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Abstract

Oligopolies in which firms have different costs of production have been relatively under-
studied. In contrast to models with symmetric costs, some firms may be inactive in equilibrium.
(With symmetric costs, the results trivialize to all firms active or all firms inactive.) We con-
centrate on the linear demand structure with constant marginal but asymmetric costs. In static
one-period models, we compare the number of active firms, i.e. the number of firms producing a
positive quantity in equilibrium, across four different models of oligopoly: Cournot and Bertrand
with homogeneous or differentiated goods. When firms have different costs, we show that, for
fixed good type, Cournot always results in more active firms than Bertrand. Moreover, with a
fixed market type, differentiated goods result in more active firms than homogeneous goods. In
dynamic models, asymmetric costs induce different entry times into the market. We illustrate
with a model of energy production in which multiple producers from costly but inexhaustible
alternative sources such as solar or wind compete in a Cournot market against an oil producer
with exhaustible supply.

JEL classification: C72; D43; L11; L22

Keywords: Oligopolies; Bertrand model; Cournot model; Differentiated goods; Dynamic games;
Exhaustible resources.

1 Introduction

The main focus of this paper is to study the number of firms in an oligopoly who actively produce
in equilibrium when they have different costs of production. Asymmetric costs are commonplace in
markets of large and small producers (for example a major chain such as Barnes & Noble in the U.S.
vs. an independent local bookstore), where the larger firm can achieve economies of scale. In energy
markets, producers from different fuels and technologies have widely different costs of production:
for example, oil and coal sources are much cheaper to produce from than renewables such as solar
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or hydropower. However, most analyses assume symmetric costs, or restricted cost structures that
guarantee all firms are active in equilibrium. Whether a firm produces a positive quantity in an
equilibrium is an important question in the study of oligopolistic competition because it can be
used to explain market variety as a cost to the consumer.

We first focus on both the Cournot and Bertrand static games within which we have two cases:
when the goods are homogeneous, and when they are differentiated. We will show that, within a
fixed type of market, Cournot or Bertrand, differentiated goods result in more active firms in Nash
equilibrium than homogeneous goods. These results depend crucially on cost asymmetries between
the firms, as with symmetric costs the results trivialize to all firms active or all firms inactive.
Our results, e.g. Theorem 4.1, partially explain the relative differences to consumers between these
two types of markets, as consumers have more choice in Cournot markets but with higher prices,
whereas they have less choice in Bertrand markets (as the number of firms in equilibrium is less)
but they are compensated for this fact by reduced prices.

Then we show the impact of cost differences in a dynamic Cournot game between energy producers,
one of which has a cheap exhaustible source such as oil, while the others have inexhaustible costly
technologies, such as solar or wind. Here, the Markov perfect equilibrium is characterized by
nonlinear differential equations which we can solve to determine the entry points of the alternative
producers into the market. We show how entry leads to jumps in the rate of change over time of
the equilibrium energy price and derive a modified Hotelling’s rule for exhaustible resources under
oligopolistic competition (Propositions 5.6 and 5.7).

1.1 Background

The study of non-cooperative oligopolistic competition originated with the seminal work of Cournot
[6]. His original model assumes firms choose quantities of a homogeneous good to supply and then
receive profit based on the single market price as determined through a linear inverse demand
function of the aggregate market supply. Moreover, marginal costs of production were assumed
constant and equal across firms. Throughout this paper, we also assume constant marginal costs,
however we drop the cost symmetry assumption. The result of Cournot’s analysis is what one would
expect: with equal marginal costs across firms, every firm chooses the same quantity to supply and
the market price is above cost by an amount that is inversely proportional to one plus the number of
firms in the market. Hence, as the number of firms tends to infinity, the price approaches marginal
cost, but with a finite number of firms, prices are above cost and firms earn positive profits.

Following this, Bertrand [3] argued to change the strategic variable from quantity to price. Firms
producing a homogeneous good were assumed to set prices and produce to meet any demand of
the market. As the goods are homogeneous, there can only be one market price, as observed in the
Cournot model above, and therefore only the firm quoting the minimum price receives any demand.
This feature of “winner takes all” leads to very harsh and contradictory results relative to common
market observations. If all firms have equal cost, then as long as there are two or more firms in
the market, all firms price at cost and have zero profit. This perfectly competitive outcome differs
substantially from the Cournot outcome and is commonly referred to as the Bertrand paradox.
To paraphrase from [21], the Bertrand model results in perfect competition in all cases besides
monopoly, which is unrealistic in most settings, leading one to conclude that the correct set-up
leads to the wrong result. On the other hand, as most firms seem to set their prices, not their
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quantities, many economists have argued that the Cournot model gives the right answer for the
wrong reason.

Since these two original papers, there has been much interest in modifying these models in various
ways to obtain more realistic results. Furthermore, there is a significant literature comparing
the two modes of competition when some of the assumptions in the original papers are altered.
These modifications are usually brought about to reconcile the Bertrand paradox. If one considers
constraints on the capacity of the firms, see Edgeworth [8], then the result of the Bertrand model
can be brought closer to that of the Cournot model. Kreps and Scheinkman [18] use capacity
constraints to obtain the Cournot outcome from Bertrand competition. As such, the Bertrand
model cannot really be thought of as complete without more realistic assumptions.

One of the original assumptions that is commonly not satisfied is that goods are homogeneous.
This leads one to consider differentiated goods, which can mean either substitute or complementary
goods, although we concentrate on the case of substitute goods. The original work in this area
is Hotelling [16], where consumers were assumed to associate a cost of travel depending on the
location of the firms, thereby differentiating their otherwise identical goods based on the location
of the firms relative to the location of the consumer. For classical results on differentiated goods
and other models of oligopoly, we refer to the books by Friedman [10] and Vives [24].

1.2 Asymmetric Costs

Very often, modifications of the original models are made under the assumption of symmetric
marginal costs across firms. When one considers an asymmetric cost structure, the issue of the
number of firms who are active in an equilibrium becomes crucially important. This fact is often
overlooked or assumed away in studies of asymmetric cost, see for example [17] and [1]. As we
will see though, it is not always the case that inactive firms can simply be ignored – their presence
may affect equilibrium quantities and prices. We refer also to [5] and [22] for analysis of consumer
surplus under Bertrand and Cournot modes of competition, but again with symmetric (and zero)
costs.

The issue of asymmetric cost in oligopolies has been addressed before. In the work of Singh and
Vives [23], they consider a game in which firms in a differentiated duopoly can choose to offer either
price or quantity contracts to consumers. Essentially this allows firms to select either Bertrand
or Cournot competition. They show for substitute goods that it is always a dominant strategy
for both firms to choose the quantity competition. However, they derive their results under the
assumption that both firms are active in equilibrium. In a related work, Zanchettin [25] compares
prices and outputs in a duopoly with linear demand where the firms can have asymmetric costs and
the goods are differentiated. The main idea is to remove the assumption that both firms are active
in equilibrium and to consider the effect of this on prices and outputs. The main results of this
paper are that prices are lower in Bertrand compared to Cournot, however outputs of both firms
may not always be greater in the Bertrand market relative to the Cournot market. Furthermore,
industry profits can be higher in Bertrand than in Cournot for certain parameter values. This work
is closest to ours although, as it is a duopoly model, the possible number of active firms is restricted
to one or two which simplifies the analysis considerably. Furthermore, additional asymmetries are
tractable in a duopoly that are essentially unworkable in an N -firm oligopoly.
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Static Cournot/Bertrand games also arise as an intermediary in their dynamic counterparts, where
asymmetric shadow costs encode firms’ scarcity values as their resources or capacities deplete. See
[13] for a Cournot dynamic game with exhaustible resources and [19] for a dynamic Bertrand game
in which firms of different sizes begin competing with asymmetric lifetime capacities. Study of
these leads to the issue of blockading – where some firms may be inactive due to high shadow costs
until the resources of their competitors fall (and their shadow costs rise) accordingly. Hence, a
thorough analysis of the activity levels in the static Cournot and Bertrand games is needed, which
is the purpose of Sections 3-4. The number of active firms is generally studied in terms of entry
and exit from a market in a dynamic setting, see for example [9] and [2]. We compute explicitly
the entry points as a function of the asymmetric costs in a dynamic Cournot energy production
model in Section 5.

2 Models of Oligopolistic Competition

We start with a market that has N ≥ 1 firms. Let qi be the quantity produced by Firm i, and
similarly let pi be the price charged for their respective good. Dropping the subscript, we denote
by p and q the vector of all prices or quantities, respectively. We define Q =

∑
qi and P =

∑
pi as

the aggregate quantity and price, respectively.

2.1 Substitutability of Goods

We focus on two types of markets: those where the goods being sold are not identical, and those
where the goods are identical.

Differentiated goods means that the goods are not perfect substitutes for one another. Each
firm can in principle then receive demand even if they are not the lowest price firm or the firm
producing the highest quantity.

Homogeneous goods means that the goods sold by the different firms are perfect substitutes for
one another. Therefore, only one price can prevail in the market. In the case of firms choosing
quantities, this does not add undue burden at all, as it simply implies that the price a firm receives
will depend on the aggregate market supply and their profit will then depend on that price and
their chosen quantity. The case of firms setting prices is more complicated. Each firm can offer
a price, but only one price can ultimately prevail in the market as goods are deemed identical.
Thus, only the firms setting the lowest price will receive demand from the market. The rest can
post a price, but as they will not receive demand at this higher price, it is irrelevant. The only
issue that arises is in a tie for the lowest price. To accommodate this important case, one must
define precisely how the lowest price firms share demand in equilibrium. These rules are commonly
referred to as sharing rules and can have important equilibrium consequences, see for example [14].
We shall make explicit in what follows which sharing rule we use and our reason for doing so.
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2.2 Linear Oligopolies

We concentrate on a linear demand specification in order to present explicit calculations, partic-
ularly for the number of active firms in equilibrium. However, the existence of an equilibrium in
each of the four models under asymmetric costs can be established in more general settings: for the
homogeneous Cournot case, see [13, Section 2], and [19, Section 2] for the differentiated Bertrand
case.

