 6=i
wijµj +

ηiµi
φi


x∂xVi + θiF̄i(ci)

[
Vi(t, x(1− ηi− ci))− Vi

]

+
∑

j 6=i
θjF̄j(cj)

[
Vi(t, x(1− φjwij))− Vi

]

+ θi

∫ ci

0
fi(u) [Vi(t, x(1− u))− Vi)du]

}
,

(C.1)

with terminal condition Vi(T, x) = Ui(x).
For simplicity, we will only consider the setting of a logarithmic utility function, (although

the next step of separability can still be performed with power utility). We look for a separable
solution to the PDE (C.1) given by Vi(t, x) = gi(t)+ log(x). By plugging this ansatz into (C.1) and
simplifying, we can obtain the following ordinary differential equation for gi(t).

0 = g′i(t)+ sup
ci,wi·

{
(1− ci) r +

∑

j 6=i
wijµj +

ηiµi
φi

+ θiF̄i(ci) log(1− ηi− ci)
]

+
∑

j 6=i
θjF̄j(cj) log(1− φjwij) + θi

∫ ci

0
fi(u) log(1− u)du

}
,

with terminal condition gi(T ) = 0.
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Indeed the PDE solved by the value function has a separable solution, but now the first-order
conditions for optimality solved by the optimal controls yield the following system of equations:

0 = µj +
φjθjF̄j(ĉj)

1− φjŵij
, for all j 6= i

0 = −r − θifi(ĉi) log(1− ηi− ĉi)−
θiF̄i(ĉi)

1− ηi − ĉi
+ θifi(ĉi) log(1− ĉi).

Although the second equation for the optimal control ĉi still exists in isolation, this expression
cannot be solved explicitly for the optimal controls – certainly not for general choice of F̄ (·), and
not even if we assume the liquidity shocks to be exponentially distributed. Hence, to study the
optimal controls in this model, we would need to resort to computational methods.

Using the parameters in Table 4.1, and varying the value of λ, we can see in Figure C.1 that
for large λ, and hence small expected size for liquidity shocks, the optimal cash reserves are largely
identical. Since the first-order condition for the interbank investment amounts will only depend on
the optimal cash reserves, this implies that the optimal allocations will coincide. As a result, the
same results we obtain in the main text would hold.
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Figure C.1: Comparison of the optimal cash reserves when liquidity shocks directly
induce losses regardless of size.

C.2 Partially Liquid Risk-Free Asset

A further simplifying assumption made in this paper is that the risk-free asset, with constant rate
of return r, does not provide a source of liquidity. In this section, we relax this assumption by
allowing a firm’s capital held in the risk-free asset to provide some liquidity upon shock arrival.

The only substantial difference we must make, with respect to the model in the main text,
concerns the construction of the thinned Poisson process N i

t from the shock arrival process Ñ i
t . We
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now define dN i
t as follows:

dN i
t = 1 ⇐⇒ dÑ i

t = 1 and ζit > cit +α


1− cit −

∑

j 6=i
wijt




+

,

where the parameter α ∈ (0, 1) controls the fraction of value obtained by liquidating the risk-free
asset immediately, and (y)+ denotes the positive part of y. Note that some firms may borrow at
the risk-free rate (1− cit −

∑
j 6=iw

ij
t < 0), but obtain no additional liquidity.

With dN i
t defined in this manner, the equation (2.2) for the dynamics of Xi

t remains identical.
We define the value function of firm i in the same manner as the main text, and it can be shown
that under regularity conditions, Vi(t, x) solves:

0 = ∂tVi + sup
ci,wi·

{
(1− ci) r +

∑

j 6=i
wijµj +

ηiµi
φi


x∂xVi

+ θiF̄i


ci +α

(
1− ci −

∑

j 6=i
wij

)
+



[
Vi(t, x(1− ηi))− Vi

]

+
∑

j 6=i
θjF̄j


cj +α

(
1− cj −

∑

k 6=j
wjk

)
+



[
Vi(t, x(1− φjwij))− Vi

]}
.

Indeed, if we assume firm i has logarithmic utility, and plug in the ansatz of Vi(t, x) = gi(t) +
log(x), the PDE admits a separable solution and we obtain the following ODE for gi(t).

