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A MODEL FOR HEDGING LOAD AND PRICE RISK IN THE TEXAS

ELECTRICITY MARKET

Abstract. Energy companies with commitments to meet customers’ daily electricity demands face
the problem of hedging load and price risk. We propose a joint model for load and price dynamics,
which is motivated by the goal of facilitating optimal hedging decisions, while also intuitively cap-
turing the key features of the electricity market. Driven by three stochastic factors including the
load process, our power price model allows for the calculation of closed-form pricing formulas for
forwards and some options, products often used for hedging purposes. Making use of these results,
we illustrate in a simple example the hedging benefit of these instruments, while also evaluating
the performance of the model when fitted to the Texas electricity market.

Keywords: electricity market; structural model; spikes; forward prices; spread options; hedging
JEL Classification Numbers: C60, C80, G12, G13, Q40

1. Introduction

In recent years, the use of financial products, such as futures and options, by retail suppliers
to hedge electricity price and demand spikes has grown. The occurrence of spikes in electric-
ity markets, as well as their relationship to loads (energy demands) which have strong seasonal
components, requires non-standard financial models. On the other hand, having continuous-time
stochastic models built around Brownian motion, as is typical for understanding options in finan-
cial markets, allows for convenient pricing formulas which can reduce the simulation burden on an
optimization program for hedging risk.

The model we propose aims to capture the unique features and complex dependence structure
of electricity price and load dynamics while retaining enough mathematical tractability to allow
for such pricing results. In particular, we include as state variables the key factors which drive
electricity prices, such as fuel price (natural gas in particular), load itself, and a proxy for capacity
available. We express power spot price as a parametric function of underlying factors, including
an additional ‘regime’ to describe the risk of extreme price spikes, which are most likely to occur
when demand is relatively high, for example during times of unexpectedly high temperatures. We
also model periodicity and seasonality in load and price at various time horizons to reflect hourly
patterns, weekends, and also annual effects. Despite the rich dependence structure embedded in
the model, convenient formulas for derivatives prices are available, facilitating the calibration to
market data and the model’s application to hedging problems.

We choose to analyze data from the US electricity market in Texas, often referred to as ERCOT
(Electric Reliability Council of Texas), after the name of the ISO (Independent System Operator)
which manages the Texas Interconnection power grid. Along with the Eastern and Western In-
terconnections, it is one of the three main electricity grids in the US and serves over 20 million
customers. As in many electricity markets around the world, deregulation in Texas occurred ap-
proximately ten years ago. Since then, the highly volatile and quite dramatic behaviour of prices
has drawn much attention to the challenges of electricity price modeling. Given the growth of
intermittent wind energy in Texas and the state’s susceptibility to heat waves and other extreme
weather, features such as price spikes are particularly important for the ERCOT market. A strong

Date: August 2012.
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reminder of this was provided by the heat wave of early August 2011, when the total load hit a
record level of 68.4 GWh, and day-ahead prices for peak afternoon hours reached their cap of $3000
per MWh on several consecutive days. Such extreme events may be even more dramatic in the
future, following a recent decision by ERCOT to increase the cap to $4500 effective August 2012
and to increase it to as high as $9000 by 2015.

Much of the literature on quantitative models for electricity prices has focused on extending
traditional finance approaches to account for these spikes, for example through jump processes.
Such approaches typically begin by specifying a stochastic process directly for the electricity spot
price, possibly incorporating several unobservable factors, seasonal functions and sometimes multi-
ple regimes (typically lasting just a few hours, so one should not interpret the terminology ‘regime’
to mean a lasting paradigm shift). An early single-factor model by [8] uses a jump diffusion process,
while [16] separates the jumps from the diffusion in a two-factor version to account for very rapid
recovery from price spikes. In [14], the authors instead propose a threshold level above which jumps
become negative to recover from spikes, while several authors (cf, [24, 12]) have instead suggested
regime-switching models to handle sudden spikes and rapid recoveries. In [4], a general framework
based on sums of Levy processes is advocated, which can allow for some convenient results for
forward prices, while in [23] the authors apply multivariate Levy semistationary processes to the
EEX market in Europe. Another alternative is the use of heavy-tailed distributions such as the
Cauchy distribution, as presented in [18] and applied to two US markets, PJM and ERCOT.

While the above works differ extensively in both their motivations and mathematical details,
they all share the characteristic of taking spot electricity prices as the starting point for a sto-
chastic model, thus placing them in the category of ‘reduced-form’ models. While such approaches
may be successful for capturing price spikes and overall price distributions, they rarely capture the
complicated dependence structure between price, load and other factors, which is equally vital for
hedging purposes in practice. Hence, we instead favor the category often known as ‘structural’
models, as reviewed for example in the recent survey paper of [6]. In such a model, power price
is written as a function of several underlying supply and demand factors, and its dynamics are
therefore not specified directly through an SDE (stochastic differential equation), but produced
indirectly as a result of the dynamics chosen for the factors. Early work by Barlow [3] treated
demand as the only driving factor, before various authors extended this branch of the literature to
include factors such as fuel prices [20, 7], capacity changes [5, 10], or both [11, 2].

A benefit of the structural approach is that it makes use of readily available information on
fundamentals such as market load and in some cases supply side information like generation costs.
However, for mathematical tractability, it stops short of a full description of all the details of the
price setting mechanism such as operational and transmission constraints, instead simply approx-
imating the shape of the electricity stack. Nonetheless, it reflects key features of load and price
dynamics, such as the observation that times of high load are more likely to produce price spikes,
for example when the highest cost and least efficient units are forced to run to satisfy demand. This
close relationship between load and price is important for energy companies to understand when
hedging the risk of either physical asset ownership or their obligations to serve retail customers at
predetermined price levels. However, the relationship between price and load is blurred by effects
such as outages, transmission problems and other constraints or shocks which can sometimes pro-
duce price spikes even at periods of low or average demand. Such complications of the electricity
grid create a challenge for structural models that rely on a clear and consistent relationship be-
tween price and load. Adding additional unobservable factors such as jump processes is a common
reduced-form solution to such obstacles, but less in the spirit of the structural approach.
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We therefore propose a model which builds on the structural approaches mentioned above, but
also incorporates some ideas from the reduced-form literature in order to obtain a better fit to
the ERCOT market. In particular, we extend the typical stack-based methodology (e.g., as in
[20, 11, 1]) to include a ‘spike regime’, in which the price-to-load relationship adjusts to reflect such
times of extreme market conditions. Within each regime, the power price is lognormal, but we show
that the mixing of these lognormals can produce the heavy-tailed price densities observed in the
market. The probability of being in the spike regime is also assumed to be load-dependent, yet we
retain the important advantage of closed-form solutions for forward and option prices, exploiting
convenient properties of multivariate Gaussian distributions. Section 2 introduces the model, while
Section 3 presents the results for forwards, as well as parameter estimation and calibration. In
Section 4, we present the related closed-form option pricing results and then in Section 5 study an
application of the model to hedging an obligation to serve customer load. Finally we conclude in
Section 6.

2. Model & Motivation

The electricity price model consists of several separate pieces, corresponding to each of the
underlying stochastic factors followed by their link with spot power price. In this section, we
address each of these in turn, and introduce the parameters and notation.

2.1. Load. The primary short-term driver for electricity prices is load, which is the starting point
of our analysis. Later we will incorporate the longer-term effects of fuel prices, specifically through
natural gas prices. Figure 1a shows the striking seasonal variation in daily average load. In fact

!"

#!"

$!"

%!"

&!"

'!"

(!"