We derive demand from the behavior of a representative consumer with the following quadratic
utility function:

U(q) = α
N∑
i=1

qi −
1
2

β N∑
i=1

q2
i + γ

N∑
i=1

N∑
j=1

j 6=i

qiqj

 , α, β > 0. (1)

Our representative consumer solves the utility maximization problem

max
q∈RN

+

U(q)−
N∑
i=1

piqi,

from which we can derive the inverse demand functions for the firms as

pi(q) =
∂U

∂qi
= α− βqi − γ

∑
j 6=i

qj , i = 1, · · · , N. Differentiated Cournot (2)

This gives actual quantities provided pi > 0 for all i. In the case that the quantities result in any
of the prices not being positive, we must remove the individual firm with the highest quantity from
the system and then consider a market with one less firm. If any of the prices are still not positive,
then we repeat this procedure, one firm at a time, until we have a market with positive prices for
all firms.

The parameter γ can be positive, negative or zero depending on whether the goods are substitutes,
complements or independent.

Definition 2.1. Within the linear demand set-up, the following concepts can be characterized:

• Independent goods γ = 0;

• Substitute goods γ > 0;

• Differentiated goods γ < β;

• Homogeneous goods γ = β.

We will not deal with the case of complementary goods, which corresponds to γ < 0. The quantity
γ/β expresses the degree of product differentiation, which ranges from zero (independent goods)
to one (perfect substitutes, or homogeneous goods).

When γ < β, System (2) can be inverted to obtain

qi(p) = aN − bNpi + cN
∑
j 6=i

pj , i = 1, · · · , N, Differentiated Bertrand (3)
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where for 1 ≤ n ≤ N , we define

an =
α

β + (n− 1)γ
, bn =

β + (n− 2)γ
(β + (n− 1)γ)(β − γ)

, cn =
γ

(β + (n− 1)γ)(β − γ)
. (4)

As in the case of inverse demands, System (3) gives the actual quantities if they are all strictly
positive. If some of them are not positive, then we consider the case where the firms are ordered
by price such that p1 ≤ p2 ≤ · · · ≤ pN . Then, we remove the price and quantity of firm N from the
utility function and repeat the above procedure. If some remain that are not positive, we continue
removing firms in this manner one at a time until we have only firms with positive quantities
remaining. The equivalent manner to remove them at the level of the demand functions is to again
consider the firms ordered by price, and to remove the price and quantity of Firm N from the
system and use Expression (4) with n equal to N − 1. If firms still remain with negative quantity
in this reduced demand system, then we again continue this procedure one firm at a time until
only firms with positive quantity remain. If firms are not ordered by price, we can re-label them
for this procedure and then restore their correct labels once the demand system is determined.
For differentiated goods, System (2) gives the inverse demand functions relevant to the Cournot
market, and System (3) gives the demand functions relevant to the Bertrand market.

For homogeneous goods, we need to consider the limit of the utility function in Equation (1) when
γ = β. This is no problem for the inverse demand functions and we arrive at

pHi (q) = α− β
N∑
j=1

qj , i = 1, · · · , N, Homogeneous Cournot (5)

where the H stands for Homogeneous, which is to distinguish this inverse demand function from
that expressed in System (2). This is the same price for all of the firms and it depends only on the
aggregate supply in the market. The difficulty with the Bertrand market is that we cannot invert
this relationship.

The issue that arises in the Bertrand case can best be presented with a two-firm duopoly example. If
we suppose p1 is fixed and p2 = p1+ε then q2(p) = a2−(b2−c2)p1−b2ε, and q1 = a2−(b2−c2)p1+c2ε.
As γ approaches β, we have (b2 − c2)→∞. Thus, for γ sufficiently close to β we will have q2 < 0.
However, when this occurs, the demand function for Firm 1 changes in a consistent manner to
reflect the fact that Firm 2 is out of the market. This is accomplished by using Expression (4) with
n = 1. If p1 = p2 = p, then we have from System (5) that (q1 + q2) = α

β −
1
βp. In other words, the

quantities of the two firms must add up to the quantity that a single firm would receive if they set
the lowest price alone. Furthermore, as firms are distinguishable only by the prices they set, equal
prices must imply they get equal demand. Moreover, as we have established what the sum of their
demands is, we know that each gets an equal share of this demand. In this way we obtain

qHi (p) =

(
α
β −

1
βpi

)
# {k : pk ≤ pj ∀ j}

11{pi=min(p)}. Homogeneous Bertrand (6)

For an N -firm oligopoly, the procedure for determining demand is identical as that above, where
firms are removed from the demand system one-by-one as their quantities go negative. We thus
arrive at the same conclusion regardless of the number of firms. This is the classical “winner-take-
all” Bertrand model with monopoly demand α

β −
1
βp.
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3 Nash Equilibria of the Four Static Games

We assume that each firm has constant marginal cost, which we denote by si for Firm i. We denote
by s the vector of such costs. Our main goal is to demonstrate how cost asymmetries, coupled
with the degree of product differentiation and the mode of competition, affect the structure of the
market. We begin with static Cournot and Bertrand games, and in Section 5, we will study a
dynamic Cournot game.

Each firm chooses its price or quantity to maximize profit in a non-cooperative manner, although
they do so taking into account the actions of all other firms. Therefore, we assume firms make
decisions to maximize profit in the sense of Nash equilibrium. The argument of the profit function
that each firm maximizes over depends on the mode of competition, but in all cases the profit
function is given by

Πi = qi · (pi − si). (7)

Remark 3.1. If we started with firms having individual αi’s in Equation (1), then this could be
reduced to the identical α case by absorbing each αi into the cost si in Equation (7). However, we
do not treat the case of individual β’s or γ’s here.

We suppose that the N firms are ordered by cost such that, possibly after a suitable relabeling,
0 < s1 ≤ s2 ≤ · · · ≤ sN . Further, we assume that sN < α, that is every firm’s cost is lower than
the maximum possible market price. In the next two subsections, we present the Nash equilibria
results for the Cournot and Bertrand games for markets with differentiated goods. The results for
the homogeneous goods markets under Cournot and Bertrand competition are given in Appendix
A.

3.1 Differentiated Cournot Competition

Throughout this section, we roughly follow [13] wherein the results of the homogeneous Cournot
game with general price functions are given. Although here we are dealing with the differentiated
Cournot model, the method for constructing the Nash equilibrium is very similar for the case of
linear inverse demands. We shall present here the full details of the construction in the differentiated
goods setting.

The profit functions of the firms are given in Equation (7), and here each firm i maximizes over
qi with price given as the function of q in System (2). If all the equilibrium quantities are strictly
positive, then the first-order conditions give the best-response function for a given firm:

qBRi =
1

2β

α− γ∑
j 6=i

qj − si

 , i = 1, . . . , N. (8)

We can sum these equations over i to obtain

0 = −2βQ+Nα− γ(N − 1)Q− S(N), (9)

where we let S(n) =
∑n

j=1 sj , the sum of the costs of the first n firms. We define the candidate
equilibrium total production Q?,N , as the solution to the scalar equation fN (Q) = S(N), where

fN (Q) = Nα− (2β + (N − 1)γ)Q, Q > 0.
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Let us define the following effective market price function: P̄ (Q) = α− γQ. This is not an actual
price in the market, but it is a useful mathematical tool. We use the description effective as we
shall see that this price serves the purpose of the single price in the market that all costs must be
compared to. With this market price function, we can rearrange Equation (8) to obtain a candidate
Nash equilibrium

q?,Ni =
P̄ (Q?,N )− si

2β − γ
, i = 1, . . . , N. (10)

Utilizing Equations (9) and (10), we can express the candidate equilibrium as

q?,Ni =

(
P̄ (Q?,N )− si∑N

j=1

(
P̄ (Q?,N )− sj

))Q?,N . (11)

Equation (11) is convenient for expressing the candidate equilibrium quantities as it has the inter-
pretation that once the total equilibrium quantity Q?,N is determined, each player produces the
fraction which is the deviation of his cost si from the effective market price P̄ (Q?,N ) relative to the
total deviation of all players’ costs from that price.

However, it may occur that q?,Ni < 0 for some i, which is not an admissible solution and we must
thus consider equilibria with less than N firms. For 1 ≤ n ≤ N , we define

fn(Q) = nα− (2β + (n− 1)γ)Q, Q > 0. (12)

Observe that fn(Q) is strictly decreasing in Q for all n. For a fixed n ∈ {1, . . . , N}, there is a
unique Q?,n such that fn(Q?,n) = S(n), which is given by

Q?,n =
nα− S(n)

2β + (n− 1)γ
. (13)

For each n, we have the following n-player candidate equilibrium:

q?,ni =

{
P̄ (Q?,n)−si

2β−γ for 1 ≤ i ≤ n,
0 for n+ 1 ≤ i ≤ N,

(14)

where Q?,n is given in Equation (13). We denote the corresponding prices by p?,ni using System
(2). In order to determine which of the candidate equilibria is the true equilibrium of the game,
we first compute, for a given firm, the net revenue per unit as

p?,ni − si =
β

2β − γ
(
P̄ (Q?,n)− si

)
. (15)

The following lemma then follows directly from Equations (14) and (15).

Lemma 3.1. q?,ni < 0 if and only if p?,ni < si.

A given candidate equilibrium can fail to be a Nash equilibrium of the game if

(i) q?,ni < 0 for some 1 ≤ i ≤ n, or

(ii) si < pi
(
q?,n1 , . . . , q?,nn , 0, . . . , 0

)
for some n+ 1 ≤ i ≤ N .