0 = g′i(t) + sup
ci,wi·

{
(1− ci) r +

∑

j 6=i
wijµj +

ηiµi
φi


+ θiF̄i


ci +α

(
1− ci −

∑

j 6=i
wij

)
+


 log(1− ηi)

+
∑

j 6=i
θjF̄j


cj +α

(
1− cj −

∑

k 6=j
wjk

)
+


 log(1− φjwij)

}
,

(C.2)

with terminal condition gi(T ) = 0.
We note that the first order conditions may not be sufficient for the optimization problem in

Eq. (C.2) since the objective function is not differentiable whenever ci+
∑

j 6=iwij = 1. However, we
can still differentiate the optimization problem with respect to the decision variables, and obtain
the following system of equations for the optimal controls of firm i:

0 = µj−θifi


ĉi + α

(
1− ĉi −

∑

k 6=i
ŵik

)
+




−α · 1

{
1− ĉi −

∑

k 6=i
ŵik > 0

}

 (C.3)

−
φjθjF̄j

(
ĉj+α

(
1− ĉj −

∑
k 6=j ŵjk

)
+

)

1− φjŵij
for all j 6= i

0 = −r − θifi


ĉi+α

(
1− ĉi −

∑

k 6=i
ŵik

)
+


 log(1− ηi)


1− α · 1

{
1− ĉi −

∑

k 6=i
ŵik > 0

}

 .
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Observe that this system of equations differs from the system in Eq. (3.4) if and only if 1 − ĉi −∑
k 6=i ŵik > 0, and hence if firm i holds a long position in the risk-free bond.
We have numerically obtained solutions for the optimal controls (ĉi, ŵi·) in the symmetric case,

where all banks have identical projects and utility functions. In doing so, we have seen that for
large enough n, these optimal controls will exactly equal those in the main text (Section 3.2). The
rationale for this is intuitive. Under the assumption of identical banks, the total amount invested in
other banks’ projects

∑
k 6=i ŵik grows linearly in n. This quantity eventually becomes large enough

for bank i to short the risk-free bond and use this to finance their interbank project investments,
which implies that the system of equations in Eq. (C.3) will simplify to the system of equations
that gives rise to the optimal controls in Eq. (3.4).

We note that this observation will easily extend to the centralized optimum, since the planner
will always choose to hold no less cash than decentralized banks. Hence under the planner’s
optimum, the optimal project investment amounts are no smaller than those in the decentralized
setting, and it will still be the case that banks hold short positions in the risk-free bond.

Regardless, we have obtained numerical solutions for the optimal controls for decentralized
banks. Figure C.2 compares the optimal cash reserves for a bank as α, the fraction of liquidity
available due to a long position in the risk-free asset, varies. The parameters used in these simula-
tions can be found in Table C.1. We note that even for a 2-bank system, cash reserves quickly drop
to zero as α grows. And of course, for α = 0, we obtain the optimal controls from the model in the
main text. In Figure C.2b, with n = 6 we find that for the majority of values of α, the optimal
cash allocations also coincide, since there is a sufficiently large number of return-bearing projects
for a bank to invest in to justify shorting the risk-free asset.
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Figure C.2: Comparison of the optimal cash reserves when liquidity shocks directly
induce losses regardless of size. Parameters (excluding n) are detailed in Table C.1.

C.3 Endogenizing Self-Investment Parameter ηi

A third assumption made in the main text concerns the fact that the parameter ηi, which governs
the fraction of bank i’s wealth lost upon a liquidity shortage, is exogenous. In this section, we will
relax this assumption and study the optimal control problem for bank i in a decentralized setting,
when ηi can also be chosen freely.

The derivation of the HJB is largely identical, and after plugging in a separable form for the
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Table C.1: Parameters used for obtaining optimal cash reserves shown in Figures C.2a
and C.2b. Code is available here.