)*
+
,!
'
"

)-
.,
!
'
"

)*
+
,!
(
"

)-
.,
!
(
"

)*
+
,!
/
"

)-
.,
!
/
"

)*
+
,!
0
"

)-
.,
!
0
"

)*
+
,!
1
"

)-
.,
!
1
"

)*
+
,#
!
"

)-
.,
#
!
"

)*
+
,#
#
"

)-
.,
#
#
"

2
3
4
5
6
"7
*
8.
9
":
;
<
=*
>
<
"?
@
*
A
"B
C
D
E
F
G"

(a) Historical daily average ERCOT loads
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(b) Historical daily average electricity
and gas prices

Figure 1. ERCOT load and electricity prices over 2005-11. Note that we choose to plot
daily average power prices only for the range $0 to $300. However, during the period 2005-
11, there were nine days with averages above $300 (including five in August 2011), and two
days in Sept 2008 with averages just below zero (due to several hourly values below -$200).

as Figure 2 shows, the seasonal pattern varies significantly hour to hour throughout the day. For
example, hour 8 has both a summer and a winter peak, while hour 16 only has a summer peak
and a much greater peak to trough ratio. There are also periodicities caused by weekends when
businesses are closed.
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We first de-seasonalize the ERCOT load Lt:

Lt = S(t) + L̄t,

where the seasonal component (estimated using hourly data) is given by

S(t) = a1(h) + a2(h) cos(2πt+ a3(h)) + a4(h) cos(4πt+ a5(h)) + a6(h)t+ a7(h)1we.

Here h is the hour, and 1we is an indicator variable for weekends; a2 to a5 are the seasonal compo-
nents, a6 picks up the upward trend visible in Figure 1a, and a7 captures the drop in demand on
weekends. Figure 2 shows the fitted seasonal components for hours 8 and 16.

Then we fit the residual load L̄t to an Ornstein-Uhlenbeck (OU) model:

dL̄t = −κLL̄t dt+ ηL dW
(L)
t .
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(a) Hour 8
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(b) Hour 16

Figure 2. ERCOT load over 2005-11 for chosen hours, along with fitted seasonality functions.

2.2. Structural Electricity Model. From Figure 1b, we observe that electricity prices exhibit
high volatility and numerous spikes, and they seem to fluctuate around a level driven by natural
gas prices. We use the well-known one-factor Schwartz model [21] in which the gas price Gt is the
exponential of an OU process:

d logGt = κG(mG − logGt) dt+ ηG dW
(G)
t ,

where W (L) and W (G) are independent.

We also introduce an additional factor X which proxies for the effect of capacity outages and
grid congestion, and is given by

Xt = SX(t) + X̄t,

with seasonal component treated similarly to that of load:

SX(t) = b1(h) + b2(h) cos(2πt+ b3(h)) + b4(h) cos(4πt+ b5(h)).

The process X̄t follows

dX̄t = −κXX̄t dt+ ηX dW
(X)
t ,
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where the Brownian motions W (X) and W (L) are correlated with parameter ν. Note that L̄ and
X̄ are assumed to be mean-zero OU processes, since their mean levels are incorporated into S(t)
and SX(t) respectively.

While we pose our model in continuous time to take advantage of the convenient properties of
Brownian motion, we note that in reality spot power is observed at discrete times, only once per hour
(in most markets). See, for instance, the discussion in [4, Section 1.5]. Therefore any spike is only
observed at an hourly frequency, and so we use the following regime-switching model for Pt which
is driven by a sequence of independent random variables mk defined for times tk ∈ T = {t1, t2, . . .},
the set containing the start of every hour. At each tk, the value of mk ∈ {1, 2} is determined by
an independent coin flip whose probabilities depend on the current load L̄tk :

(1) mk =







1 with probability 1− psΦ
(

L̄tk
−µs

σs

)

2 with probability psΦ
(

L̄tk
−µs

σs

)

,

where ps, µs and σs are positive constants and Φ(·) is the standard Gaussian cumulative distribution
function (cdf). Then, for each time t,

(2) Pt = Gt exp(αmk
+ βmk

Lt + γmk
Xt) for tk ≤ t < tk+1, k ∈ N.

Hence, mk determines each hour whether we are in the ‘normal’ regime (with parameters α1, β1, γ1)
or the ‘spike’ regime (with parameters α2, β2, γ2). Note that the parameter γ1 is a redundant
parameter in the model fitting since Xt is an unobserved variable. Thus γ1 could be set equal to 1
if desired, but we choose to keep it for notational symmetry, and hence more convenient formulas
later. The parameter ps represents the maximum spike probability (ie, as L̄t → ∞), while µs and
σs control the precise dependence on load. A sensible choice for the parameters µs and σs is the
mean and standard deviation of the stationary distribution of deseasonalized load L̄t, such that the
probability of a spike is then linear in the quantile of load:

(3) µs = 0, σs =
ηL√
2κL

This model has three stochastic factors, gas Gt, load Lt and the additional factor Xt, as well as
a regime switching mechanism to capture spikes. We comment on each of these:

• The gas multiplies a function which can be interpreted as approximating the range of
generator heat rates in the market. This multiplicative structure has been proposed by
other authors (cf. [20, 13, 7]) and reflects the fact that fuel costs are typically the dominant
driver of the production cost curve, which in turn determines bid levels.

• The empirical relationship between price and load is typically convex and often modelled
with an exponential function (c.f.[22, 10, 19]), as less efficient generators are used only
at peak demand times, producing significantly higher prices. Often driven primarily by
temperature, demand is well-known to be mean-reverting (around seasonal levels) and often
chosen to be Gaussian as proposed here.

• The additional factorXt is not strictly equal to market capacity, but represents all additional
factors including most notably changes in capacity available and short-term outages or
congestion-related events. In this way, we capture the additional volatility present in power
prices which cannot be explained by load and gas price fluctuations alone.

• Finally, an important feature of the model is its second regime, which occurs with some
‘spike probability’, and allows us to reproduce the extremely heavy-tailed nature of the
price distributions. Although both regimes have the same exponential form, the choice of
α2, β2, γ2 allows for a steeper and potentially more volatile price to load relationship. In
addition, as spikes are observed to increase in likelihood as load increases (but do also occur
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at off-peak times), we allow the spike probability to depend on L̄t, and in particular to be
linear in the quantile of the deseasonalized load distribution.

Notice that the resulting model for spot power prices is in fact a mixture of lognormal distribu-
tions, due to the choice of Gaussian processes for Xt, Lt and logGt. This convenient form will have
benefits for the pricing of forwards and options, as we shall discuss later.

We note that various straightforward extensions to the set-up are possible. For example, we
might add a third regime if we wish to include negative spikes (and negative prices), as is discussed
further in [6]. The regime probabilities could also be allowed to be piecewise linear in load quantile,
for example for markets in which spikes are only observed to occur for demand above some threshold
level. Furthermore, in order to obtain longer duration spikes, the transitions between regimes could
be driven by a Markov chain in which the previous hour’s state affects the spike probability this
hour. However, given the important load-dependence built into these probabilities, this extension
would come at the cost of less convenient forward and option pricing results, with little benefit
if we care more about the frequency of spikes than their exact timing or duration. Finally, while
the current value of load provides some information about future spike probability, we might also
incorporate additional forward-looking information about supply or demand (e.g., weather forecasts
or outage schedules) into the regime probabilities, along the lines of [9]. However, for our current
purposes, the simpler framework suffices.

2.3. Empirical Evidence. Empirical evidence from ERCOT provides justification for the form of
the model proposed in (2) above. Firstly, as power prices in ERCOT are most often set by natural
gas generators at the margin, the co-movement of gas and electricity prices over long time horizons
is striking, as observed earlier in Figure 1b. This appears consistent with the multiplicative rela-
tionship proposed above, and further evidence is provided by Figure 3a which plots monthly average
power prices against gas prices for the period 2005-11. As gas is the most slowly moving factor
in the model (see parameter estimates later), taking monthly averages highlights this relationship
more than others. The points in the scatter plot are fairly well fit by a straight line through the
origin (with slope approximately 8, corresponding intuitively to the heat rate in MWh/mmBTU
of the typical marginal unit), although exceptional months can occur, most notably the previously
mentioned case of August 2011, responsible for the outlier in the upper left corner.