8



Case (i) holds if and only if si > P̄ (Q?,n). So the effective market price is too low for this player
and they would be better off not producing at all. Thus, we should look for a Nash equilibrium
with a smaller number of active players. We provide the following lemma before discussing the
second case.

Lemma 3.2. sn < pn

(
q?,n−1

1 , . . . , q?,n−1
n−1 , 0, . . . , 0

)
if and only if sn < P̄ (Q?,n−1). In other words,

Firm n wishes to participate in the (n− 1)-firm equilibrium if and only if sn < P̄ (Q?,n−1).

Proof. The result follows from the equivalence

pn

(
q?,n−1

1 , . . . , q?,n−1
n−1 , 0, . . . , 0

)
= α− β(0)− γ

n−1∑
j=1

q?,n−1
j = α− γQ?,n−1 = P̄ (Q?,n−1).

�

Case (ii) means that some firm i ∈ {n + 1, . . . , N} could produce a strictly positive quantity and
would receive a price strictly above cost from the market and therefore make a positive profit.
Lemma 3.2 shows that this case occurs if and only if si < P̄ (Q?,n). In this case we should look for
a Nash equilibrium with a larger number of active players.

The procedure for determining the equilibrium is to start with the one firm equilibrium that consists
of the lowest cost firm producing as a monopoly. We then consider whether Firm 2 wishes to
participate. That is, we check if Case (ii) holds with i = 2. If so, we ask if both wish to participate
in the two-player candidate equilibrium. We continue in this manner until we run out of firms to
add or additional firms do not wish to enter. This construction has similarities to the equilibrium
constructions found in [4] and [11], in that there is a cutoff point below which firms produce and
above which firms are costed out. We must, however, take care that this procedure terminates and
that this is sufficient to determine a unique Nash equilibrium. We establish in the following lemma
the necessary inductive step.

Lemma 3.3. Fix some n < N . We have n and (n + 1)-player candidate equilibria with total
production quantities Q?,n and Q?,n+1, respectively, and the individual firm production quantities
given by Equation (14) with the corresponding Q?. Then, Firm n+ 1 will want to be active in the
n-firm equilibrium if and only if they want to be active in the (n+ 1)-firm equilibrium.

Proof. From Lemma 3.2 Firm n + 1 wants to be active in the n-firm equilibrium if and only if
sn+1 < P̄ (Q?,n). Recall the definition of Q?,n as the unique Q which satisfies fn(Q?,n) = S(n),
where the fn are defined in Equation (12) and are strictly decreasing for Q > 0. One can show for
1 ≤ n < N that fn+1(Q?,n) = S(n) + P̄ (Q?,n), and therefore

fn+1(Q?,n+1)− fn+1(Q?,n) = sn+1 − P̄ (Q?,n). (16)

In a similar manner, one can show fn(Q?,n+1) = S(n+1) − P̄ (Q?,n+1), and hence

fn(Q?,n+1)− fn(Q?,n) = sn+1 − P̄ (Q?,n+1). (17)
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We then find

sn+1 < P̄ (Q?,n) ⇐⇒ fn+1(Q?,n+1) < fn+1(Q?,n) from Equation (16),
⇐⇒ Q?,n+1 > Q?,n as fn+1 is decreasing,
⇐⇒ fn(Q?,n+1) < fn(Q?,n) as fn is decreasing,
⇐⇒ sn+1 < P̄ (Q?,n+1) from Equation (17),

from which the conclusion follows. �

Corollary 3.1. The total candidate equilibrium quantity is strictly increasing from n firms to (n+1)
firms if and only if Firm (n+ 1) is active in the (n+ 1)-firm candidate equilibrium.

Proof. The corollary states: Q?,n+1 > Q?,n if and only if q?,n+1
n+1 > 0. The conclusion follows from

the proof of Lemma 3.3 as we have sn+1 < P̄ (Q?,n)⇐⇒ Q?,n+1 > Q?,n, and the lemma itself gives
that this is equivalent to Firm n+ 1 being active in the (n+ 1)-firm candidate equilibrium. �

Proposition 3.1. There exists a unique Nash equilibrium to the differentiated Cournot game. The
unique equilibrium quantities are given by

q? =
(
q?,n

?

1 , . . . , q?,n
?

n? , 0, . . . , 0
)
,

where q?,ni is given in Equation (14) and n? is the number of active firms in equilibrium which is
given by

n? = min
{
n ∈ {1, . . . , N} : Q?,n = Q̄?

}
,

with Q̄? = max {Q?,n : 1 ≤ n ≤ N}.

Proof. We know by assumption that Firm 1 will participate in the one-firm candidate equilibrium
as s1 < α. Hence Q?,1 > 0. Suppose that for some n < N we have a candidate Nash equilibrium
in which the first n firms are active. If sn+1 < P̄ (Q?,n), or equivalently if Q?,n+1 > Q?,n, then
from Lemma 3.3, Firm n+ 1 wishes to enter, and by the same lemma, they will participate in the
(n + 1)-firm equilibrium. Furthermore, as all the other n firms have costs lower than or equal to
Firm n + 1, they will also be active in the (n + 1)-firm equilibrium. Therefore, every candidate
equilibrium with n or fewer players cannot be a true equilibrium due to entry. We can proceed
adding players until either no further players wish to enter or there are no further players. We have
uniqueness by construction.

The explicit characterization of n?, the number of active firms in equilibrium, comes from the fact
that Q?,n is strictly increasing in n as firms enter. At some point, we may have Q?,n = Q?,(n−1)

if a firm is exactly indifferent between entering and not entering, i.e. q?,nn = 0. Such a firm is
not considered active in the equilibrium. It may stay flat for a range of n if there is a range of
firms with identical costs all of which are indifferent between entering and not entering. Then, the
sequence will be decreasing. Thus, n? will be given by the first n where Q?,n attains its maximum
Q̄?. In other words, n? = min

{
n ∈ {1, . . . , N} : Q?,n = Q̄?

}
. �

We illustrate the behavior of Q?,n in Figure 1. In this example, the number of active firms in
equilibrium, n?, is 5, while N = 9. This figure was generated with α = 1, β = 0.5, γ = 0.2. We
also set the vector of costs to s = (0.25, 0.27, 0.35, 0.6, 0.6, 0.674̄, 0.674̄, 0.72, 0.85). Firms 4 and 5
have equal cost and as Q?,5 > Q?,4, we know that both are active in equilibrium. We also note that
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Firms 6 and 7 have equal cost, greater than the cost of Firm 5, and are exactly indifferent between
entering and not entering. We see this as Q?,5 = Q?,6 = Q?,7. The shape of the curve appears
to always be concave, although we have not explored whether this holds in general. The main
important feature to note is that the curve is strictly increasing up to n? and flat or decreasing
after n?.

1 2 3 4 5 6 7 8 9
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Firm number

Q
*,n

n*

max Q*,n

Figure 1: Illustrative behavior of Q?,n and the number of active firms in equilibrium.

3.2 Differentiated Bertrand Competition

The profit function that the firms seek to maximize is again given in Equation (7), where the firms
now choose pi and quantities are given by qi(p) in System (3). In addition, here we assume that if
a firm receives zero demand in equilibrium, they set price equal to cost. The method of solution
for this model is quite similar on the surface to the differentiated Cournot model. We can solve for
the firms’ best-response functions and obtain candidate Nash equilibria from their intersection.

The reason for considering different candidate equilibria is that, again, in the game with heteroge-
neous costs, the candidate equilibrium with all N firms may result in negative demands for some
firms. We must thus consider subgames which, for n = 1, . . . , N , involve only the first n players.
Let p?,n =

(
p?,n1 , . . . , p?,nn , sn+1, . . . , sN ), where the first n components solve the Nash equilibrium

problem with profit functions as described above, and with N replaced by n in the coefficients of
the demand functions qi(p) given in System (3). These are given explicitly in Equation (18).

Let p? denote the vector of prices in equilibrium. It is shown in [19] that the Nash Equilibrium of
the Bertrand game will be one of three types:

〈I〉 All N firms price above cost. In this case, p?i > si for all i = 1, . . . , N , and the Nash
equilibrium is simply the N -player interior Nash equilibrium given by p? =

(
p?,N1 , . . . , p?,NN

)
,

where the p?,Ni are as defined above.
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〈II〉 For some 0 ≤ n < N , firms 1, . . . , n price strictly above cost and the remaining firms set price
equal to cost. In other words, p?i > si for i = 1, . . . , n, and pj = sj for j + 1, . . . , N . The first
n firms play the interior n-player sub-game equilibrium as if firms n+ 1, . . . , N did not exist.
These firms are completely ignorable because their costs are too high. The high cost firms
receive zero demand and have prices fixed at cost by our definition of Nash equilibrium. The
Nash equilibrium is p? =

(
p?,n1 , . . . , p?,nn , sn+1, . . . , sN

)
.

〈III〉 For some (k, n) such that 0 ≤ k < n ≤ N , firms 1, . . . , k price strictly above cost (if k = 0
then no firms price strictly above cost), and the remaining firms set price equal to cost. In
other words, p?i > si for i = 1, . . . , k and p?j = sj for j = k + 1, . . . , N .

Type 〈III〉 differs from Type 〈II〉 in that firms k + 1, . . . , n are not ignorable: their presence is felt
in the pricing decisions of firms 1, . . . , k, and we say that firms k + 1, . . . , n are on the boundary.
Similar to Type 〈II〉, firms n+ 1, . . . , N are still completely ignorable. If firms 1, . . . , k ignore firms
k+1, . . . , n and set k-player Nash equilibrium prices, then the latter firms will set a price above cost
which contradicts their being ignored. On the other hand, if we consider firms k+1, . . . , n to be fully
active in equilibrium, then their optimal prices in the n-player Nash candidate equilibrium would
not be above their costs. Therefore, there is the Type 〈III〉 equilibrium where firms k + 1, . . . , n
are not active in the equilibrium, but firms 1, . . . , k set prices that take the presence of the former
firms into consideration.