Notation Value Description

r 0.03 Risk-free rate
µ 0.045 Excess drift
φ 0.4 Losses to External Investors
η 0.3 Losses to Associated Bank

F (x) 1− e−
x
λ CDF of shock size

λ 1 Parameter of F (·)
θ 0.1 Shock arrival rate
γ 1 Relative risk aversion coefficient

value function, we would obtain the following ODE for gi(t):

0 = g′i(t) + sup
ci,ηi,wi·

{
(1− ci) r +

∑

j 6=i
wijµj +

ηiµi
φi

+ θiF̄i(ci) log(1− ηi)
]

+
∑

j 6=i
θjF̄j(cj) log(1− φjwij)

}
.

(C.4)

The only difference between this equation and its analogue in the main text is that ηi is included
as a control variable. We will only analyze the optimization problem for both ci and ηi, since the
first-order conditions for each wij remain identical to that of the main text.

Now, the first-order conditions for these two controls are as follows:

0 = −r − θifi(ĉi) log(1− η̂i), 0 =
µi
φi
− θiF̄i(ĉi)

1− η̂i
, (C.5)

where η̂i denotes the optimal choice of ηi for bank i in the decentralized setting. Substituting 1− η̂i
by solving the second expression yields the following expression in only ĉi:

0 = −r − θifi(ĉi) log

(
φiθiF̄i(ĉi)

µi

)
.

In general, this expression cannot be explicitly solved without further assumptions on the distribu-
tion of liquidity shocks.

If, however, we assume that the size of liquidity shocks follows an exponential distribution, with

F̄i(x) = e
− x
λi and fi(x) = λ−1

i e
− x
λi , we can simplify and isolate ĉi to obtain:

ĉi = −λi log


 −rλi
θiW

(
−rλiφi
µi

)


 ,

where W(x) denotes the Lambert-W function defined as the inverse function of xex, restricted to
the range [−1,∞) and the domain [−e−1,∞). We note that this expression holds only when there
is an interior solution to the optimization problem, i.e. when the optimal ĉi and η̂i are strictly
positive.
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The analogue of this expression in the main text is:

ĉi = −λi log

(
−rλi

θi log(1− ηi)

)
,

when the parameter ηi is assumed to be exogenous and given. The two are equal if and only if

log(1− ηi) = W
(
−rλiφi
µi

)
, or equivalently when (1− ηi) log(1− ηi) = −rλiφi

µi
.

We can numerically compute the value of the objective function for various choices of ci, where
we use the second expression in Eq. (C.5) to compute the optimal value of ηi for each possible ci
as follows:

η̂i(ci) =

(
1− φiθiF̄i(ci)

µi

)

+

,

since we assume that firm i still cannot short their own project. Figure C.3 shows, for different
values of ci, the quantity:

Obj(ci) = (1− ci)r +
η̂i(ci)µi
φi

+ θiF̄i(ci) log(1− η̂i(ci)), (C.6)

which corresponds to the portion of the objective function in Eq. (C.4) tied to the two controls ηi
and ci.

We have chosen the parameters in Table C.2 to show the existence of two optima. In one
‘corner’ solution, firm i chooses to hold zero cash reserves and zero stake in their own project. In
the second ‘interior’ solution, both of these optimal quantities are strictly positive fractions of i’s
wealth. This can be contrasted with the second curve, which shows Eq (C.6) when ηi is fixed at a
value of 0.5, and for which a unique maximum exists.

Note that the interior solution in Figure C.3 with endogenous ηi represents an equilibrium in
which projects are less risky than their analogue in the main text model. Cash reserves are higher,
and hence bank i’s degree of investment in their own project is also greater than the fixed value of
0.5. In contrast, the corner solution with zero cash reserves and zero investment in project i is not
particularly interesting nor realistic, as it represents a setting in which bank i is wholly immune to
all liquidity shocks.
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Figure C.3: Comparison of the optimal cash reserves when liquidity shocks directly
induce losses regardless of size.

Table C.2: Parameters used for generating Figure C.3. Code is available here.

Notation Value Description

r 0.013 Risk-free rate
µi 0.045 Excess drift
φi 0.8 Losses to External Investors

Fi(x) 1− e−
x
λi CDF of shock size

λi 1 Parameter of F (·)
θi 0.1 Shock arrival rate
γi 1 Relative risk aversion coefficient
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