Next, Figure 3b illustrates the relationship between price and load in ERCOT via a scatter plot
for all hours in the year 2011. By plotting only one year of data here, the relationship is clearer
since gas prices moved relatively slowly during 2011. In addition, plotting log prices allows us to
include the huge spikes (eg, up to the price cap of $3000) while still illustrating clearly the strong
relationship in the typical price region (between about $20 and $60). This relationship appears
close to linear (as suggested in the model) for the vast majority of data points, although it is
worth noting that on this log plot a significant lower tail of prices near zero is visible even after
removing all prices below $1. However, our focus in this model is not on these off-peak price drops
but instead on the dramatic positive spikes. We observe that the majority of these spikes, as well
as the largest spikes, tend to occur at times of very high demand, but that somewhat smaller
spikes do occur at times of lower to medium demand. Figure 3c illustrates this same point by
using a rough definition of a spike as a price three times the average monthly value in a given
time period. The plot shows that the probability of a spike does indeed appear to increase roughly
linearly (apart from the last data point) in the quantile of demand, as suggested by the model in (2).

It is important to understand that any one of the relationships between Pt and a single underlying
factor will of course be weakened by the volatility of the other factors driving prices. For example, in
Figure 3d, we repeat the scatter plot of Figure 3b, but with 2008 data added to the 2011 data (and
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(a) Monthly average gas vs power
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(b) Hourly price vs load for 2011
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(d) Hourly price vs load for 2008 and 2011

Figure 3. Relationship between power price and gas price (top left), between power
price and load (right column), and between spike probability and load (bottom left).

the price axis shifted slightly). Recall from Figure 1b that 2008 was a time of very high gas prices,
and more generally record price levels throughout commodity markets. As a result, the entire
cloud of 2008 points in the price-load scatter plot is shifted significantly upwards relative to the
2011 points. For each of the years, the linear relationship between log price and load is reasonably
strong, but if combined together would be much weaker, causing difficulties for a structural model
based only on load. This evidence thus highlights the importance of including gas prices in the
model, both in order to better reproduce movements observed in historical data, and to capture
this additional risk in future electricity price distributions. In Figure 4, we now plot the price ratio
Pt/Gt against load Lt, thus avoiding the issue discussed above. Although we do not see the highest
spikes in this plot, we do observe that the model’s two exponential functions (one for each regime)
can provide a reasonable fit to the data. We shall refer back to this plot when describing parameter
estimation in the next section.
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3. Parameter Estimation & Forward Curve Calibration

Calibrating a model to market data is often a multi-step procedure, as will be the case here. We
begin with historical data for electricity spot prices, gas prices and load, constructing estimation
procedures for both the parameters driving the factor dynamics and those determining the shape of
the electricity stack (the link between electricity price and its drivers). Next, we turn to electricity
forward contracts, deriving explicit formulae for prices which can then be used to calibrate the
model to observed forward quotes. It is important that a spot price model correctly price all
available forward contracts in the market before being used to price other contracts or to tackle
other problems.

3.1. Parameter Estimation from History. All model parameters are estimated using seven
years of data (covering 2005-2011) for day-ahead ERCOT price and load, as well as Henry Hub
spot gas prices. Maximum likelihood estimation (MLE) is used throughout, and the estimation
procedure is divided into the following steps:

• We jointly estimate all parameters which appear in (2) given observed values of load and
gas price,1 and under the assumption that Xt is a standard Gaussian random variable at
every t. This assumption is reasonable since we expect X to be a very fast mean-reverting
process, reflecting short-term noise. Parameters γ1 and γ2 provide the appropriate scaling

1As we choose not to include a regime which allows for negative prices (or prices very near 0), we first remove all
hourly data points for which Pt/Gt ≤ 0.1 (only 132 out of over 61,000). In order to improve the fit in the regions we
are interested in, we also iteratively exclude downward spikes of more than three standard deviations from the mean
of the normal regime, while acknowledging that improvements would be needed to more accurately capture the price
distribution near zero.
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α1 β1 γ1 α2 β2 γ2 ps
0.915 2.79e-05 0.237 0.453 6.11e-05 0.741 0.129

Table 1. Parameters relating to the power price function

Load Natural Gas Capacity / Noise
κL ηL κG mG ηG κX ηX ν

92.59 53932 1.069 1.664 0.611 1517 66.07 -0.113

Table 2. Parameters relating to the stochastic processes for Gt, L̄t and X̄t

for this process. The likelihood function L(α1, β1, γ1, α2, β2, γ2, ps) that we maximize is

L =
∏

t

{

psΦ

(

L̄t − µs

σs

)

1

γ2
√
2π

exp

(

−
(

log(Pt/Gt)− α2 − β2Lt

γ2

)2
)

(4)

+

(

1− psΦ

(

L̄t − µs

σs

))

1

γ1
√
2π

exp

(

−
(

log(Pt/Gt)− α1 − β1Lt

γ1

)2
)}

.

• Next, given these parameters for the power price function (see Table 1), we use historical
day-ahead electricity price data to back out the historical time series for Xt implied by the
model, thus treating this factor as an unobserved residual process from the model.

• For both L and X, we find seasonality parameters by minimizing the sum of squared
differences between historical values and the functions S(t) and SX(t) respectively.2

• The OU process parameters for L̄t and X̄t are estimated by standard maximum likelihood
estimation using the time series of hourly residuals after deseasonalization. This procedure
is done jointly for L̄t and X̄t in order to accurately estimate their correlation. Finally, for
natural gas, we repeat the same MLE procedure using (the logarithm of) Henry Hub spot
prices, but observed at a daily level instead of hourly.

Note that for L and X, we allow the seasonality parameters to vary from hour to hour, but apply
the OU fit to the single hourly time series of residuals since there is only one random factor driving
each of these processes in the model. Table 2 shows the results of fitting the OU processes for all
three factors. It is important to observe that the three factors move on very different time scales,
with gas very slowly mean-reverting over months (κG = 1.07), load mean reverting over several
days (κL = 92.6) and Xt mean reverting on an intra-day time scale (κX = 1517). In Table 1, we
observe that β2 > β1, implying that in the spike regime the exponential relationship between price
and load is significantly steeper, as expected in order to produce extreme spikes. In addition, since
γ2 > γ1, the spike regime is also more volatile than the normal price regime, as is reflected in the
scatter plot of Figure 3b. Note that ps = 0.129 implies that we visit the spike regime approximately
6.5% of the time on average (ps/2), since the probability at each t varies between 0 and 12.9% as
L̄t changes. Finally, the seasonal parameters for both S(t) and SX(t) are listed in Table 3 and vary
significantly from hour to hour, as was illustrated earlier in Figure 2.