Only an equilibrium of Type 〈I〉 or Type 〈II〉 is possible in the Cournot game. There we had Lemma
3.2 which resolved the fact that a firm whose quantity is negative in a candidate equilibrium does
not wish to enter the game with a positive quantity if the remaining firms ignore this firm and play
the candidate Nash equilibrium with one less player. However, in the Bertrand game, such a result
does not hold. The unique Nash equilibrium is given explicitly in the following.

Proposition 3.2 (Prop 2.6 in [19]). There exists a unique equilibrium to the Bertrand game with
linear demand. The type 〈I〉 and 〈II〉 candidate solutions are given by

p?,ni =
1

(2bn + cn)

[
an + cn

nan + bn
∑n

m=1 sm
(2bn − (n− 1)cn)

+ bnsi

]
. (18)

The type 〈III〉 candidate solutions are given by

pb,n+1,n+1−k
i =

1
(2bn+1 + cn+1)

[(
an+1 + cn+1

n+1∑
m=k+1

sm

)

+cn+1

n
(
an+1 + cn+1

∑n+1
m=k+1 sm

)
+ bn+1

∑k
m=1 sm

2bn+1 − (k − 1)cn+1

+ bn+1si

 ,
where the superscript (b, n + 1, n + 1 − k) stands for boundary, (n + 1) firms entering into the
demand function, and n+ 1− k firms on the boundary, i.e. not ignorable. The Nash equilibrium is
constructed as follows:

• If s1 >
a1
b1

, then p? = (s1, . . . , sN ). (Type 〈II〉 with n = N).

• Else, find n < N such that p?,ni > si, ∀i = 1, . . . , n, and p?,n+1
n+1 ≤ sn+1.

12



– If sn+1 ≥ b−1
n+1

(
an+1 + cn+1

∑n
i=1 p

?,n
i

)
, then p? =

(
p?,n1 , . . . , p?,nn , sn+1, . . . , sN

)
, (Type

〈II〉 with n < N),

– Else,

◦ if pb,n+1,1
n > sn, then p? =

(
pb,n+1,1

1 , . . . , pb,n+1,1
n , sn+1, . . . , sN

)
, (Type 〈III〉),

◦ else, find k < n such that

pb,n+1,n+1−k
i > si for all i = 1, . . . , k, and p

b,n+1,n+1−(k+1)
k+1 < sk+1.

Then p? =
(
pb,n+1,n+1−k

1 , . . . , pb,n+1,n+1−k
k , sk+1, . . . , sN

)
. (Type 〈III〉).

The Nash equilibria for the homogeneous Cournot and Bertrand games are given in the Appendix.

4 How many firms are active?

In this section we consider the question of whether a firm is active or inactive in equilibrium. The
main result of this section is an ordering of the number of active firms in equilibrium across the
four different types of games. Following the analytic result, we provide numerical examples to
demonstrate the various prospective outcomes.

4.1 The General Case: N-Firm Games

Fix the total number of firms N , the parameters α, β, and γ, and the vector of costs s = (s1, . . . , sN )
such that 0 < s1 ≤ s2 ≤ · · · ≤ sN < α.

We shall denote by n?Bh, n?Bd, n
?
Ch, n?Cd, the number of active firms in equilibrium in the homoge-

neous Bertrand game, differentiated Bertrand game, homogeneous Cournot game and differentiated
Cournot game, respectively. The purpose of this section is to show specifically how these numbers
relate to one another. This will be shown in Theorem 4.1, but first we establish three helpful
lemmas. In the process we shall need the quantity θn = (β − γ)

(
2β+(n−1)γ
β+(n−2)γ

)
.

Recall the fact that in both Cournot type games, a firm is active in equilibrium, if and only if the
total equilibrium supply strictly increases when this firm enters the market. In the homogeneous
Cournot game, this amounts to the fact that Firm n is active if and only if Q?,nH > Q?,n−1

H . In
the differentiated Cournot game, the condition is Q?,n > Q?,n−1 if and only if Firm n is active
in equilibrium. We characterize these conditions in terms of the cost of the firms in the following
lemma.

Lemma 4.1. In the homogeneous Cournot game, we have

Q?,nH > Q?,n−1
H ⇐⇒ sn <

α+ S(n−1)

n
.

In the differentiated Cournot game, we have

Q?,n > Q?,n−1 ⇐⇒ sn <
α(2β − γ) + γS(n−1)

(2β − γ) + (n− 1)γ
.
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Proof. For the homogeneous case, the definition of Q?,nH is given in Equation (58) in Appendix A.
Then the result follows by writing down Q?,nH −Q

?,n−1
H and rearranging. The differentiated case can

be found in Corollary 3.1, where we note that sn < P̄ (Q?,n) is equivalent to the given condition. �

Lemma 4.2. The following expression is increasing in h

αh+ γS(n−1)

h+ (n− 1)γ
,

provided the denominator is not zero.

Proof. Take a derivative with resect to h to obtain

∂

∂h

[
αh+ γS(n−1)

h+ (n− 1)γ

]
=

1
(h+ (n− 1)γ)2

(
αγ(n− 1)− γS(n−1)

)
.

As γ is strictly positive, we find that this expression is strictly positive provided (n−1)α > S(n−1).
This is clearly true based on the assumption that si < α for all i. �

Lemma 4.3. (2β − γ) > θn for all n > 1.

Proof.

2β − γ − θn = 2β − γ − (β − γ)
(

2β + (n− 1)γ
β + (n− 2)γ

)
= γ

(
(n− 2)β + γ

β + (n− 2)γ

)
. (19)

Obviously the Expression (19) is positive for n > 1. �

Theorem 4.1. n?Bh ≤ n?Ch ≤ n?Cd. Further, n?Bd ≤ n?Cd. Finally, n?Ch ≥ n?Bd if θn?
Ch
< γ.

Proof. n?Bh ≤ n?Ch:

First, we note that n?Bh = # {k : sk = mini si}. Thus, this is equal to one unless we have for some
j, 0 < s1 = · · · = sj < sj+1 ≤ sj+2 ≤ · · · ≤ sN . In such a case, we would have n?Bh = j. Our
assumption s1 < α implies that Q?,1H > 0. Furthermore, with the above specification for the costs,
simple algebra shows

Q?,jH = 2
(

j

j + 1

)
Q?,1H .

Moreover, 2
(

j
j+1

)
> 1 if and only if j > 1. Hence, Q?,jH > Q?,1H for all j > 1. Therefore at least all

firms with cost equal to the lowest cost firm are active in the homogeneous Cournot equilibrium.
In this case, this means n?Ch ≥ j. Therefore, n?Bh ≤ n?Ch.

n?Ch ≤ n?Cd:

Lemma 4.1 specifies that firm n participates in the homogeneous Cournot equilibrium if

sn <
α+ S(n−1)

n
=
αγ + γS(n−1)

γ + (n− 1)γ
, (20)
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and this firm participates in the differentiated Cournot equilibrium if

sn <
α(2β − γ) + S(n−1)

2β + (n− 2)γ
.

Using Lemma 4.2, we have

α(2β − γ) + S(n−1)

(2β − γ) + (n− 1)γ
>
αγ + γS(n−1)

γ + (n− 1)γ
, (21)

because (2β − γ) > γ. Hence, if Firm n is active in the homogeneous Cournot equilibrium, i.e. if
their cost is low enough, then the firm is also active in the differentiated Cournot equilibrium by
Expression (21). Therefore, n?Ch ≤ n?Cd.

n?Bd ≤ n?Cd:

The differentiated Bertrand equilibrium can be of three types. In Type 〈I〉, we have that all
firms price above cost according to their interior candidate equilibrium prices p?,Ni . The condition
p?,NN > sN is necessary and sufficient for this equilibrium to hold. This condition on sN is equivalent
to

sN <
αθN + γS(N−1)

θN + (N − 1)γ
.

Using Lemmas 4.2 and 4.3, we find that

αθN + γS(N−1)

θN + (N − 1)γ
<

α(2β − γ) + S(N−1)

(2β − γ) + (N − 1)γ
. (22)

This implies that if there is a Type 〈I〉 equilibrium in the differentiated Bertrand game, i.e. n?Bd =
N , then we also have n?Cd = N .

If we a priori know that we have an equilibrium of Type 〈II〉, then we know that Firm n is active
in the differentiated Bertrand equilibrium if

sn <
αθn + γS(n−1)

θn + (n− 1)γ
, (23)

and the firm is active in the differentiated Cournot equilibrium if

sn <
α(2β − γ) + S(n−1)

(2β − γ) + (n− 1)γ
. (24)

Again using Lemmas 4.2 and 4.3, we find the same inequality as in Expression (22) with N replaced
by n. Hence, a firm being active in the Type 〈II〉 differentiated Bertand equilibrium implies the
firm is active in the differentiated Cournot equilibrium. So for a Type 〈II〉 equilibrium, we have
n?Bd ≤ n?Cd.

Finally, the situation of a Type 〈III〉 equilibrium could arise. However, this serves only to decrease
the number of active firms in the market from the maximum number of firms that could be sustained
in a Type 〈II〉 equilibrium. That is, a Type 〈III〉 equilibrium starts with a Type 〈II〉 equilibrium
and then possibly removes some firms from being active. Therefore, in all cases we have n?Bd ≤ n?Cd.

n?Ch vs n
?
Bd:
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Let us ignore for now the case of a Type 〈III〉 equilibrium in the differentiated Bertrand game. We
have established the conditions on sn for a firm to be active in the two types of equilibria. First, in
the homogeneous Cournot case we have the condition given in Expression (20). Second, in a Type
〈I〉 or Type 〈II〉 equilibrium in the differentiated Bertrand game, we have the condition given in
Expression (23). We find by Lemma 4.2 that Firm n being active in the differentiated Bertrand
game implies the firm is active in the homogeneous Cournot game if θn?

