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Abstract

This paper introduces a novel approach to addressing uncertainty and associated risks in power system man-
agement, focusing on the discrepancies between forecasted and actual values of load demand and renewable power
generation. By employing Economic Dispatch (ED) with both day-ahead forecasts and actual values, we derive
two distinct system costs, revealing the financial risks stemming from uncertainty. We present a numerical algo-
rithm inspired by the Integrated Gradients (IG) method to attribute the contribution of stochastic components
to the difference in system costs. This method, originally developed for machine learning, facilitates the under-
standing of individual input features’ impact on the model’s output prediction. By assigning numeric values to
represent the influence of variability on operational costs, our method provides actionable insights for grid man-
agement. As an application, we propose a risk-averse unit commitment framework, leveraging our cost attribution
algorithm to adjust the capacity of renewable generators, thus mitigating system risk. Simulation results on the
RTS-GMLC grid demonstrate the efficacy of our approach in improving grid reliability and reducing operational
costs.

Keywords: risk allocation, unit commitment, eco-
nomic dispatch, integrated gradient, risk aversion.

1. Introduction

In the pursuit of a more sustainable and environ-
mentally responsible energy landscape, the world is ex-
periencing a remarkable shift towards high levels of
renewable energy penetration. The relentless expan-
sion of wind, solar, and other clean energy technologies
has brought us closer to reducing our carbon footprint
and combating climate change. However, the integra-
tion of renewable sources introduces an unprecedented
level of complexity into many fundamental aspects of
power system management. Unlike their conventional
counterparts, renewable resources are inherently vari-
able, contingent upon factors like weather patterns,
sunlight availability, and wind speed. Consequently,
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new sources of randomness as well as inherent risk fac-
tors should be introduced into Unit Commitment (UC)
and Economic Dispatch (ED), two crucial components
of modern power system management. In the short
term operational scheduling of electric power systems,
UC involves the strategic selection of power genera-
tion units, determining which sources, whether they
are conventional or renewable, should be dispatched
to meet electricity demand over a specific time hori-
zon. ED, on the other hand, optimizes the allocation
of generation output among these chosen units in order
to minimize costs while ensuring the reliable provision
of electricity.

Traditionally, UC models take a deterministic ap-
proach in which the parameters and variables are as-
sumed to be known exactly [11]. Due to their determin-
istic nature, these models are not capable of capturing
variability and uncertainty. In recent years, there has
been significant research in modeling and addressing
the reliability of UC under uncertainty. Among those
works, stochastic programming and robust optimiza-
tion are two common methodologies frequently used.
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In stochastic programming models, the expected oper-
ating cost is minimized under a set of representative
scenarios to meet the demand while satisfying the op-
erational constraints [15, 17, 20, 13]. These represen-
tative scenarios may sometimes encompass highly rare
events, leading to solutions that come with substantial
costs. To tackle this issue, risk-averse UC models were
developed with additional constraints to manage the
risk exposures through the use of risk measures, con-
ditional value at risk (CVaR) being the most widely
used [7, 6, 19, 1]. Despite this, stochastic UC models
can present computational difficulties, primarily aris-
ing from their inherent complexity, particularly when
a substantial number of scenarios are integrated into
the model.

Unlike models based on stochastic programming,
robust UC models aim to address uncertainty by con-
sidering only the range of uncertainty, rather than re-
lying on information about underlying probability dis-
tributions. Instead of minimizing the total expected
cost, as is done in stochastic UC, robust UC focuses
on minimizing the worst-case cost across all potential
outcomes of uncertain parameters [2, 8, 16]. While ro-
bust UC solutions tend to be quite conservative, they
have the advantage of avoiding the computational com-
plexity associated with incorporating a large number of
Monte Carlo scenarios.

In the present paper, we address the aforementioned
uncertainty and its associated risks from a different
perspective. The primary source of uncertainty stems
from the deviations between forecasted and actual val-
ues, whether we are examining load demand or renew-
able power generation. By running ED with two sets
of parameters—the day-ahead forecasts and the ac-
tual values—we obtain two distinct system costs. The
difference between these costs represents the financial
risks associated to these uncertainties. We present a
numerical algorithm inspired by a widely recognized
method known as the Integrated Gradients (IG) [14]
to assess the individual contributions to each stochas-
tic component to the difference of system costs. Orig-
inally introduced as an attribution mechanism in ma-
chine learning, the IG is typically used to attribute the
significance or contribution of individual input features
(e.g., pixels in an image or words in text) on a model’s
output prediction, especially in deep neural network
learning. The IG chooses a baseline input to ideally
represent the absence or neutrality of input features.