Figure 4 shows the results of fitting the power price function, by plotting the ratio Pt/Gt against
Lt for all hours in the dataset and then superimposing the fitted exponential curves. Since the
price axis has been truncated from above, we can now see clearly the strong link between price and
load in the ‘normal regime’, which is well captured by the function exp(α1 + β1Lt), represented by

2When implementing these functions, we use the convention that t equals the calendar time in years, such that
for example the dataset begins on Jan 1st, 2005, when t = 2005.
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Hour Parameters for Lt Parameters for Xt

a1 a2 a3 a4 a5 a6 a7 b1 b2 b3 b4 b5
1 30502 5881 2.989 -4019 3.023 0.00140 -1 0.092 0.044 2.984 0.322 2.621
2 29090 5015 2.957 -3905 3.011 0.00196 60 -0.196 0.119 4.086 0.274 3.025
3 28267 4270 2.934 -3833 3.003 0.00214 180 -0.419 0.081 6.062 0.208 3.111
4 27884 3681 2.911 -3794 3.023 0.00209 391 -0.553 0.244 6.545 0.130 3.408
5 28145 3128 2.883 -3816 3.006 0.00229 872 -0.464 0.425 6.482 0.113 3.223
6 29796 2438 2.796 -3896 3.011 0.00257 2174 -0.162 0.538 6.482 0.189 3.220
7 32880 1496 2.616 -3609 2.928 0.00286 4498 -0.376 0.578 6.512 0.258 3.467
8 34331 1145 2.526 -3521 2.959 0.00337 5160 -0.146 0.736 6.332 0.248 3.537
9 34823 2275 2.892 -3877 3.044 0.00673 3974 -0.155 0.477 6.376 0.217 2.957
10 35929 4097 2.968 -3951 3.063 0.00643 3229 0.080 0.392 6.288 0.185 2.807
11 37231 6247 2.995 -4161 3.014 0.00528 2993 0.212 0.326 6.141 0.151 2.985
12 38383 8337 2.998 -4244 2.962 0.00574 2911 0.135 0.316 6.163 0.166 2.813
13 39276 10125 2.998 -4466 2.926 0.00532 2891 0.124 0.123 5.570 0.253 3.145
14 40324 11730 3.000 -4488 2.883 0.00550 3195 0.180 0.085 4.418 0.356 3.242
15 41143 13073 2.998 -4367 2.854 0.00570 3389 0.204 0.205 3.459 0.455 3.202
16 41696 13943 3.008 -4193 2.842 0.00578 3471 0.193 0.328 3.406 0.557 3.250
17 42001 14182 3.011 -4105 2.854 0.00593 3469 0.250 0.282 3.374 0.585 3.136
18 42091 13447 2.997 -4162 2.970 0.00627 3165 0.253 0.122 6.491 0.454 2.742
19 41940 11490 2.964 -4823 3.085 0.00633 2804 0.300 0.669 6.295 0.221 2.074
20 41091 9845 2.961 -4675 3.013 0.00826 2515 0.156 0.710 6.332 0.179 3.058
21 40425 9189 2.978 -4114 2.953 0.00940 2377 0.104 0.501 5.925 0.365 3.429
22 39048 8785 3.029 -4234 3.016 0.00989 2055 -0.230 0.338 5.736 0.168 3.268
23 36200 7844 3.045 -4177 3.055 0.01103 1436 0.363 0.367 5.710 0.245 3.124
24 33053 6820 3.028 -4083 3.064 0.01543 901 0.025 0.170 5.673 0.331 2.836

Table 3. Parameters for load and capacity seasonality (ie, for functions S(t) and SX(t))

the lower solid line. The upper solid line shows the function exp(α2 + β2Lt) for the ‘spike regime’
while the dotted lines around each solid line plot exp(α1 + β1Lt ± γ1) and exp(α2 + β2Lt ± γ2),
indicating one standard deviation movements in Xt.

Note that since we do not constrain any parameters in the optimization, the ‘spike’ value may
well turn out to be lower than the ‘normal’ value in some cases, especially for low load and large
negative Xt, since γ2 > γ1. For example, at the far left of Figure 4, the Xt = −1 dotted line
for spikes is almost $1 below that of the normal regime. As a result, the value for ps = 12.9% is
larger than we might expect for maximum spike probability, particularly given Figure 3c. While
on average ps/2 = 6.5% of simulated points will be ‘spikes’, some of these will be very low values
which do not appear as visible spikes in a time series, but instead mix with the ‘normal’ points.
While this may be disadvantageous from the perspective of intuition, the fitting of a mixture of two
lognormals inevitably requires some overlap, and our priority is an appropriate overall distribution.
Finally, at first glance it may appear that there is a wider variation in prices for moderate Lt than
for high Lt, but this is deceptive given the high density of points in the middle region, as well as
the many spikes beyond the top of the plot.3 Indeed, the standard deviation of log(Pt/Gt) given
Lt is quite stable for different Lt ranges, lending support to the model.

3In fact, Lt ∈ [30000, 40000] for nearly 50% of the data points, with about one quarter on either side of this range.
Calling these three bins ‘low’, ‘medium’, and ‘high’ demand cases, we count that the proportion of points above the
highest dotted line of Figure 4 is 0.58%, 0.90%, and 1.27% respectively for each bin, increasing slightly as we might
expect given our load-dependent spike probabilities. If instead we count the proportion above the spike regime mean,
we get 5.39%, 3.60% and 3.08% respectively. The decrease here can be explained by the visible overlap between
regimes for lower Lt, whereby the normal regime can also produce high enough values to count.

10



3.2. Power Forward Prices. Forward and futures contracts are of utmost importance in elec-
tricity markets as they are often traded in much higher volumes than the spot and are crucial for
the hedging needs of both producers and consumers of electricity. They come in many variations
in different markets, including characteristics such as physical versus financial settlement and peak
versus offpeak versus baseload delivery. In all cases, power forwards (or futures since we use the
terms interchangeably here) have ‘delivery periods’ for which the electricity is bought or sold in
advance. Therefore, instead of a single maturity T , the delivery is typically spread (uniformly) over
a month (or season or year) long period, which can be represented instead by an interval [T1, T2].
In the case of physical delivery, a December 2012 baseload contract for example specifies delivery
of (say) 1MW of power during every hour in the month of December 2012.

Since forward contracts have no upfront payment, standard no-arbitrage arguments imply that
the forward price F (t, [T1, T2]) at time t < T1 < T2 is given by

F (t, [T1, T2]) =
1

(T2 − T1)/∆t

∑

T∈[T1,T2]

E
Q
t [PT ],

where ∆t is the length of timestep in the delivery period (ie, one hour) and E
Q
t denotes the time

t conditional expectation under the risk-neutral pricing measure Q. We assume for now that the
risk-neutral measure is known in the market, or can be uniquely determined from available traded
instruments.

As L and X are not themselves traded, we require an assumption about their market prices of
risk in order to write down their dynamics under Q. Either a constant or deterministic market
price of risk implies that the processes remain OU processes under Q, with unchanged speed of
mean reversion and volatility. In other words, only their mean levels change, and so under Q,

dL̄t = κL(mL − L̄t) dt+ ηL dW
(L)
t ,

dX̄t = κX(mX(t)− X̄t) dt+ ηX dW
(X)
t ,(5)

where W (X) and W (L) are now Q-Brownian motions correlated with parameter ν. We also assume
that under Q, the power price Pt is still given by (2), as it was under the physical measure P.

Notice that we assume a constant mean level mL for the load process, but instead a time-
dependent mean level mX(t) for the additional factor X. This choice allows for a convenient ap-
proach to calibrating the model to observed market forward quotes, a natural first priority of any
spot price model before tackling other derivative pricing or hedging problems. Analogously to the
Hull-White approach to yield curve calibration (see [17]), an appropriately chosen time-dependent
mean-reversion level allows the model correctly price forwards of all maturities. Furthermore, this
calibration procedure is also a way of identifying a risk-neutral measure Q which is consistent with
no arbitrage in the market. In particular, since we typically observe only one forward contract for
each calendar month (ignoring the issue of peak and off-peak forwards), we suggest choosing mX(t)
to be a piecewise constant function with one jump per month. Each constant can be found succes-
sively using the forward price for the next available maturity. The availability of the closed-form
expression for forward prices in coming pages greatly facilitates and speeds up this procedure.