Ch
< γ. Therefore, this

implies n?Bd ≤ n?Ch. This result continues to hold for a Type 〈III〉 equilibrium as again such an
equilibrium only serves to reduce n?Bd. �

Remark 4.1. If θn?
Bd

> γ then the relative size of the conditions on cost reverses and therefore
one expects n?Ch ≤ n?Bd to hold. However, this does not account for the possibility of a Type 〈III〉
equilibrium. The number of active firms in a Type 〈III〉 equilibrium is highly sensitive to the costs
and it is quite difficult to ascertain what occurs in this case. However, Type 〈III〉 equilibria are
rare in the sense that they only occur for very special specifications of the costs. Therefore, in most
situations, one should have n?Ch ≤ n?Bd if θn?

Bd
> γ.

Remark 4.2. The condition θn > γ essentially boils down to γ being small enough relative to β.
In fact, one can show that θn−γ = (2β+nγ)(β−2γ) + 3γ2. Thus, a sufficient condition for this to
be positive is β > 2γ. Moreover, what happens as γ approaches β is that the homogeneous Cournot
and the differentiated Cournot approach one another, and similarly with the two Bertrand models.
However, as the homogeneous Bertrand model always has only one active firm in the market (when
there is a unique low cost firm) and the differentiated Cournot model has the most active, we find
that the differentiated Bertrand and homogeneous Cournot have to cross over at some point to
account for this lack of differentiation among the goods. Thus, informally, one can claim that for
sufficiently differentiated products we have: n?Bh ≤ n?Ch ≤ n?Bd ≤ n?Cd.

Remark 4.3. If we let γ = 0, then the differentiated Bertrand and Cournot models coincide in
terms of the number of active firms. This can be seen from Expressions (23) and (24), as setting
γ = 0 causes θn = 2β and the conditions on cost for a firm to be active in equilibrium in the two
cases then coincide. Also, based on the assumption that si < α for all i, we will have all firms
active in the equilibrium that results with γ = 0. This is all fairly obvious but at least worthwhile
to note as the behavior of the number of active firms in equilibrium depends highly on γ and there
is no difference between differentiated Bertrand and Cournot when goods are independent.

4.2 Numerical Examples

Fix s = (0.25, 0.27, 0.35, 0.4, 0.5), α = 1 and β = 0.5. We then consider the addition of another firm
to the market with cost s6 varying from 0.001 to 0.999. We consider three different possible values
of γ, a low, base and high case. The low and high cases for the four different oligopoly models are
displayed in Figure 2 (a) and (b). The results for the base case of γ = 0.3 are displayed in Figure
3.

In the high case, we see that increasing γ this much towards β causes the number of active firms in
the differentiated Bertrand market to be less than that of the homogeneous Cournot market. We
also see that the homogeneous and differentiated Cournot markets have similar numbers of active
firms, coinciding over a large region of the cost of the additional firm, contrary to the result in
Figure 3 where they are completely separated over the whole space of costs.
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(a) Low, γ = 0.1
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(b) High, γ = 0.45

Figure 2: Number of Active Firms - 6 firm example
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Figure 3: Number of Active Firms - 6 firm example, γ = 0.3

In the low case representing the other extreme point of view where we move γ towards zero, we
see that the number of firms in the differentiated Bertrand and Cournot models (the top two lines
in the figure which are on top of one another except between 0.7 and 0.8) are almost identical,
with Cournot having more firms over a small region of the space of costs. We also see that the
homogeneous Cournot is completely separated from the three other models of oligopoly.

Another point of view from which we can study the behavior of the effect of the degree of product
differentiation on the market equilibrium is to plot the number of active firms in the four different
market types versus the ratio γ/β. We fix the total possible number of firms at 40, we set α = 1,
and finally we fix β = 0.5. We then vary γ so that γ/β ranges from 0 to 1.

First, we set s1 = 0.1 and s40 = 0.99, and specify the costs of the intermediate firms to be linearly
increasing from s1 to s40 so that the difference between the costs of adjacent firms is constant. We
display this in Figure 4 (a).

Next, we put firms into 5 groups so that there are 8 firms with equally spaced costs within each
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group, the costs varying from lowest to highest by 0.005, then with a gap of 0.18 between groups.
For example, the first group has s1 = 0.1, s2 = 0.105, s3 = 0.110, . . . , s8 = 0.135; then s9 = 0.315.
We continue in this manner until we get to s40 = 0.995. We display the results with this cost
structure in Figure 4 (b).
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(a) Evenly spaced costs
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(b) Five different cost clusters

Figure 4: Number of Active Firms - 40 firm example

One can clearly see from both figures that the number of active firms in equilibrium is decreasing in
the degree of product differentiation. That is, with γ/β = 0, meaning independent goods, we have
the maximum number of active firms, and with γ/β = 1, meaning homogeneous goods, we have the
minimum number of active firms. We can see the point where the differentiated Bertrand crosses
over the homogeneous Cournot is at a high degree of product differentiation, thereby supporting
our previous remark that for low values of γ/β we expect n?Bh ≤ n?Ch ≤ n?Bd ≤ n?Cd. Comparing the
two figures, we see that with a nice linearly interpolated cost structure we get relatively smooth
behavior of the number of active firm curves. However, with clustered costs, we can see that
essentially each cluster is either wholly in or wholly out. This leads to the large flat regions of
space with no change in structure, along with sudden large drops in the number of firms.

In a realistic dynamic situation as market conditions change, the number of active firms in equi-
librium will vary over time. We illustrate this issue in a dynamic homogeneous Cournot model of
energy production in the following section.

5 A Dynamic Game With Asymmetric Costs

Consider an energy market with one oil producer with exhaustible reserves and cost of production
equal to zero. There are also N − 1 producers of energy using alternative, costly but inexhaustible
technologies such as solar or wind. These firms are identified and ordered by their unit costs of
production, si, such that 0 ≤ s1 ≤ s2 ≤ · · · ≤ sN−1 < 1, and we recall the notation S(k) =

∑k
j=1 sj .
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The oil producer (Player 0) has reserves x(t) at time t, with the dynamics

dx

dt
= −q̄0(x(t))1{x(t)>0}, (25)

where q̄0(x(t)) is his production rate. When his reserves run out, he no longer participates in
the market. Let q̄i(x(t)), i = 1, . . . , N − 1 be the production rates of the alternative technology
producers. Then, the price of energy in a homogeneous Cournot market is given by

P (t) = 1− q̄0(x(t))−
N−1∑
i=1

q̄i(x(t)), (26)

where in the notation of Section A.1 we have taken α = β = 1.

In the static Cournot oligopoly game, the Nash equilibrium q?i (s0, s) as a function of the costs s0 for
Player 0 and the vector s = (s1, . . . , sN−1) for the others was given in Proposition A.1. We denote
by Gi(s0, s), i = 0, . . . , N−1, the static game equilibrium profit, and in fact Gi(s0, s) = (q?i (s0, s))2.

The firms are maximizing lifetime profit, and once the oil producer runs out of oil, and goes out of
business, the remaining firms with their inexhaustible resources repeatedly play a static game with
profit flow Gi(1, s) over an infinite time horizon. The first argument in Gi is set to the choke price,
1, which means that Player 0 no longer participates, and it is an N − 1 player game. Given initial
oil reserves x(0) = x, the value functions, v0(x) for Player 0 and wi for Players i = 1, . . . , N − 1 are

v0(x) = sup
q̄0

∫ ∞
0

e−rtq̄0(x(t))

1− q̄0(x(t))−
N−1∑
j=1

q̄j(x(t))

1{x(t)>0}dt,

wi(x) = sup
q̄i

∫ ∞
0

e−rtq̄i(x(t))

1− q̄0(x(t))−
N−1∑
j=1

q̄j(x(t))− si

1{x(t)>0}dt+
1
r
Gi(1, s),

with v0(0) = 0 and wi(0) = Gi(1, s)/r. The case N = 2 was studied in [13] (except there, the
oil producer became a renewable energy producer with the same cost s1 upon exhaustion). Here
we analyze the case of a genuine N -player oligopoly. See also [20] for the two-player game with
exploration; and [12] for a related problem in the context of mean-field games.

We look for a Markov Perfect Nash equilibrium q̄?i (x(t)), for i = 0, . . . , N − 1. The associated
Hamilton-Jacobi equation for v0 is given by

rv0 = G0(v′0, s), v0(0) = 0. (27)

Here s0 = v′0(x) is the shadow cost encoding the scarcity value for the oil producer when his reserves
are at level x. The equilibrium production rates in the dynamic game are given by

q̄?i (x(t)) = q?i (v
′
0(x(t)), s), i = 0, . . . , N − 1.

As these are determined by the value function v0, we will not study the other players’ value functions
wi.
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5.1 Blockading Points

When oil is plentiful, that is, x is large, we expect the cost of energy production from alternative
technologies to be too cost prohibitive to compete with the oil producer, and so he is the only
active player. This is because the oil producer’s scarcity cost v′0(x) → 0 as x → ∞, and so, when
reserves are large, it is small compared to the cost of the alternative technologies. At the other
extreme, when x is small, we expect all N producers to be active because the scarcity cost rises as
reserves fall. Therefore, as reserves decline, we will go from monopoly, through duopoly to the full
oligopoly with N players. The reserve level at which Player n enters is denoted xnb . Similarly, the
time at which Player n enters is denoted by tnb . We illustrate this intuition in Figure 5.