It then calculates the contribution of each feature to
the model’s output by integrating the gradients of the
model’s prediction with respect to the input along a
straight path from a baseline to the target input. In the
proposed algorithm, the power production cost (ED)
model is treated as a function that take input con-
sisting of the random quantities such as load demand
and renewable generations, and yields the system cost.
We designate the day-ahead forecast as the baseline in-
put, while the actual values serve as the target input.
The algorithm will assign a numeric monetary value to
represent the influence of this variability on the grid
operational costs.

Certainly, these values can be used as mere infor-
mational tools in various contexts. As an example of
application of the cost attribution algorithm, we pro-
pose a risk averse unit commitment framework to ad-
just the capacity of renewable generators using a large
number of Monte Carlo scenarios as the target inputs
in the attribution method. This framework considers
the distribution of the cost attribution of individual
generator through the Monte Carlo scenarios. It re-
sults in a reduction of their generation capacity (max-
imum generation level) if a certain portion of that ca-
pacity is deemed unlikely to be delivered and could
potentially lead to elevated operational costs. By inte-
grating this adjustment mechanism into the Unit Com-
mitment (UC) optimization process, we can avoid rely-
ing on highly uncertain renewable productions without
sacrificing the benefits of inexpensive and eco-friendly
renewable energy, thereby reducing the overall risk in
grid operations.

This work is part of research from the Princeton
team ORFEUS1, funded by ARPA-E under its pro-
gram PERFORM2. A related paper that uses Shapley
values for renewables reliability risk allocation is [12].

The rest of the paper is organized as follows: in Sec-
tion 2 we provide a comprehensive description of our
problem setup and model configuration and introduce
a numerical algorithm designed for attributing opera-
tional costs to individual components within this setup.
We outline certain desirable properties of the attribu-
tion algorithm along with implementation techniques.
Section 3 is devoted to a case study for the illustra-
tive RTS-GMLC grid. We report simulation results

1ORFEUS: Operational Risk Financialization of Electricity
Under Stochasticity, orfeus.princeton.edu

2PERFORM—Performance-based Energy Resource Feed-
back, Optimization, and Risk Management
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and performance of our cost attribution algorithm. In
Section 4, we describe a framework on how to adjust
the generation capacity of renewable generators using
Monte Carlo scenarios and present yearly simulation
results on the RTS-GMLC grid, highlighting its effi-
cacy in mitigating system risk concerning loss of load.
We conclude with a short recall of the main contribu-
tions of the paper in Section 5.

2. Cost Attribution

2.1. Integrated Gradient

Integrated Gradients (IG) is a technique widely used
to attribute the predictions of a machine learning model
to its input features. It is often used to interpret and
explain the predictions of complex models, especially
deep neural networks. The main goal of IG is to un-
derstand the contribution of each feature in the input
to the final prediction made by the model. The idea is
to compute the integral of the partial derivatives of the
model’s output with respect to the input features while
gradually transitioning from a baseline input (usually a
neutral or zero input) to the actual input for which one
wants to explain the prediction. This process helps in
attributing the prediction incrementally to each feature
while considering their contributions in the context of
the overall prediction. This attribution method is rem-
iniscent of the way sensitivities of derivative prices and
portfolio values are understood and computed in finan-
cial engineering.

Mathematically speaking, the premise is the first
order Taylor expansion, also known as the fundamen-
tal theorem of calculus. Suppose we have a function
F : Rn Ñ r0, 1s that represents a deep neural network,
an arbitrary input vector x P Rn and a baseline input
vector x1 P Rn. The IG provide a quantitative mea-
sure of the contribution of each input feature xi to the
model’s prediction F pxq. Higher attributions indicate
greater influence on the prediction, while lower attri-
butions suggest lesser impact. The attribution for the
i-th feature is obtained by integrating the gradients
along the straight path from the baseline input x1 to
the actual input x:

Ii pxq :“
`

xi ´ x1
i

˘

ż 1

λ“0

BF px1 ` λ px ´ x1qq

Bxi
dλ. (1)

This integration is typically performed using nu-
merical methods like the trapezoidal rule or Simpson’s

rule. One important property of Integrated Gradients
is that the sum of the attribution scores across all fea-
tures equals the difference in the model’s output be-
tween the actual input and the baseline, i.e.

n
ÿ

i“1

Ii pxq “ F pxq ´ F
`

x1
˘

. (2)