For simplicity, we now consider the forward price F p(t, T ) for a hypothetical contract with

delivery at a single maturity T . Since F p(t, T ) = E
Q
t [PT ], the expression above is simply an average

over forward contracts for single hours. In order to calculate F p(t, T ) in our model, we first require
the conditional distribution of XT given LT under the risk-neutral measure Q. Note that given X̄t
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and L̄t, X̄T and L̄T are bivariate Gaussian with parameters {µX , σX , µL, σL, ρ}, where
(

X̄T

L̄T

)

∼ N

((

µX

µL

)

,

(

σ2
X ρσXσL

ρσXσL σ2
L

))

and means and variances are all time dependent (although we will typically suppress (t, T ) to ease
notation):

µX(t, T ) = X̄te
−κX(T−t) + κX

∫ T

t

mX(u)e−κX (T−u)du,(6)

σ2
X(t, T ) =

η2X
2κX

(

1− e−2κX(T−t)
)

,(7)

µL(t, T ) = L̄te
−κL(T−t) +mL

(

1− e−κL(T−t)
)

,(8)

σ2
L(t, T ) =

η2L
2κL

(

1− e−2κL(T−t)
)

,(9)

ρ(t, T ) =

(

1

σXσL

)

νηXηL
κX + κL

(

1− e−(κX+κL)(T−t)
)

.(10)

Hence the conditional distribution of XT given LT is

XT |LT ∼ N

(

SX(T ) + µX +
σX
σL

ρ(L̄T − µL), (1 − ρ2)σ2
X

)

.

Note also that the forward price of gas is denoted F g(t, T ) and satisfies F g(t, T ) = E
Q
t [GT ]. Then

the forward price of power is found as follows:

F p(t, T ) = E
Q
t

[

E
Q
t [PT |LT ]

]

= E
Q
t

[

GT exp (α1 + β1LT )E
Q
t [exp(γ1XT )|LT ]

(

1− psΦ

(

L̄T − µs

σs

))

+ GT exp (α2 + β2LT )E
Q
t [exp(γ2XT )|LT ] psΦ

(

L̄T − µs

σs

)]

= F g(t, T )EQ
t

[

exp(k1 + l1L̄T )

(

1− psΦ

(

L̄T − µs

σs

))

+ exp(k2 + l2L̄T ) psΦ

(

L̄T − µs

σs

)]

where ki and li for i ∈ {1, 2} are functions of time given by

ki(t, T ) = αi + βiS(T ) + γi

(

SX(T ) + µX − σX
σL

ρµL +
1

2
γi(1− ρ2)σ2

X

)

,(11)

li(t, T ) = βi + γiρ
σX
σL

.(12)

This expectation is then computed using the following relationship (for constants a,b,c):

(13)

∫

∞

−∞

ecxΦ

(

a+ bx

)

1√
2π

e−
1

2
x2

dx = e
1

2
c2Φ

(

a+ bc√
b2 + 1

)

.

This is a special case of a formula in [7, 6] which conveniently rewrites the integral of the product
of an exponential, a univariate Gaussian density and Gaussian cdf as a simple bivariate Gaussian
cdf (which collapses again to a univariate cdf when integrating over (−∞,∞) as above). In this
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case, we obtain the following closed-form expression:

F p(t, T ) = F g(t, T )



exp

(

k1 + l1µL +
1

2
l21σ

2
L

)



1− psΦ





µL − µs + l1σ
2
L

√

σ2
L + σ2

s







(14)

+ exp

(

k2 + l2µL +
1

2
l22σ

2
L

)

psΦ





µL − µs + l2σ
2
L

√

σ2
L + σ2

s







 .

Given (3), for large enough time to maturity (T−t), when L̄T is well approximated by its stationary
distribution (ie, for more than a week or so since κL = 92.6), (14) can be written as

F p(t, T ) = F g(t, T )

[

exp

(

k1 + l1mL +
l21η

2
L

4κL

)(

1− psΦ

(

l1ηL√
4κL

))

+ exp

(

k2 + l2mL +
l22η

2
L

4κL

)

psΦ

(

l2ηL√
4κL

)]

.
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Figure 5. Histograms for Pt (left) and Pt × Lt (right): model simulation vs. his-
torical data

3.3. Model Performance. The histograms in Figure 5 provide some evidence of the model’s abil-
ity to capture hourly price distributions accurately. These plots were generated by simulating 100
paths of seven years of price and load dynamics, while always using the historical gas prices from
the seven years of data (2005-2011). As natural gas price is a slowly moving factor in the model,
its dynamics over a single seven-year period can vary widely. Therefore, in order to isolate the
load-to-price relationship and obtain a more meaningful comparison with historical data, we have
chosen to fix the path of gas price movements to match with history.

For illustration purposes, we plot one representative peak hour (2pm) and one representative off-
peak hour (2am), which can be observed to differ significantly. Nonetheless, despite being driven by
the same sources of randomness, simulated trajectories for 2am and 2pm capture these differences
quite well through the seasonality functions S(t) and SX(t). In addition to simply analyzing price,
the right plot shows histograms for price times load, which will be particularly important later in
our hedging example. The figures indicate that the correlation structure between price and load is
well reproduced by the model.
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4. Option Pricing Formulas

As noted above, the availability of an explicit formula for F p(t, T ), the forward price of power,
is a significant advantage of the model proposed in Section 2. We now show that in certain cases,
option prices are also available in closed-form. We consider call options on both electricity alone
and on the spread between electricity and gas, and note that analogous results are available for put
options. Finally, we make use of these derivative pricing results in a simple example of hedging, in
which a load-serving utility firm wishes to minimize the variance of his revenues by hedging with
forwards or options.

4.1. Options on Spot Power. We begin with a simple call option with strike K and maturity
T on the electricity spot price PT . We assume a constant interest rate r. The option price V p

t at
time t can be calculated as follows, first conditioning on LT as was the case for forward prices:

V p
t = e−r(T−t)E

Q
t

[

(PT −K)+
]

= e−r(T−t)E
Q
t

[

E
Q
t [(PT −K)+|LT ]

]

= e−r(T−t)E
Q
t

[

E
Q
t

[

(GT exp (α1 + β1LT + γ1XT )−K)+ |LT

]

(

1− psΦ

(

L̄T − µs

σs

))

+ E
Q
t

[

(GT exp (α1 + β1LT + γ1XT )−K)+ |LT

]

psΦ

(

L̄T − µs

σs

)]

Each of the inner expectations corresponds to pricing a call option on a lognormal asset, and
thus can be found using the following variation of Black’s formula: If Y ∼ N

(

µY , σ
2
Y

)

, then

E

[

(

eY −K
)+
]

= eµY + 1

2
σ2

Y Φ

(

µY + σ2
Y − logK

σY

)

−KΦ

(

µY − logK

σY

)

Hence, the resulting integrand contains the product of Black’s formula and the regime probability
functions, both of which include univariate Gaussian cdfs of linear functions of L̄T , a Gaussian
random variable. Hence, for the outer expectation we require integrating over a bivariate Gaussian
cdf (with correlation zero in this case), and make use of the following result, which is analogous
to (13) but in higher dimensions and is a special case of a formula in [6] involving the trivariate
Gaussian cdf:

(15)

∫

∞

−∞

ecxΦ2

(

a1+b1x, a2+b2x; ρ

)

e−
1

2
x2

√
2π

dx = e
1

2
c2Φ2

(

a1 + b1c
√

b21 + 1
,
a2 + b2c
√

b22 + 1
;

b1b2 + ρ
√

(b21 + 1)(b22 + 1)

)

where a1, a2, b1, b2, c, λ are constants and Φ2(·, ·; ρ) is the standard bivariate Gaussian cumulative
distribution function with correlation ρ.