-· · ·
0

Reserves
All Active

xN−1
b xN−2

b x2
b

Duopoly

x1
b

Oil Monopoly

# Active N N − 1 N − 2 3 2 1

� · · ·
0

Time
tN−1
b tN−2

b t2b t1b

Figure 5: Blockading intuition

In other words, we expect for x ∈ (0, xN−1
b ) that there are N active firms in the sense that they all

produce a positive quantity. For x ∈ (xnb , x
n−1
b ), there are n active firms and N−n inactive firms in

the sense that in equilibrium they produce a zero quantity over this range of reserves. As reserves
decline, xnb denotes the point at which Firm n begins production and enters the market. Or, coming
from the left, xnb is the level of reserves above which Firm n is blockaded from the market. We shall
see that the blockading points xnb depend on the costs of the alternative technologies, and in fact, if
these costs are small enough, it is possible to have xnb =∞ for some values of n. We first introduce
the notation

ρn =
1 + S(n−1)

n
.

Assumption 5.1. The vector of costs s is such that sN−1 < ρN−1.

This is the condition from Lemma 4.1 that implies that Firm N − 1 is active in the equilibrium
at x = 0. Furthermore, it is clear that, as Firm N − 1 has the highest cost, all N − 1 alternative
technology firms will be active in the equilibrium at x = 0. In fact as we assume for the N−1-player
game that is played repeatedly after oil runs out is such that n? = N − 1, then Proposition A.1
tells us that the sequence {Q?,nH } is strictly increasing and so, from Lemma 4.1, we have

sn < ρn, for all n = 1, . . . , N − 1. (28)
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5.2 Low Oil Reserves: All Firms Active

For x(t) small enough, as we have stated above, all firms will be active in the sense that q̄?i (x(t)) > 0
for all i = 0, . . . , N − 1. The blockading point xN−1

b is defined by

xN−1
b = inf{x > 0 : q̄?N−1(x) = 0}. (29)

We define v(N)(x) = v0(x) for x ∈ (0, xN−1
b ) where there are a total of N active firms. Then we

have the following explicit formulas for v(N) and the equilibrium production rates.

Proposition 5.1. For x ∈ (0, xN−1
b ), Player 0’s value function is given by

v(N)(x) =
1
r

(
1 + S(N−1)

N + 1

)2

(1 + W (θ(x)))2 , (30)

with

θ(x) = −e−µNx−1 and µN =
2r
ρN

(
1
2

+
1

2N

)2

,

and where W (·) is the Lambert W function defined as the inverse function of xex, restricted to the
range [−1,∞) and the domain [−e−1,∞). Moreover,

q̄?0(x(t)) =
1

(N + 1)

(
1−Nv(N)′(x(t)) + S(N−1)

)
, (31)

q̄?i (x(t)) =
1

(N + 1)

(
1− (N + 1)si + v(N)′(x(t)) + S(N−1)

)
, i = 1, . . . , N − 1, (32)

where v(N)′(x) = −ρNW (θ(x)).

The following lemma will be used in the proof.

Lemma 5.1. The ODE (α− v′)2 = κv on {x > 0}, with v(0) = v0 ≥ 0, α, κ > 0, has the solution

v(x) =
α2

κ
(1 + W (θ(x)))2 , (33)

where
θ(x) = βeβe−κx/2α and β = −1 +

√
κv0

α
. (34)

Proof. This follows by direct substitution of Expression (33) into the ODE and the fact that
W′(z) = W (z) /(z(1 + W (z))). �

Proof of Prop. 5.1. From Proposition A.1, the Nash equilibrium for the static game with N active
players with costs (s0, s) is given by

q?i (s0, s) =
1

N + 1

1−Nsi +
N−1∑

j=0,j 6=i
sj

 , i = 0, . . . , N − 1. (35)
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The ODE (27) in the interval x ∈ (0, xN−1
b ) becomes

rv(N) =
1

(N + 1)2

(
1 + S(N−1) −Nv(N)′

)2
,

for which we can use Lemma 5.1 to give Expression (30). The equilibrium policies in Equation (32)
follow from Expression (35) with s0 = v(N)′(x). �

Next we find the blockading point xN−1
b , the point at which Firm N − 1 would no longer wish to

produce a positive quantity, and therefore would no longer be active. To simplify the remainder of
the results, we first introduce the notation, for n = 1, . . . , N − 1,

δn = (n+ 1)sn − (1 + S(n−1)). (36)

Proposition 5.2. The last blockading point is given by:

xN−1
b =

1
µN

[
−1 +

δN−1

ρN
− log

(
δN−1

ρN

)]
, (37)

provided δN−1 > 0, otherwise xN−1
b =∞.

The following lemma is useful for the calculation.

Lemma 5.2. For a given constant H < 0, the solution to W (θ(x)) = H, where θ(x) is as in
Equation (34), is given by

x =
2α
κ

(
β −H − log

(
H

β

))
. (38)

Proof. By definition, W (Y ) = H if and only if HeH = Y . Moreover, θ(x) = z if and only if
x = 2α

κ (β − log(z/β)). Hence, W (θ(x)) = H if and only if θ(x) = HeH , which results in Equation
(38). �

Proof of Prop. 5.2. From the definition (29), we solve for x such that q̄?N−1(x) = 0. From Expres-
sion (32), the necessary equation to solve is

W
(
θ(xN−1

b )
)

= −δN−1

ρN
, (39)

and Equation (37) follows from Lemma 5.2. �

5.3 Higher Reserve Levels: some firms blockaded

We denote by v(n)(x − xnb ) the value function of the oil producer when there are n total active
firms. To this end, we define v(n)(x−xnb ) = v0(x) for x ∈ [xnb , x

n−1
b ], where we have included in the

domain the end points of transition in the number of players. From our characterization of xN−1
b

in Equation (39), we have

v(N−1)(0) = v(N)(xN−1
b ) =

1
r

(sN−1 − δN−1)2 . (40)
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Proposition 5.3. Suppose that for n ∈ {2, . . . , N − 1}, xnb <∞. If δn−1 > 0, then

xn−1
b = xnb +

1
µn

[
log
(

δn
δn−1

)
− (n+ 1) (sn − sn−1)

ρn

]
, (41)

otherwise xn−1
b =∞. For x ∈ [xnb , x

n−1
b ),

v(n)(x− xnb ) =
1
r

(
1 + S(n−1)

n+ 1

)2

(1 + W (θ(x− xnb )))2 , (42)

where

θ(x− xnb ) = − δn
ρn
e−µn(x−xn

b )−δn/ρn and µn =
2r
ρn

(
1
2

+
1

2n

)2

.

Proof. First, suppose

v(n+1)(xnb − xn+1
b ) =

1
r

(sn − δn)2 , (43)

(where for n = N − 1, we identify xNb = 0), and suppose δn > 0. Then, for x ∈ (xnb , x
n−1
b ), the

ODE (27) becomes

rv(n)(x− xnb ) =
1

(n+ 1)2

(
1 + S(n−1) − nv(n)′(x− xnb )

)2
. (44)

Solving Equation (44) with the boundary condition v(n)(0) = v(n+1)(xnb −x
n+1
b ), given in Equation

(43), and using Lemma 5.1, gives Equation (42).

The equation that specifies the blockading point xn−1
b is

q̄?n−1(xn−1
b ) =

1
n+ 1

(
1− (n+ 1)sn−1 + v(n)′(xn−1

b − xnb ) + S(n−1)
)

= 0.

Using Equation (42) in the ODE (44) gives

v(n)′(x− xnb ) = −ρnW (θ(x− xnb )) ,

which leads to solving

W
(
θ(xn−1

b − xnb )
)

= −δn−1

ρn
. (45)

From Lemma 5.2, there is a unique, real solution given by Equation (41) if and only if δn−1 > 0. If
this latter condition does not hold, then xn−1

b =∞.

Substituting from Equation (45) into Equation (42), we compute

v(n)(xn−1
b − xnb ) =

1
r

(sn−1 − δn−1)2 , (46)

which is identical to Equation (43) with n replaced by n− 1.

Finally, with n = N − 1, we see from Equation (40) that Equation (43) is satisfied, and from
Proposition 5.2, xN−1

b < ∞ if and only if δN−1 > 0. Therefore, from Equation (46), Equation
(43) holds for n = N − 2; and from the above, δn > 0 holds for n = N − 2, and we complete by
induction. �
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The proposition shows that xn−1
b < ∞ if and only if xnb < ∞ and sn−1 > (1 + S(n−2))/n. That

is, Player n − 1 will be blockaded for large enough x, if his cost is high relative to his lower cost
competitors’.

Remark 5.1. Note that, combining the results of the prior proposition with Equation (28), the
interesting range of costs where there is a full N−1 active player oligopoly at x = 0 and a monopoly
for the oil producer for x large enough is

1 + S(n−1)

n+ 1
< sn <

1 + S(n−1)

n
, for all n = 1, . . . , N − 1, (47)

or using the definition in Equation (36),

0 < δn < sn, for all n = 1, . . . , N − 1. (48)

Remark 5.2. The associated Hamilton-Jacobi equation for wi is given by

rwi = −q̄?0w′i +Gi(v′0, s), wi(0) = Gi(1, s)/r.

It is possible to solve for these functions explicitly. However, the strategies of the firms depend
only on x through v0, and therefore these functions are not necessary for the analysis of the game.
We illustrate the methodology for x ∈ (0, xN−1

b ).

For i = 1, . . . , N − 1 and x ∈ (0, xN−1
b ), the ODE to solve is

rwi = − 1
(N + 1)

(
1−Nv(N)′ + S(N−1)

)
w′i +

1
(N + 1)2

(
1− (N + 1)si + v(N)′ + S(N−1)

)2
. (49)

We make the change of variable ξ = v(N)′(x), and set wi(x) = f(ξ). Using Equation (49) and
properties of v(N), we find

f ′i −
(

2N
N + 1

)
1
ξ
fi = − 2N

(N + 1)3rξ

(
ξ − (N + 1)si + 1 + S(N−1)

)2

with boundary condition

fi (ρN ) =
1
r
Gi(1, s) =

1
rN2

(
1−Nsi + S(N−1)

)2
.