2.2. Production Cost Model

We adapt the technique of IG to the problem of cost
attribution in power production cost models (PCM)
using a single scenario of electricity demand and re-
newable production. Production cost modeling is a
technique to simulate and analyze the economic and
operational characteristics of electricity generation and
distribution. It involves creating mathematical models
that represent the various components of an electri-
cal power system, including power plants, transmis-
sion lines, distribution networks, and demand profiles.
Modern production cost modeling involves simulations
of electricity markets based on forms of Unit Commit-
ment (UC) and Economic Dispatch (ED) for genera-
tion and load scheduling. While the mathematical for-
mulations in UC and ED can vary widely depending
on the software package and its options [9], the cost
attribution method proposed here is agnostic to the
choice of their formulation. Power cost modeling typi-
cally requires alternating day-ahead UC and real-time
ED market optimizations over a fixed horizon, whether
it is a day, month or year. Our method can be used for
most of the common simulation frameworks, however,
for the purpose of illustration, we consider a day-ahead
and real-time optimization cycle framework executed
on a daily basis. The day-ahead simulation consists
of a single UC optimization step that determines 48
hours of system operations subject to load and renew-
able production forecasts. Subsequently the real-time
simulation consists of 24 ED on the hourly timescale,
which re-optimize system operations subject to actual
load and renewable power productions at each hour
with a h-hour look-ahead horizon. A common choice
of h can vary from 1 to 4 hours. Because many baseload
generators are inflexible at short timescales, the real-
time simulation treats day-ahead baseload UC profiles
as fixed constraints.

Given the actual and day-ahead forecasts of the
load demand and renewable production, our approach
to the operational cost attribution is top-down. We
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first solve the day-ahead UC using the load and renew-
able generation forecasts. Following the operational
constraints in the UC profile, we then assess the system-
level costs by solving 24 hourly EDs twice, once with
the actual data and the second time with the day-ahead
forecasts as the actual data. Finally, we attribute the
system-wide cost difference between the two ED to in-
dividual load and production assets.

To be more specific, we consider a system with M
dispatchable (conventional) power plants and denote
their power generation at time t by

pt “
`

p1t , p
2
t , ¨ ¨ ¨ , pMt

˘T
P RM

` .

For each τ “ 1, 2, ¨ ¨ ¨ , 24, the ED model with look-
ahead horizon h can be written as,

min
τ`h
ÿ

t“τ

˜

M
ÿ

g“1

Ct
g ppgt q ` Ct

p pptq

¸

s.t.
`

pT
τ ,p

T
τ`1, ¨ ¨ ¨ ,pT

τ`h

˘

P Ω

(3)

where Ct
g is the operational cost associated with gener-

ation unit g at time t, Ct
p is a penalty term accounting

for loss of load, unmet reserve requirement, etc. at
time t, and Ω is the feasible set representing the sys-
tem constraints (load balance, generation limits, ramp-
ing capacities etc). The costs Ct

g and Ct
p as well as the

feasible set Ω are determined by the grid configuration,
and so are the load demand profile, renewable genera-
tion data and the initial grid operating condition. In
other words, given the load demand profile, renewable
generation data and initial state of the dispatchable
units p0, one can solve (3) and obtain an optimal op-
erational cost (assuming that the model is feasible).

Without loss of generality, we set the look-ahead
horizon to h “ 1, and we assume that the system
has L load buses, and N renewable power plants with
load demand profile and power generation capacity at

time t given by dt “
`

d1t , d
2
t , ¨ ¨ ¨ , dLt

˘T
P RL

` and qt “
`

q1t , q
2
t , ¨ ¨ ¨ , qNt

˘T
P RN

` respectively. Now the EDmodel
at time τ can be viewed as a mapping Fτ :

RM
` ˆ RL

` ˆ RN
` Q ppτ´1,dτ ,qτ q Ñ Fτ

¨

˝

pτ´1

dτ

qτ

˛

‚P R`,

(4)
providing the overall cost to the system. The goal of
the proposed method is to quantify accurately the con-
tributions of each individual load and each generation

asset to the system-wide cost difference computed with
the day-ahead forecasts and the actual data, namely,
for τ “ 1, 2, ¨ ¨ ¨ , 24.