After a few lines of algebra we eventually obtain

V p
t = e−r(T−t)

{

F g(t, T ) exp

(

k1 + l1µL +
1

2
l21σ

2
L

)

Φ
(

d+1
)

−KΦ
(

d−1
)

+ ps

2
∑

i=1

(−1)i
[

F g(t, T ) exp

(

ki + liµL +
1

2
l2i σ

2
L

)

Φ2

(

d+i , g
+
i ;λi

)

−KΦ2

(

d−i , g
−

i ;λi

)

]

}

(16)
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where

d+i =
ki + liµL + 1

2 l
2
i σ

2
L + log(F g(t, T )/K) + 1

2ς
2
i

√

ς2i + l2i σ
2
L

, d−i = d+i − ς2i + l2i σ
2
L

√

ς2i + l2i σ
2
L

,

g+i =
µL − µs + liσ

2
L

√

σ2
s + σ2

L

, g−i = g+i − liσ
2
L

√

σ2
s + σ2

L

,

λi =
liσ

2
L

√

(ς2i + l2i σ
2
L)(σ

2
s + σ2

L)
, ς2i =

η2G
2κG

(

1− e−2κG(T−t)
)

+ γ2i (1− ρ2)σ2
X .

As the bivariate normal cdf is easy to implement using a built in function in most mathematical
programming software (just like the univariate cdf), the option prices given by (16) very fast to
compute, even though the formulas look a little complicated. This is of great benefit for example
if we consider a portfolio of options on many different individual hours during a month-long or
year-long period.

4.2. Spread Options on Spot Power and Gas. Now, consider instead a spread (or exchange)
option on power and gas, with payoff (PT − hGT )

+, where h is a constant. Note that this payoff
is sometimes used to approximate the revenue from owning a gas-fired power plant at time T with
heat rate h and negligible non-fuel operating costs. See [7] for an example of power plant valuation
based on this idea. In the current model, the calculation of the price V p,g

t of such an option proceeds
very similarly to that shown above, and is in fact slightly simpler, since gas price GT is independent
and can be immediately factored out of the payoff function:

V p,g
t = e−r(T−t)E

Q
t

[

E
Q
t [(PT − hGT )

+|LT ]
]

= e−r(T−t)E
Q
t

[

GTE
Q
t

[

exp (α1 + β1LT + γ1XT )− h)+ |LT

]

(

1− psΦ

(

L̄T − µs

σs

))

+ GTE
Q
t

[

exp (α1 + β1LT + γ1XT )− h)+ |LT

]

psΦ

(

L̄T − µs

σs

)]

.

Eventually we obtain

V p,g
t = e−r(T−t)F g(t, T )

{

exp

(

k1 + l1µL +
1

2
l21σ

2
L

)

Φ
(

d̃+1

)

− hΦ
(

d̃−1

)

(17)

+ps

2
∑

i=1

(−1)i
[

exp

(

ki + liµL +
1

2
l2i σ

2
L

)

Φ2

(

d̃+i , g̃
+
i ; λ̃i

)

− hΦ2

(

d̃−i , g̃
−

i ; λ̃i

)

]

}

,

where

d̃+i =
ki + liµL + 1

2 l
2
i σ

2
L − log(h) + 1

2 ς̃
2
i

√

ς̃2i + l2i σ
2
L

, d̃−i = d̃+i − ς̃2i + l2i σ
2
L

√

ς̃2i + l2i σ
2
L

,

g̃+i =
µL − µs + liσ

2
L

√

σ2
s + σ2

L

, g̃−i = g̃+i − liσ
2
L

√

σ2
s + σ2

L

,

λ̃i =
liσ

2
L

√

(ς̃2i + l2i σ
2
L)(σ

2
s + σ2

L)
, ς̃2i = γ2i (1− ρ2)σ2

X .
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4.3. Options on Forwards. The majority of options traded in commodity markets (and espe-
cially on exchanges) reference forward prices as their underlying instead of spot prices. For example,
one may want to price a call option with payoff (F p(T, Tf ) − K)+ at T , or a spread option with
payoff (F p(T, Tf ) − hF g(T, Tf ))

+, where the forwards have maturity Tf greater than the option
maturity T . In practice a modification may often be required to this payoff due to the forward’s
delivery period, especially for options on calendar-month forwards. In this paper we ignore this
complication, and concentrate instead on the simpler payoff structure, for which some closed-form
expressions are feasible. Note that this category includes for example an option which allows the
buyer to decide one day in advance of delivery whether to exercise or not (so Tf − T = 1/365).

An important observation when valuing options on forwards in our structural model is that the
time scales of the dynamics of our factors vary widely between Gt (slowly mean-reverting over
many months), Lt (fairly rapidly mean-reverting over several days) and Xt (extremely rapidly
mean-reverting at an intra-day level). This is important for options on forwards, because the time
(Tf − T ) between forward and option maturity dictates which distributions at time T will be im-
portant. For example, if Tf − T is large enough that XTf

conditional on time T information is
already well-approximated by its stationary distribution, then the forward price F p(T, Tf ) can be
assumed independent of XT , greatly simplifying calculations. Even though most exchange-traded
options mature only a few business days before the beginning of the delivery period of the under-
lying forward contract, given our parameter estimate of κX = 1517, this is already long enough to
make the above assumption and help to obtain some closed-form results.

In the case of options on electricity forwards, no closed-form expression is available, but pricing
by simulation is straightforward and fast thanks to our expression for forwards in (14). On the
other hand, for options on spreads between power and gas forwards, F g(T, Tf ) can be pulled out
of both the payoff function and the expectation, paving the way for a rather complicated formula
for the option price. The result is in the spirit of Geske’s closed-form formula for compound equity
options [15], since it requires first calculating a value of load L̄⋆

T above which the option will be
exercised. L̄⋆

T then appears inside a bivariate Gaussian cdf in the result, as presented in Appendix
A.

5. Revenue Hedging

Despite the growth of interest in recent years from financial institutions, a large proportion of
the trading in electricity forwards and options is carried out by producers and consumers, who
hedge against both upwards and downwards price swings. In particular, we consider here the case
of a retail power utility company, which is classified as a consumer, since it must buy power from
the wholesale market in order to satisfy retail customer needs. Although the real consumers are
individuals and businesses, these end-users are typically subject to a fixed (or slowly-varying) price
per MWh, and hence the power company cannot simply pass on the risk of spot price movements
to its customers. Instead, it faces the choice of waiting and buying the required amount of elec-
tricity each hour from the spot market, or hedging its obligations in advance through the purchase
of forwards, options or some combination of the two. In some cases, utility companies also own
generation assets which act as an alternative hedge for their obligations.

In this section, we shall consider a highly simplified version of this hedging decision, in which we
are only concerned about delivery over a single day in the future, and we make a single hedging
decision today. In other words, this is a static hedge, so we do not consider dynamically re-hedging
through time as maturity approaches. Furthermore, we assume that the firm’s load is perfectly
correlated with the total ERCOT market load Lt, implying that the firm delivers to some fixed
fraction of the market, say w ∈ [0, 1]. (In one case study, we have found correlations of around 90%
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between firm load and market load, with w ≈ 0.5%.) Setting τ = 1/365 and pfixed to be the price
it charges its customers per MWh, the firm’s revenue RT over the one-day period [T, T + τ ] in the
future is given by

RT =
24
∑

j=1

wLTj

(

pfixed − PTj

)

, where Tj = T +
j

24
τ.

We allow trading in the following contracts in order to hedge the firm’s risk:

• Forward contracts with delivery on a particular hour j, with price F p(t, Tj)

• Call options on these forwards, with payoff at Tj − τ of Ṽ p
Tj−τ = (F p(Tj − τ, Tj)−K(j))+

• Spark spread options on forwards, with payoff Ṽ p,g
Tj−τ = (F p(Tj − τ, Tj)− hF g(Tj − τ, Tj))

+

• Call options on the hourly spot power price, with payoff V p
Tj

=
(

PTj
−K(j)

)+

• Spark spread options on spot energy prices, with payoff V p,g
Tj

=
(

PTj
− hGTj

)+
,

where h and K(j) are the heat rates and strikes specified in the option contracts. We allow
the hourly strikes to vary due to the large price variation through the day, and in the base case
consider only at-the-money (ATM) options for all hours. In the base case, we also set t to be
January 1st, 2013, and maturity T = t + 1 to be one year later, as well as fixing constants
r = 2%, pfixed = 50, w = 1 and choosing current values X̄t = L̄t = 0 and log(Gt) = mG.