Solving this ODE gives

fi(ξ) = Ki

(
ξ

ρN

) 2N
N+1

− 2N
(N + 1)3r

[(
N + 1

2

)
ξ2 +

2(N + 1)hi
2N − 1

ξ − (N + 1)h2
i

2N

]
,

where

hi = (N + 1)si − (1 + S(N−1)),

Ki =
(1 + S(N−1))

[
(1 + S(N−1))(2N + 1)(N − 1) + 2N(N + 1)si

]
N2(2N − 1)(N + 1)2r

.

This holds for ξ ∈ (ρN , δN−1) or, equivalently, x ∈ (0, xN−1
b ). One would then continue to the next

blockading region and solve a nearly identical ODE with a different initial condition. This can be
done explicitly, but as we shall not use these results, we omit the details here.
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5.4 Properties of the Value Function

We have assumed throughout that the value function for the oil producer is continuous at the
blockading points. This assumption has driven the boundary conditions in the ODEs that we have
used to find the corresponding v(n). We show in this section that the value function also has a
continuous first derivative at the boundary points, but that the second derivative is discontinuous
at these points. As the first derivative of v0 determines the market price, this implies that the
market price is continuous at the blockading points, but the rate of change over time of the market
price has discontinuities.

Proposition 5.4. For a given n ≥ 2, we have

v(n)′(xn−1
b − xnb ) = v(n−1)′(0).

In other words, the first derivative of v0 is continuous at xn−1
b .

Proof. By construction, we have

v(n)(xn−1
b − xnb ) = v(n−1)(0) =

1
r

(sn−1 − δn−1)2 .

The relevant ODEs for these two functions are

rv(m) =
1

(m+ 1)2

(
1 + S(m−1) −mv(m)′

)2
, (50)

for m,n− 1. This implies

v(n)′(xn−1
b − xnb ) =

1 + S(n−1) − (n+ 1)
√
rv(n)(xn−1

b − xnb )

n

=
1
n

[
1 + S(n−1) − (n+ 1)

(
1 + S(n−2) − (n− 1)sn−1

)]
= δn−1, and

v(n−1)′(0) =
1 + S(n−2) − n

√
rv(n−1)(0)

n− 1

=
1

n− 1

[
1 + S(n−2) − n

(
1 + S(n−2) − (n− 1)sn−1

)]
= δn−1.

�

Proposition 5.5. For a given n ≥ 2, we have

v(n)′′(xn−1
b − xnb ) > v(n−1)′′(0).

In other words, there is a downward jump when moving in the direction of larger x in the second
derivative of v0 at the point xn−1

b .
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Proof. Differentiating the ODE given in Equation (50) gives

rv(m)′ =
−2m

(m+ 1)2

(
1 + S(m−1) −mv(m)′

)
v(m)′′ ,

and rearranging terms, we find

v(m)′′ =
−(m+ 1)2rv(m)′

2m
(
1 + S(m−1) −mv(m)′

) ,
for m,n−1. The proof of Proposition 5.4 shows that v(n)′(xn−1

b −xnb ) = v(n−1)′(0) = δn−1, therefore

v(n)′′(xn−1
b − xnb )− v(n−1)′′(0) =

r

2n2(n2 − 1)

(
δn−1

sn−1 − δn−1

)
> 0,

where the positivity of the term in parentheses comes from Equation (48). �

Along similar lines, we also find that a modified version of Hotelling’s rule holds.

Proposition 5.6. For n ∈ {1, . . . , N}, for x ∈ (xnb , x
n−1
b ), (we identify xNb = 0 and x0

b =∞),

d

dt
v(n)′(x(t)− xnb ) =

(
1
2

+
1

2n

)
rv(n)′(x(t)− xnb ). (51)

Proof. Let x ∈ (xnb , x
n−1
b ). We differentiate the ODE in Equation (50) which gives

rv(n)′ =
2n
n+ 1

[
1

n+ 1

(
1− nv(n)′ + S(n−1)

)(
−v(n)′′

)]
.

Furthermore, we recall from Equations (25) and (31)

dx

dt
= −q̄?0(x(t)) =

−1
n+ 1

(
1− nv(n)′ + S(n−1)

)
.

Then,

d

dt
v(n)′(x(t)− xnb ) = v(n)′′(x(t)− xnb )(−q̄?0(x(t)))

=
1

n+ 1

(
1− nv(n)′ + S(n−1)

)(
−v(n)′′

)
=

(
1
2

+
1

2n

)
rv(n)′ .

�

The result, Equation (51), coincides with the classical Hotelling rule (see [15]) for n = 1, which
states that, for a monopolist, the marginal value grows (exponentially) at the discount rate r.
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This result on the growth rate of the marginal value has implications for the price function over
time due to the dependence of price on the marginal value. First, we define P (n)(x− xnb ) to be the
market price for x ∈ (xnb , x

n−1
b ). The general form of the price given in Equation (26) implies

P (n)(x(t)− xnb ) = 1− q̄?0(x(t))−
n−1∑
i=1

q̄?i (x(t))

= 1− 1
n+ 1

(
1− nv(n)′ + S(n−1)

)
− 1
n+ 1

n−1∑
i=1

(
1− (n+ 1)si + v(n)′ + S(n−1)

)
=

1
n+ 1

(
1 + v(n)′ + S(n−1)

)
. (52)

Note, we can use the proof of Proposition 5.4 to see that P (n)(xn−1
b − xnb ) = sn−1. That is, the

blockading point xn−1
b is exactly the point at which the market price equals the marginal cost of

Firm n− 1.

We define the function P (t) = P (n)(x(t) − xnb ) for t such that x(t) ∈ (xnb , x
n−1
b ). This function

differs from Equation (26) as it is a function of the time variable, t, rather than of oil reserves, x(t).
We further define the blockading times

t1b = inf{t > 0 : x(t) = x1
b} = inf{t > 0 : P (t) = s1},

tnb = inf{t > tn−1
b : P (t) = sn}, n = 2, . . . , N − 1.

Proposition 5.7. For n ∈ {2, . . . , N}, for t such that x(t) ∈ (xnb , x
n−1
b ), (we identify xNb = 0),

P (t) =
1 + S(n−1)

n+ 1
+
(
δn−1

n+ 1

)
exp

{(
1
2

+
1

2n

)
r(t− tn−1

b )
}
, (53)

and for n = 1, i.e. for t such that x(t) ∈ (x1
b , x(0)),

P (t) =
1
2

+
(
P (0)− 1

2

)
ert, (54)

where the price at t = 0 is given by

P (0) =
1
2

(
1−W

(
(1− 2s1)e−2r(x(0)−x1

b)+(1−2s1)
))

.

Proof. We differentiate Equation (52) and apply Proposition 5.6 to obtain

d

dt
P (n)(x(t)− xnb ) =

1
n+ 1

d

dt
v(n)′(x(t)− xnb ) =

(
1

2n

)
rv(n)′(x(t)− xnb ). (55)

We then arrange Equation (52) to express v(n)′ in terms of P (n), insert into Equation (55), and use
the definition of P (t) to obtain

d

dt
P (t) =

(
1
2

+
1

2n

)
r

(
P (t)− 1 + S(n−1)

n+ 1

)
. (56)

Solving this ODE, over the relevant ranges, with the initial conditions P (tn−1
b ) = sn−1, gives

Equations (53) and (54). �
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Proposition 5.7 shows that in between blockading points, the price starts at the cost of the previous
firm to enter, and increases exponentially to the cost of the firm with the next highest cost. The
rate of growth depends on the number of active firms, and indirectly on the costs of all the firms in
the game. Furthermore, the expression in (53) provides an explicit representation of the blockading
times.

Proposition 5.8. For n ∈ {2, . . . , N − 1}, the time at which Firm n enters the game is given by

tnb = tn−1
b +

2n
(n+ 1)r

log
(

δn
δn−1

)
, (57)

and for n = 1 by

t1b =
1
r

log

(
s1 − 1

2

P (0)− 1
2

)
.

Comparing Equation (57) with Equation (41), we notice that the exact same condition required
for the blockading times to be well-defined is that which makes the blockading points well-defined.

As time increases, the game moves from larger values of x to lesser values of x as oil reserves are
depleted. Therefore, moving in the positive direction of time, the price transitions from P (n−1) to
P (n) at the point xn−1

b , and the price function is continuous at this point; however, the same cannot
be said about the time derivative of the price.

Proposition 5.9. For n ∈ {2, . . . , N − 1}, there is a jump down in (d/dt)P (t) at each blockading
time. In other words,

lim
t↓tn−1

b

d

dt
P (t) =

d

dt
P (n)(xn−1

b − xnb ) <
d

dt
P (n−1)(0) = lim

t↑tn−1
b

d

dt
P (t).

Proof. From Equation (56) or Equation (55), and the continuity of the market price,

d

dt
P (n)(xn−1

b − xnb ) − d

dt
P (n−1)(0)

=
r

2

[(
1 +

1
n

)(
sn−1 −

1 + S(n−1)

n+ 1

)
−
(

1 +
1

n− 1

)(
sn−1 −

1 + S(n−2)

n

)]

= − rδn−1

2n(n− 1)
< 0,

where the negativity comes from the fact that δn−1 > 0 (see Equation (48)). �

This proposition says that the time derivative of price jumps down at each blockading point. The
size of the jump at xn−1

b depends on n, as well as the gap in Equation (47) for sn−1.