Cact
τ ´ Cfcst

τ :“ Fτ

¨

˝

pact
τ´1

dact
τ

qact
τ

˛

‚´ Fτ

¨

˝

pfcst
τ´1

dfcst
τ

qfcst
τ

˛

‚. (5)

2.3. Cost Attribution of PCM

We assume that Fτ is differentiable almost every-
where, and let C be a straight line given by

r⃗τ pλq “

¨

˚

˝

pfcst
τ´1 ` λ

´

pact
τ´1 ´ pfcst

τ´1

¯

dfcst
τ ` λ

`

dact
τ ´ dfcst

τ

˘

qfcst
τ ` λ

`

qact
τ ´ qfcst

τ

˘

˛

‹

‚

, 0 ď λ ď 1

(6)
then by the fundamental theorem of calculus for line
integral, we can write

Fτ

¨

˝

pact
τ´1

dact
τ

qact
τ

˛

‚´ Fτ

¨

˝

pfcst
τ´1

dfcst
τ

qfcst
τ

˛

‚“

ż

C
∇Fτ

¨

˝

pτ´1

dτ

qτ

˛

‚¨ dr⃗

“

¨

˝

pact
τ´1 ´ pfcst

τ´1

dact
τ ´ dfcst

τ

qact
τ ´ qfcst

τ

˛

‚¨

ż 1

0

∇Fτ pr⃗τ pλqq dλ.

In particular, the IG assigns to the initial state of
dispatchable generator m the attribution:

Cm,τ
init “

´

pm,act
τ´1 ´ pm,fcst

τ´1

¯

ż 1

0

BFτ

Bpmτ´1

pr⃗τ pλqq dλ (7)

to the load asset l,

Cl,τ
load “

`

dl,actτ ´ dl,fcstτ

˘

ż 1

0

BFτ

Bplτ
pr⃗τ pλqq dλ (8)

and to the renewable generator n

Cn,τ
renew “

`

qn,actτ ´ qn,fcstτ

˘

ż 1

0

BFτ

Bqnτ
pr⃗τ pλqq dλ. (9)

We also have

Cτ
act´Cτ

fcst “

M
ÿ

m“1

Cm,τ
init `

L
ÿ

l“1

Cl,τ
load`

N
ÿ

n“1

Cn,τ
renew. (10)

Equation (10) is called the Completeness Axiom.
Basically, it says that the attributions to the initial
states of the dispatchable generators, the load demands
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and the renewable generations add up to the difference
between the cost of operating the grid under the day-
ahead forecasts and the actual data. The assumption
of differentiability of Fτ is obviously a strong condition
and can be difficult to check in practice, especially as it
depends upon the grid configuration and the ED model
formulation. Nevertheless, we observe empirically that
indeed the Completeness Axiom holds in our experi-
ments (see Table 3).

Another important property which is desirable for
attribution methods is Symmetry Preserving. In the
present context of production cost modeling this prop-
erty can be understood in the following way. A function
is said to be symmetric with respect to two input vari-
ables if the value of the function remains unchanged
when the values of the variables are interchanged. Ac-
cordingly, an attribution method is said to be Symme-
try Preserving, if whenever the function is symmetric
with respect to two input variables, these input vari-
ables receive identical attributions. For a power grid
system, Symmetry Preserving suggests that if two as-
sets have the same impact in terms of the operational
cost under all circumstances, they should receive iden-
tical attributions. For instance, if two wind farms are
connected to the same bus and always produce the
same amounts of power, their cost attributions by the
proposed method should be identical. At an intuitive
level, such a requirement is desirable for a practical at-
tribution to be fair and equitable, and it holds in the
attribution method introduced in this paper.

The original introductions and implementations of
the IG also mentioned a few other desirable properties,
such as Sensitivity, Linearity, Implementation Invari-
ance, etc, however, they are not relevant to models of
grid management, and we chose to ignore them in our
context.

2.4. Computation of the Gradient

The integrals in (7)-(9) can be efficiently approx-
imated by adaptive quadrature, e.g. adaptive trape-
zoidal rule. Adaptivity usually requires less than 100
function (integrand) evaluations to reach a desire error
threshold (within 5%).

For the gradient, noting that the ED model we
consider is a linear program, we compute the partial
derivative w.r.t. a quantity of interest by the dual
value of the constraint corresponding to that quantity.
For example, let us assume that at time τ the gener-
ation capacity of the n-th renewable generator is q̄nτ .