Note that we do not consider forwards with delivery periods here, but instead forwards on indi-
vidual hours, with prices given explicitly by (14) in our model (and similarly for options on single
hour spot prices, by (16) and (17)). As a result the spread options on forwards that we consider
have prices also given in closed-form in (18) in the appendix. We comment that while exchange
traded forward contracts do not reference specific hours, it is possible to trade such hourly forward
contracts over the counter (OTC) for example through custom-made so-called ‘shape’ products
which tailor to firms’ expected intra-day demand profile. For options on forwards, it is possible to
create and trade all sorts of different products by varying maturities and delivery periods, but for
simplicity here we choose only options which have maturity one day before the delivery hour of the
forward contract. In other words, the buyer must decide at the beginning of one day whether to
buy power at strike K(j) for each hour j ∈ {1, . . . , 24} of the following day.

As our example proposes a static hedge, we are not attempting to eliminate all risk. Instead, we
aim to assess the degree to which each of the power price derivatives listed above can reduce the
risk in the distribution of revenue RT , which depends on load times price. Recall that since price
is itself a function of load in this model, derivatives on price are implicitly also derivatives on load
itself. As a measure of risk reduction, we take the common objective of variance minimization. The
variance of the firm’s profits at T can be written as

Var

(

RT −
N
∑

n=1

θnU
(n)
T

)

where the θ1, . . . , θN represent the quantities purchased of N available hedging products with pay-

offs U
(1)
T , . . . , U

(N)
T . For most of our analysis, we choose N = 1 to compare products one by one.

The effectiveness of each hedge is determined by the covariance of RT and U
(n)
T .

In addition, for simplicity we assume that there is no risk premium priced into forwards or op-
tions: mL = mX = 0 in (5) (and the risk-neutral measure Q coincides with the physical measure
P). As a consequence, the mean of our profit distribution is essentially unaffected by the number

of forwards and options that we purchase. Therefore, the prices U
(1)
t , . . . , U

(N)
t of the products do
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not appear in our objective function given above. While this is of course unrealistic, it allows us
to focus solely on the variance aspect of the hedging problem, instead of requiring a more involved
mean-variance analysis which would yield different conclusions depending on the risk premia of the
different products traded in the market.
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(a) Base case (1 yr, ATM)
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(b) OTM options
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(c) 1 month options
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(d) 5% quantile plot (base case)

Figure 6. Comparison of variance reduction from different hedging strategies (for-
wards vs. various options) under several maturity and strike scenarios. Bottom
right plot instead compares revenue quantile (95% value at risk).

In order to implement this hedging problem, we simulate 200,000 paths of load and price, cal-
culating revenue for each path under different hedging strategies. In Figure 6, we can see the
substantial benefit obtained from using derivative products to hedge risk. In all cases we can
clearly observe an optimal hedge quantity on the plot, above which any further purchases increases
the risk of the portfolio instead of hedging. However, there is significant variation in performance
across products. When taken alone forward contracts are the most effective at variance reduction.
This is perhaps not surprising since they shrink the entire distribution, instead of focusing on one
tail of the distribution like options do. Nonetheless, due to the risk of power price spikes, the rev-
enue distribution is significantly negatively skewed, and hence purchasing even out-of-the-money
(OTM) call options can significantly reduce variance. (Though not plotted, the variance reduction
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from buying puts is of course much less.)

The next most effective hedge after forward contracts is options on spot power, although it should
be noted that these are rarely traded in practice. Spread options on spot power and gas provide
slightly less variance reduction, since they essentially isolate and hedge only the risk of Lt and
Xt, not the natural gas risk. Although such options are also rarely traded as financial contracts,
the profits from a generating asset (ie, a power plant) are commonly approximated (by ignoring
operational and transmission constraints) as spread options (for example, see [7]). Hence, buying a
natural gas power plant can be quite an effective hedge for a power utility company in Texas, and
moreover, in practice it is important to account for any generation assets when making hedging
decisions. In addition, one should consider the purchases of natural gas required to operate the
plant, which would offset the gas price exposure in power prices and potentially provide additional
variance reduction. Finally we note that options on forwards provide substantially less variance re-
duction than options on spot since they do not provide protection against individual hourly spikes.
In other words, deciding one day in advance on which hours to exercise your option is of course
less effective than deciding after witnessing the spike!
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Figure 7. Variance reduction when trading in both options and forwards.

While the ranking of products by hedging effectiveness and the other features discussed above
hold true throughout the four subplots of Figure 6, comparing the different scenarios in the subplots
reveals other interesting insights. Whereas the base case plotted in Figure 6a corresponds to trad-
ing in ATM options, Figure 6b considers OTM options, with strikes 50% higher than in the ATM
case. The effectiveness of variance reduction via options is somewhat reduced, since only a smaller
portion of the tail of the distribution is affected. Since deep in-the-money call options behave much
like forward contracts (except with an upfront premium), it is not surprising that higher strike
calls move us further away from the hedging ability of forwards. Next, in Figure 6c, we shorten
the maturity time T from one year to one month and observe a narrowing of the gap between call
options and spread options in the plots. This is logical since the variance of gas price changes is
much less over one month than over one year, while for load and other noise there is little change.
Hence the one factor left unhedged by spread options is less significant one month before delivery.
Finally, in the last plot (Figure 6d), we note that a utility company may instead be interested in
risk measures other than variance, such as the quantile of the revenue distribution, or equivalently
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the ‘Value at Risk’ of the loss distribution, a common risk management tool. Plotting the 95%
Value at Risk (VaR), we observe that the relationship between the different hedging products is
similar to the variance reduction case, with slight variations in the optimal purchase quantities.

In practice, energy companies typically own large portfolios of both physical and financial assets,
which require continual monitoring and risk management. By combining several different products,
such as forwards and options, even greater variance reduction may be possible than in our simple
single product discussion above. We illustrate this in Figure 7, where purchases of both forwards and
spot spread options are allowed. For clarity, we present the same results both as a surface plot and
a contour plot. We can observe that a minimum in the variance surface appears somewhere in the
middle, implying that simultaneously trading in the two products can provide further risk reduction
than trading in either product alone. However, even in the static case, finding an optimal hedging
portfolio across many maturities and many product types may require a sophisticated optimization
algorithm, and hence we leave this for further work.

6. Conclusion

In this paper we have proposed and fitted a model for the Texas electricity market which is
well suited to addressing common goals of energy companies, such as the pricing and hedging of
portfolios of assets and load-serving obligations. As we have seen, the complexities of electricity
markets require using models with numerous different components, designed to capture features
ranging from high volatility and dramatic price spikes to subtle periodicities in load, price and their
dependence structure. By proposing a structural model with two price regimes, we benefit from
the clean price-to-load relationship of simple stack models, while still reproducing the noisy and
characteristically spikey hourly price series often observed in historical data. Although electricity
markets can vary widely from region to region and may require tailor-made models, we suggest
that our framework is especially suited to spike-prone markets driven predominantly by a single fuel
type, as is the case for ERCOT. Simulated spot prices from the model are found to match well with
observed historical prices. Moreover, we obtain closed-form solutions for forward prices, which is
of great benefit for both calibration and to reduce the computational burden which can sometimes
accompany high-dimensional pricing and hedging applications. Closed-form prices for options are
also available in several cases, including for spread options, products of particular importance in
all energy markets. Lastly, through a simple revenue hedging example, we have illustrated one of
the many practical uses of a joint price and load model for power, an important risk management
tool for any firm exposed to the many intricacies and uncertainties of modern energy markets.
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Appendix A. Pricing Result for Spread Options on Forwards

We begin by introducing convenient shorthand notation for the time-dependent functions given
in (6)-(12). Since we are now pricing an option on a forward, there are three relevant time points
(t < T < Tf ), and we need notation for the three possible variations of these expressions, for
example σL(t, T ), σL(T, Tf ) and σL(t, Tf ). As before, we use simply σL for the first case, but now
introduce σ̃L and σ̂L for the second and third cases:

σL = σL(t, T ), σ̃L = σL(T, Tf ), σ̂L = σL(t, Tf ).