5.5 Numerical Example

In the following illustrations, we set r = 1. Figure 6 displays the resulting trajectory of x(t),
production rates, and market price for N = 10, and s1 = 0.51, s2 = 0.52, . . . , s9 = 0.59, which
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satisfy the condition (47). The vertical lines are the times associated with the blockading points,
i.e. from the left to right, at each vertical line the number of active players increases by one. At the
far right, once the oil reserves hit zero, we see that production rates and market price are constant,
because in this region the alternative technology producers are the only active firms and they play
an infinitely repeated static game. We observe the behavior in the remark prior to Proposition
5.7 in the market price figure. Namely, each vertical line, which represents the entry of a firm,
is exactly where the market price crosses the horizontal line at that firm’s cost. In other words,
the first blockading point, where the game transitions from a monopoly to duopoly, occurs exactly
where P = c1 = 0.51.
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Figure 6: Numerical example with 10 firms. In the upper-right figure, the increasing dashed lines
represent the production rates of the renewable producers.

The time derivative of market price is displayed in Figure 7. We see that the derivative is everywhere
positive, and at the blockading points, the derivative jumps down and then increases, exactly as
described above. Therefore, price is strictly increasing over time, but the rate of the increase is
lower immediately after a new firm enters the market. The derivative jumps to zero at the point
where oil reserves are fully depleted. This is because the price is a constant in the equilibrium that
involves only the alternative technology firms.

In energy production, costs of using various fuels or technologies may occur in groups, with hydro
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Figure 7: Time derivative of market price

and geothermal quite low, biomass and on-shore wind somewhat higher, and solar and tidal rather
higher still. In Figure 8, we plot the trajectory of oil reserves, production rates, and market price,
except here we set s = (0.51, 0.52, 0.57, 0.58, 0.62, 0.63), which corresponds to N = 7. These costs
are such that we have 3 different groups of technologies; within each group, there are two firms with
a cost difference equal to 0.01. We can see from the game trajectory, for instance, that the same
absolute cost difference can lead to different sized intervals of time between entries. In particular,
the amount of time between the entry of Firm 2 after Firm 1 is much greater than the amount of
time between the entry of Firm 6 after Firm 5 (recall that the oil producer is Firm 0). Thus the
transition to alternative sources occurs more rapidly over time.

6 Conclusion

We have analyzed the number of firms who are active in equilibrium in Cournot type and Bertrand
type oligopolies in the case of both homogeneous and differentiated goods. Moreover, we have
considered crucially the case where firms have asymmetric costs. Our main finding is that for a
given type of good structure (i.e. either homogeneous or differentiated) Cournot markets have more
active firms than the corresponding Bertrand market. Further, the differentiated market has more
active firms than the corresponding homogeneous market for both Cournot and Bertrand type
oligopolies. We find that the degree of product differentiation is thus crucial for the determination
of the natural market size.

The essential result is that Bertrand markets give consumers less choices of goods, but they pay
lower prices for those goods. On the other hand, Cournot markets give consumers an increased
amount of variety, but at the cost of paying higher prices for those goods. This analysis has
implications in the application of antitrust laws, in particular the use of the Herfindahl-Hirschman
Index (HHI) by the Department of Justice in assessing the legality of a proposed merger. The above
results translate to the statement that, ceteris paribus, Cournot markets have a lower HHI than
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Figure 8: Numerical example with 7 firms.

Bertrand markets. However, in terms of competition, which this index is supposed to assess, one
can strongly argue that Cournot markets are less competitive than Bertrand markets. Although
this index is not meant to be comparable across different types of markets, the use of such an
index relies on the assumption that market symmetry and more active firms are always better.
However, the strength of competition in the Bertrand model results in a monopoly providing the
lowest price because of the potential competition of higher cost firms. Therefore, this analysis is a
clear indicator that the HHI is an incomplete metric.

In a dynamic game, the number of active participants may change over time. In an energy produc-
tion Cournot model for exhaustible resources, we have seen how renewable energy producers come
in as oil reserves deplete. Under linear demands, it is possible to fully characterize the entry levels
and times and the downward jumps in the rate of price change. In addition, we get an explicit
extension of Hotelling’s rule for monopolistic exhaustible resource prices to the oligopoly situation,
when the competition is from higher cost inexhaustible suppliers. It remains to understand the
blockading issue when there are multiple exhaustible suppliers since that involves strongly coupled
systems of nonlinear PDEs with nonsmooth coefficients.

A further issue is the effect of uncertainty both in reserve levels and demand fluctuations. The
nonrandom ordinary differential game with linear demands is tractable as we saw in Section 5 and
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it is a goal to adapt its clean results to incorporate stochasticity.

A Static Homogeneous Oligopolies

A.1 Cournot Competition

Similar to the differentiated Cournot model, firms use quantity as their strategic variable to maxi-
mize Expression (7), where price pHi (q) is given in Expression (5). We note that as price is only a
function of the aggregate quantity Q, we in fact have the price function P (Q) = pHi (Q), where the
latter function is a slight abuse of notation of the previously defined price function. This model
was studied extensively in the setting of general inverse demand functions in [13].

The calculation of the Nash equilibrium is identical to that of the differentiated case, except here
instead of using the effective market price function P̄ (Q), we use the actual market price function
P (Q) = pH(Q). With this slight modification all of the results in Section 3.1 carry over to this
setting, provided we set γ = β.

Setting γ = β in Equation (13), the equilibrium total supply in the homogeneous model is given by

Q?,nH =
nα− S(n)

(n+ 1)β
. (58)

Here we use the subscript H to stand for Homogeneous in order to discriminate this quantity from
the one used in the differentiated Cournot game.

We then have the following result that fully characterizes the equilibrium. The proof follows the
proof of Proposition 3.1 with γ = β.

Proposition A.1 (Corr 2.7 in [13]). The unique Nash equilibrium can be constructed as follows.
Let Q̄?H = max

{
Q?,nH |1 ≤ n ≤ N

}
. Then the unique Nash equilibrium quantities are given by

q?i (s) = max
{
α− βQ̄?H − si

β
, 0
}
, 1 ≤ i ≤ N.

The number of active players in the unique equilibrium is m = min
{
n | Q?,nH = Q̄?H

}
.

A.2 Bertrand Competition

The homogeneous Bertrand case is perhaps the simplest and yet most difficult to analyze of the
four models. As in the differentiated Bertrand case, the firms use price as their strategic variable in
maximizing the profit function in (7) with quantity given by qHi (p) in Expression (6). The difficulty
arises from the non-smoothness of the demand function. If one firm sets a price slightly below the
rest of the market, then they will receive all the demand. If another firm were to charge an even
slightly lower price than this, then all of the demand would shift to this new lowest cost firm. This
behavior makes the result seemingly very simple.

Consider first the case of a duopoly. We illustrate in Figure 9 the best response functions for the
two firms, where s1 < s2. The best response is to charge cost while your opponent is pricing below
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your cost, and then to price at your opponent’s price minus a small amount, which we denote
informally as p? = (s2 − ε, s2). The reason for this is that if Firm 1 were to price strictly above s2,
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Figure 9: Best Response Functions for Homogeneous Bertrand Duopoly

by any amount, Firm 2 would have an incentive to deviate from sharing demand at this price by
lowering price by a small amount and thereby capture the entire market at a price above cost. On
the other hand, if Firm 2 were to price exactly at s2, Firm 1 would have an incentive to deviate
to a slightly lower price in order to avoid splitting demand in half. The same concept extends to
N firms in the sense that the lowest cost firm is the only one who ever receives demand from the
market.

There is a subtle issue here as, for a fixed value of ε > 0, Firm 1 would always be better off
decreasing ε by a small amount and therefore increasing profit. This is what has been referred to
as the open-set problem, see [7] and references therein. We follow their solution of such a situation
and assume that the equilibrium exists in the limiting sense of Firm 1 setting price equal to s2 and
obtaining the entire market demand at this price, while Firm 2 sells nothing and gets zero profit.
Further, we have assumed throughout in a Bertrand market that any firm with zero demand in
equilibrium at any price greater or equal to cost sets price equal to cost. Thus, we have an unique
equilibrium (albeit in a limiting sense) of p? = (s2, s2), with Firm 1 supplying the whole market.

If Firm 1 knew they were the only firm in the market, then they would charge their optimal
monopoly price

p?M =
1
2

(α+ s1) . (59)

This is greater than cost provided s1 < α. If there are other firms in the market, Firm 1 will not
always set this price in equilibrium, because if they did, their exist cases where other firms would
have an incentive to undercut that price and capture all of the demand in the market. In fact,
one can show that no equilibrium is sustainable with p1 > s2, regardless of the number of firms in
the market. Furthermore, for ε > 0 small enough, we have that the profit of Firm 1 from setting
p1 = s2 − ε is strictly greater than the profit from setting p1 = s2 and sharing demand with Firm
2. As above, we deal with this situation in a limiting sense and simply use s2 in place of s2 − ε,
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where it is understood that Firm 1 serves the entire market. Hence,

p?1 = min (s2, p
?
M ) , (60)

and
p? = (p?1, s2, s3, . . . , sN ) .

Expression (60) is the analog of the Type 〈III〉 equilibrium from the differentiated Bertrand game.
Firm 2 can be on the boundary, with Firm 1 pricing below his monopoly price because they must
respect the presence of Firm 2. However, if the cost of Firm 2 is high enough, then Firm 1
can completely ignore the higher cost firms and we are in the setting analogous to a Type 〈II〉
equilibrium.

The only subtlety that arises in this case is what occurs when firms have equal cost. This is only
relevant if the firms that are tied also have the lowest costs in the market. Suppose for some
k > 1 we have s1 = s2 = · · · = sk and sk < sk+1 ≤ sk+2 ≤ · · · ≤ sN . Due to the potential for
undercutting, the only equilibrium is for all firms to set price equal to marginal cost. This can
be seen by comparing the profit at any other equilibrium price and that obtained by a single firm
deviating slightly and capturing the entire market. Hence,

p? = (s1, . . . , s1, sk+1, . . . , sN ) ,

where it is understood that Firms 1 through k split demand equally and the remaining firms get
zero demand and make zero profit.
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