To compute the partial derivative BFτ

Bqnτ
, we first add a

constraint
qnτ ď q̄nτ (11)

to the ED model (3). Once the ED model is opti-
mized, we obtain the desired partial derivative as the
dual value of the constraint (11).This is what is usually
called the shadow price

3. Case Study: the RTS-GMLC Grid Model

In this section, we present numerical results of the
cost attribution method for the RTS-GMLC grid model
whose characteristics can be found at https://github.
com/GridMod/RTS-GMLC. The RTS-GMLC grid con-
tains 73 buses, 157 generators (including 4 wind and 57
solar stations) and 120 transmission lines. We use the
production cost modeling tool Vatic v0.4.1-a1 (https:
//github.com/PrincetonUniversity/Vatic/releases/

tag/v0.4.1-a1) and GUROBI solver v10.0.1 [5] to run
UC and ED optimization. Vatic applies mixed-integer
linear programming optimization to power grid for-
mulations created using the software package EGRET
[10]. Our Python implementation of the cost attribu-
tion algorithm with detailed examples is available at
https://github.com/PrincetonUniversity/PGrisk[18].
For all examples presented in this section, we choose a
maximum of 212 “ 4096 for the adaptive trapezoidal
quadrature nodes with 5% error threshold. Below, we
summarize the formulations in our experiments in Ta-
ble 1 and refer to [10, 9] for more details.

In our initial case study, we simulate the RTS-GMLC
grid by executing UC with day-ahead forecasts and ED
with both forecasted and actual data. Across each
day of 2020, we calculate cost attributions compar-
ing forecasted (baseline) and actual data over 24-hour
periods, then average these attributions hourly. Ta-
ble ?? presents the top 10 renewable generators with
the highest average cost attributions. Notably, wind
generators rank highest due to their substantial capac-
ity, followed by solar generators, which operate pre-
dominantly during daylight hours. Specifically, the ca-
pacities for 317-WIND-1, 309-WIND-1, and 319-PV-1
are 799.1MW, 148.3MW, and 188.2MW, respectively.
These renewable generators are distributed across five
sub-areas within the RTS-GMLC grid. Additionally,
we calculated the sum of generation deficiencies (ac-
tual - forecast), the sum of cost attributions, and the
average shadow price within each sub-area for 2020-06-
18. They are provided in Figure 1.
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UC ED
Status garver 3bin vars garver 3bin vars

Power garver power vars garver power vars

Reserve garver power avail vars MLR reserve vars

Generation pan guan gentile KOW generation limits MLR generation limits

Ramping damcikurt ramping damcikurt ramping

Production KOW production costs tightened CA production costs

Up/Down rajan takriti UT DT rajan takriti UT DT

StartUp KOW startup costs MLR startup costs

Network ptdf power flow ptdf power flow

Table 1: Formulation used in UC and ED models.

Generator Bus Attribution
Shadow
Price

317-WIND-1 317 54625.9 ´159.2
122-WIND-1 122 44742.8 ´151.1
303-WIND-1 303 32993.6 ´148.8
309-WIND-1 309 6318.4 ´168.7
319-PV-1 319 768.9 ´161.6
215-PV-1 215 481.5 ´154.2
113-PV-1 113 380.0 ´153.1
313-PV-2 313 257.2 ´164.6
312-PV-1 312 237.7 ´165.2
310-PV-2 310 220.2 ´164.3

Table 2: Top 10 renewable generators with the largest average
cost attributions.
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Figure 1: Generation deficiency, cost attributions and shadow
prices for sub-areas in RTS-GMLC.

number run relative
of nodes time (s) efficiency gap

max 124 1307.9 5.3%
median 23 239.0 0.2%
mean 26.2 275.8 0.6%
std 18.0 195.8 0.8%

Table 3: Cost attribution performance.

Next, we examine the performance of the algorithm
using Monte Carlo scenarios. The load demand and re-
newable production scenarios used for computing the
cost attributions are generated by the open source Python
package PGscen [4]. For each day in 2020, we first
generated K “ 1000 Monte Carlo scenarios for load
demand and renewable (wind and solar) production.
With the risk level α “ 0.05, the algorithm is then ap-
plied to obtain cost attributions for the worst αK “ 50
scenarios.

All the experiments are conducted on a 80-core
cluster equipped with two Intel(R) Xeon(R) Platinum
8380 CPU @ 2.30GHz and 512GB memory. For each
scenario, the cost attribution procedure is run on a
single core with no parallelism. To examine the per-
formance of the cost attribution method, we consider
the following relative efficiency gap:

relative efficiency gap “

max1ďτď24

ˇ

ˇ

ˇ
Cτ

act́C
τ
fcst́

řM
m“1 C

m,τ
init́

řL
l“1 C

l,τ
load́

řN
n“1 C

n,τ
renew

ˇ

ˇ

ˇ

max1ďτď24 |Cτ
act|

.

We report in Table 3 the average number of actual
quadrature nodes, run time (in seconds) and the rela-
tive efficiency gap over 50ˆ364 “ 18200 scenarios from
2020-01-02 to 2020-12-30.