We apply the same convention to σX , µL, µX , ρ, ki, li, letting ‘tilde’ mean (T, Tf ) and ‘hat’ mean
(t, Tf ). We now price at time t a spark spread option (with given heat rate h, and maturity T ) on
power and gas forwards (with maturities Tf ) as follows:

Ṽ p,g
t = e−r(T−t)E

Q
t

[

E
Q
t

[

(

F p(T, Tf )− hF g(T, Tf )
)+|LT

]]

= e−r(T−t)F g(t, Tf )E
Q
t







exp

(

k̃1 + l̃1µ̃L +
1

2
l̃21σ̃

2
L

)



1− psΦ





µ̃L − µs + l̃1σ̃
2
L

√

σ̃2
L + σ2

s









+ exp

(

k̃2 + l̃2µ̃L +
1

2
l̃22σ̃

2
L

)

psΦ





µ̃L − µs + l̃2σ̃
2
L

√

σ̃2
L + σ2

s



− h





+



We now reiterate our assumption that F p(T, Tf ) (and hence the expression in the expectation
above) can be approximated to be independent of XT , given the very rapid mean reversion speed
of X. This simplifies the calculation to a one-dimensional integral, which is solved via the more
general version of (13) for definite integrals. Eventually, we get

Ṽ p,g
t = e−r(T−t)F g(t, Tf )

{

eA1Φ

(

−L⋆ − µL − β1σ
2
Le

−κL(Tf−T )

σL

)

− hΦ

(

−L⋆ − µL

σL

)

+ ps

2
∑

i=1

(−1)ieAiϕ





L⋆ − µL − βiσ
2
Le

−κL(Tf−T )

σL
,
µ̂L − µs + l̂iσ̂

2
L

√

σ̂2
L + σ2

s

;
−σLe

−κL(Tf−T )

√

σ̂2
L + σ2

s











(18)

where

ϕ(x, y;λ) = Φ(y)− Φ2(x, y;λ)

and for i ∈ {1, 2},

Ai = k̂i + l̂iµ̂L +
1

2
l̂2i σ̂

2
L.

Finally L⋆ is defined to be the value of load at time T above which the option is in-the-money
and thus satisfies F p(T, Tf ) = hF g(T, Tf ), or equivalently L⋆ = L̄T such that

exp

(

k̃1 + l̃1µ̃L +
1

2
l̃21σ̃

2
L

)



1− psΦ





µ̃L − µs + l̃1σ̃
2
L

√

σ̃2
L + σ2

s









+ exp

(

k̃2 + l̃2µ̃L +
1

2
l̃22σ̃

2
L

)

psΦ





µ̃L − µs + l̃2σ̃
2
L

√

σ̃2
L + σ2

s



 = h.

where the dependence on L̄T appears in µ̃L and hence also in k̃1 and k̃2. In our experience with
the ERCOT market parameters, we find that a unique L⋆ always exists for any h > 0. We also
note that as h → 0, L⋆ → −∞, and (18) converges to e−r(T−t)F p(t, Tf ), which is given by (14).
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[2] R. Aı̈d, L. Campi, and N. Langrené. A structural risk-neutral model for pricing and hedging power derivatives.
Mathematical Finance. Published online Feb. 13, 2012.

[3] M. Barlow. A diffusion model for electricity prices. Mathematical Finance, 12(4):287–298, 2002.
[4] F.E. Benth, J.S. Benth, and S. Koekebakker. Stochastic Modeling of Electricity and Related Markets. World

Scientific.
[5] M. Burger, B. Klar, A. Müller, and G. Schindlmayr. A spot market model for pricing derivatives in electricity

markets. Quantitative Finance, 4:109–122, 2004.
[6] R. Carmona and M. Coulon. A survey of commodity markets and structural models for electricity prices. In F. E.

Benth, V. Kholodnyi, and P. Laurence, editors, Quantitative Energy Finance: Modeling, Pricing and Hedging in

Energy and Commodity Markets. 2013.
[7] R. Carmona, M. Coulon, and D. Schwarz. Electricity price modeling and asset valuation: a multi-fuel structural

approach. Mathematics and Financial Economics, 7(2):167–202.
[8] A. Cartea and M. Figueroa. Pricing in electricity markets: A mean reverting jump diffusion model with season-

ality. Applied Mathematical Finance, 12(4):313–335, 2005.
[9] A. Cartea, M. Figueroa, and H. Geman. Modelling electricity prices with forward-looking capacity constraints.

Applied Mathematical Finance, 16(2):103–122, 2009.
[10] A. Cartea and P. Villaplana. Spot price modeling and the valuation of electricity forward contracts: the role of

demand and capacity. Journal of Banking and Finance, 32:2501–2519, 2008.
[11] M. Coulon and S. Howison. Stochastic behaviour of the electricity bid stack: from fundamental drivers to power

prices. Journal of Energy Markets, 2:29–69, 2009.
[12] C. De Jong and R. Huisman. Option pricing for power prices with spikes. Energy Power Risk Management,

7:12–16, 2003.
[13] A. Eydeland and H. Geman. Pricing power derivatives. Risk Magazine, 10:71–73, 1998.
[14] H. Geman and A. Roncoroni. Understanding the fine structure of electricity prices. Journal of Business, 79,

2006.
[15] Robert Geske. The valuation of compound options. Journal of Financial Economics, 7:63–81, 1979.
[16] B. Hambly, S. Howison, and T. Kluge. Modelling spikes and pricing swing options in electricity markets. Technical

report, 2009.
[17] J. Hull and A. White. Pricing interest-rate derivative securities. The Review of Financial Studies, 3(4):573–592,

1990.
[18] J.H. Kim and W.B. Powell. An hour-ahead prediction model for heavy-tailed spot prices. Energy Economics,

33:1252–1266, 2011.
[19] M. Lyle and R. Elliott. A ”simple” hybrid model for power derivatives. Energy Economics, 31:757–767, 2009.
[20] C. Pirrong and M. Jermakyan. The price of power: The valuation of power and weather derivatives. Journal of

Banking and Finance, 32:2520–2529, 2008.
[21] E. Schwartz. The stochastic behaviour of commodity prices: Implications for valuation and hedging. The Journal

of Finance, 3:923–973, 1997.
[22] P. Skantze, A. Gubina, and M. Ilic. Bid-based stochastic model for electricity prices: the impact of fundamental

drivers on market dynamics. MIT E-lab report, November 2000.
[23] A.E.D. Veraart and L.A.M. Veraart. Modelling electricity day-ahead prices by multivariate lvy semistationary

processes. In F. E. Benth, editor, Financial Engineering for Energy Asset Management and Hedging in Com-

modity Markets; Proceedings from the special thematic year at the Wolfgang Pauli Institute, Vienna. 2012.
[24] R. Weron, M. Bierbrauer, and S. Truck. Modeling electricity prices: jump diffusion and regime switching. Physica

A: Statistical Methods and its Applications, 336:39–48, 2004.

22