For the purpose of illustration, we present numeri-
cal results for the test day 2020-07-08. We performed
the cost attribution computations for 1000 Monte Carlo
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scenarios and we discuss the results for the load bus
Abel, the wind farm 317-WIND-1 and the solar plant
324-PV-1. In each case, we show in Figures 2, 3 and
4 the histograms of the values of the scenarios (left)
and their cost attributions (right) computed scenario
by scenario. Figure 2 shows that on that day, the load
forecast significantly over estimated the actual load,
and the Monte Carlo generation engine (which does not
have a crystal ball and could not use the value of the
actual load to generate the scenarios) used a heavy tail
distribution to produce reasonable values despite the
forecast overshoot. The two histograms follow similar
patterns. This should be expected due to the positive
correlation between load demand and system costs.
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Figure 2: Scenarios and cost attributions for Abel at 2020-07-08
04:00.

Figure 3 shows that on that day, the wind forecast
at this location was pretty accurate. Still, the pat-
terns of the histograms seem to be mirror images of
each other. This is consistent with the negative cor-
relation between power production and system costs.
The same remarks apply to Figure 4. On the other
hand, it’s worth noting that when a loss of load occurs
during a specific hour within a scenario, the attribution
of the associated cost is likely to be significantly ampli-
fied. This is due to the substantial penalty incurred for
failing to meet the load demand. As illustrated in Fig-
ure 5, we can observe an example of this phenomenon
where certain scenarios with low production are at-
tributed with notably high costs. This emphasizes the
critical importance of addressing load shedding and its
cost implications in our analysis.
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Figure 3: Scenarios and cost attributions for 317-WIND-1 at
2020-07-08 17:00.
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Figure 4: Scenarios and cost attributions for 324-PV-1 at 2020-
07-08 15:00.
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Figure 5: Scenarios and cost attributions for 317-WIND-1 at
2020-07-08 19:00.

4. Risk-Averse Unit Commitment

4.1. Scenario-Based Risk Allocation

In this section, we demonstrate an application of
the cost attribution algorithm within a simulation frame-
work tailored for a risk-averse Unit Commitment (UC)
approach. First, we introduce a risk allocation algo-
rithm built upon the aforementioned cost attribution
method. The primary objective of this algorithm is to
assess the impact of uncertainties on daily operational
costs of the system. This is achieved by incorporating
the variability in both load and renewable generation
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across numerous Monte Carlo scenarios. Initially, we
solve the UC and ED problems using day-ahead fore-
casts. Subsequently, we use these scenarios as prox-
ies for actual load and renewable production data and
solve ED once again. The scenarios employed in this
study are generated utilizing the model described in
[3], as implemented in [4]. This model captures a high-
dimensional spatial-temporal correlation structure and
encompasses extreme and risky events.

To be more specific, let us assume that K Monte
Carlo scenarios have been generated and a risk level α P

p0, 1q has been chosen. The risk allocation algorithm
comprises the following steps:

1. The UC and ED are solved based on the day-
ahead forecasted data.

2. For each scenario, its values are substituted for
the actual data and we solve the 24 hourly ED
models to obtain hourly costs.

3. We select the worst αK scenarios in terms of their
total cost. We denote the set of the worst scenar-
ios by S.

4. For each scenario in S, we calculate the cost at-
tribution between the baseline model, which uses
forecasted data, and the target model, which uses
scenario data. This enables us to assign costs
to all initial states of dispatchable generators,
load demands, and renewable generators for ev-
ery hour.

5. For a given asset (load demand or renewable gen-
erator) at any hour, we compute its risk score
R as the average of its cost attributions across
the scenarios in S. For example, the risk score
for the renewable generator n at hour τ is R “
1

αK

ř

jPS Cn,τ,j
renew, where Cn,τ,j

renew is the cost attri-
bution in the j-th scenarios.

4.2. Reliability Adjustment

As previously explained, our proposed method as-
signs a reliability risk score to each stochastic input
during every hour of the day. While these stochastic
inputs include various factors such as loads and out-
puts from renewable generation assets, our attention
in this study will be concentrated on the renewable
generation assets. To mitigate the risk associated with

the uncertainty of these renewable generators, our pro-
posal is to modify their generation capacities whenever
elevated risk levels are identified.

Specifically, given a risk level α P p0, 1q, we recall
that the risk score Cn,τ

renew for the renewable generator
n at hour τ is computed as the average costs attribu-
tions over a set of worst case scenarios. These costs
are frequently linked to the under-production of the
renewable generators relative to the forecasts. Conse-
quently, our initial step involves the computation of a
”per MWh” risk score Rn

τ through

Rn
τ “

Cn,τ
renew

qn,fcstτ ´ 1
K

ř

jPS qn,jτ

where qn,jτ is the generation capacity of the renewable
generator n at hour τ in the j-th scenario. Following
that, we introduce two positive parameters, denoted
as R and R. Broadly speaking, these parameters are
meant to represent the per MWh cost of the grid under
usual conditions and in a situation where the genera-
tion needs to be completely disregarded. Subsequently,
a generation capacity adjustment percentage can be
calculated as follows:

rnτ “ max

ˆ

0,min

ˆ

1,
Rn

τ ´ R

R

˙˙

.

where min and max functions guarantees that rnτ P

r0, 1s. Finally, the adjusted renewable generation ca-
pacity is determined by the equation:

qn,adjτ “ qn,fcstτ ´ rnτ
`

qn,fcstτ ´ qn,min
τ

˘

.

Here qn,min
τ represents the minimum (guaranteed) gen-

eration capacity of renewable generator n at hour τ
across all scenarios. By design, when rnτ “ 0, indi-
cating no need for adjustment, the equation simpli-
fies to qn,adjτ “ qn,fcstτ . Conversely, if rnτ “ 1, imply-
ing a necessity for maximum adjustment, the genera-
tion capacity is reduced to the minimum (guaranteed)
level: qn,adjτ “ qn,min

τ . As an illustrative example,
we demonstrate the generation capacity adjustments
for 317-WIND-1 at 2020-07-08 during the hours 19:00
and 20:00. For this example, we choose R “ 20 and
R “ 200, 300, and 500. The histograms of generation
scenarios are presented in Figure 6, and the relevant
quantities for computing the adjustments are detailed
in Table 4.
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Hour qn,fcstτ Cn,τ
renew Rn

τ
R “ 200 R “ 300 R “ 500

rnτ qn,adjτ rnτ qn,adjτ rnτ qn,adjτ

19 107.0 15630.2 210.8 95.4% 4.9 63.6% 38.9 38.2% 66.2
20 262.0 6163.0 35.0 7.5% 242.3 5.0% 248.9 3.0% 254.1

Table 4: Generation capacity adjustments for 317-WIND-1 at hours 19 and 20 of 2020-07-08.

0 100 200 300 400 500 600 700 800
MW

0

50

100

150

200

250
317-WIND-1  2020-07-08 19:00

all scenarios
50 scenarios with high costs
forecast

0 100 200 300 400 500 600 700 800
MW

0

20

40

60

80

100

120
317-WIND-1  2020-07-08 20:00
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forecast

Figure 6: Scenarios and the worst case scenarios for two wind
farms on 2020-04-26.

4.3. Simulation results

To examine the impact of the proposed risk-averse
UC approach, we run simulations for the RTS-GMLC
grid from 2020-01-02 to 2020-12-30. For the purpose
of comparison, in addition to our approach, we include
three benchmark approaches, in which the standard
alternating UC and ED are performed with a system
spinning reserve equal to 10%, 20% and 30% of the
system forecasted load demand. In the benchmark
approaches, the load mismatch (over-generation and
loss of load) and reserve shortfall penalties in the ob-
jective function of the UC model are selected to be
10000$/MWh and 1000$/MWh. In contrast, our ap-
proach adopted a reserve factor of 5% and used the
same load mismatch and reserve shortfall penalties as
the benchmark methods. For generation capacity ad-
justments, R was set to 20$, and the value of R was
varied by 200$, 300$, and 500$. In Figure 7, we show
the daily system operational costs and the load shed-
ding patterns for the entire year using different UC
approaches. Additionally, we report the average daily
operational costs and total yearly load shedding in the
same plot. We observe that the proposed risk-averse
UC approach is capable of largely reducing load shed-
ding (which is the largest risk to the grid operation)
under all choices of R. Specifically, selecting the least
aggressive parameter R “ 500 results in a 1525 MWh

loss of load, roughly a quarter of the load shedding
experienced with a 30% reserve factor. The produc-
tion costs using the risk-averse UC approach are ap-
proximately $1.47 million, which is much lower than
the $1.53 million with a 30% reserve factor and only
slightly higher than with a 20% reserve factor.
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Figure 7: Production costs and loss of load in RTS-GMLC sys-
tem using different UC from 2020-01-02 to 2020-12-30.

In Figure 8, we create the same plot from 2020-01-
01 to 2020-04-30, a shorter period in which activities
like load shedding happen more frequently. For 2020-
03-26, 2020-04-26 and 2020-04-27, it is clear that the
risk-averse UC hedges the risk against the worst case
scenarios by depending less on the renewable genera-
tions (and thus higher production cost) to avoid possi-
ble load shedding due to uncertainties in the day-ahead
forecasts. The loss of load for all choices of R is less
than 1000 MWh, whereas reserve factors of 10%, 20%,
and 30% result in unmet load demands ranging from
4000 to 34000 MWh. The production costs using the
risk-averse UC approach, however, are comparable to
those incurred with a 20% reserve factor.
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Figure 8: Production costs and loss of load in RTS-GMLC sys-
tem using different UC for 2020-03-01 to 2020-04-30.

4.4. Load Loss Abatement

To further explore how the renewable generation
adjustment assists in mitigating risk, we present a more
comprehensive comparison with the use of a fixed per-
centage of the load demand spinning reserves factor (re-
ferred to as the risk-neutral UC) on 2020-04-26. During
the 24-hour period, when operating the ED with the
risk-averse UC, there were no instances of load loss.
However, running it with the risk-neutral UC using 5%
and 30% reserve factors resulted in a total load loss of
approximately 860 and 7903 MWh, respectively. This
loss primarily occurred due to an overestimation of
wind power generation in the day-ahead forecasts. The
day-ahead predictions estimated wind power plants to
generate as much as 37,046 MWh throughout the day,
while the actual real-time production was only 12590
MWh. Notably, at 21:00, there was an over-forecast
of wind power production by about 2019 MWh. In
Figure 9, we illustrate the RTS-GMLC grid on a ge-
ographical map, indicating buses with load shedding
(depicted as blue circles) in simulations using the risk-
neutral UC. Additionally, we calculate the difference
in renewable power dispatch in simulations using the
risk-averse UC, revealing a significant reduction in re-
newable power dispatch due to the associated capacity
adjustments, shown as differences represented by red
circles on the map.

(a)

(b)

Figure 9: Comparison of risk-neutral UC using 5% (A) and 30%
(B) reserve requirements with risk-averse at 2020-04-26 21:00:00.

5. Conclusion

In conclusion, this paper offers a new perspective
on addressing uncertainty and associated risks in power
system management, driven by the increasing integra-
tion of renewable energy sources. We propose a novel
algorithm that leverages the discrepancies between fore-
casted and actual values to quantify the financial risks
associated with uncertainty. Inspired by Integrated
Gradients (IG), a renowned method in machine learn-
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ing, our algorithm attributes the contributions of stochas-
tic components to differences in system costs. By treat-
ing the power production cost model as a function that
takes inputs of random quantities like load demand and
renewable generation, we provide a practical approach
for understanding the impact of variability on grid op-
erational costs.

Moreover, we demonstrate the utility of our ap-
proach in a risk-averse unit commitment framework,
where adjustments to renewable generator capacities
are made based on Monte Carlo scenarios. This frame-
work mitigates system risk by reducing reliance on
highly uncertain renewable productions, thereby en-
hancing grid reliability. On the other hand, the overall
operational costs will not increase significantly under
this framework (see Figures 7 and 8) as it identifies
critical times and locations where highly uncertain re-
newable productions occur.

The results of our simulations on the RTS-GMLC
system serve as a compelling validation of the effective-
ness of our algorithms. Furthermore, they highlight the
superior performance of the risk-averse UC framework,
particularly in its ability to significantly reduce the oc-
currence of load shedding. As part of our future work,
we plan to further refine and extend our approach, con-
ducting tests on larger and more realistic grid systems
to verify its performance in more complex and practical
scenarios.

6. Declaration of Competing Interest

The authors declare that they have no known com-
peting financial interests or personal relationships that
could have appeared to influence the work reported in
this paper.

7. Acknowledgments

The authors were partially supported by ARPA-E
grants DE-AR0001289 and DE-AR0001390 under the
PERFORM program of the US Department of Energy.
We would like to thank Mike Ludkovski (University of
California at Santa Barbara) and Glen Swindle (Scov-
ille Risk Partners) for enlightening conversations on the
content of the paper; and Michal Grzadkowski (Prince-
ton University) for software development and imple-
mentation.

References

[1] Miguel Asensio and Javier Contreras. Stochastic unit com-
mitment in isolated systems with renewable penetration un-
der cvar assessment. IEEE Transactions on Smart Grid,
7(3):1356–1367, 2015.

[2] Dimitris Bertsimas, Eugene Litvinov, Xu Andy Sun, Jinye
Zhao, and Tongxin Zheng. Adaptive robust optimization for
the security constrained unit commitment problem. IEEE
transactions on power systems, 28(1):52–63, 2012.
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