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ABSTRACT: We consider the problem of partial hedging of derivative risk in a stochastic
volatility environment. It is related to state-dependent utility maximization problems in
classical economics. We derive the dual problem from the Legendre transform of the asso-
ciated Bellman equation and interpret the optimal strategy as the perfect hedging strategy
for a modified claim.

Under the the assumption that volatility is fast mean-reverting we derive, using a singular
perturbation analysis, approximate value functions and strategies that are easy to implement
and study. The analysis identifies the usual mean historical volatility and the harmonically-
averaged long-run volatility as important statistics for such optimization problems without
further specification of a stochastic volatility model. The approximation can be improved
by specifying a model and calibrated for the leverage effect from the implied volatility skew.
We study the effectiveness of these strategies using simulated stock paths.

KEY WoRDS: Hedging of options, stochastic volatility, asymptotic analysis, dynamic pro-
gramming, utility maximization, Hamilton-Jacobi-Bellman equations.

1. INTRODUCTION

We consider the problem of computing an optimal partial hedge for a derivative security
when the underlying asset is modeled to have uncertain volatility. Stochastic volatility
models are popular in the financial industry as the inadequacy of models with constant or
slowly-varying volatility, especially the Black-Scholes model, has become apparent. They
have been successful in accounting for the “smile effect” of traded options prices, where the
classical Black-Scholes model performs poorly.

There are, however, a number of difficulties that prevent the Black-Scholes methodology
of pricing and hedging by replication from going over directly to the stochastic volatility
case. In the constant volatility world, the no arbitrage principle leads to a unique price
of any derivative security, in terms of the price of the underlying asset and, possibly, its
history. Additionally, the Black-Scholes analysis gives a replicating strategy by which the
risk of a short position in any derivative can be perfectly hedged by dynamically trading in
the underlying asset. The cost of the hedge, the premium that must be put up to enter into



it, is, if the market is arbitrage free, the Black-Scholes price of the derivative. In this model,
the market is said to be complete.

In a stochastic volatility world, where we always think of the volatility as having an inde-
pendent random component from the asset price, no arbitrage is not sufficient to determine
a unique price for contingent claims, and in general, they cannot be perfectly replicated
(without overshooting) by a trading strategy in just the asset. This is the most common
example of an incomplete market!. Strategies which superreplicate might be available, and
have been extensively studied (Avellaneda et al., 1995; Karatzas and Shreve, 1998; Karoui
and Quenez, 1995), but the cost of these hedges is related to the worst-case volatility scenario
and they tend to be very expensive (Frey, 1996). In other words, the worst-case is, under
most models, pretty bad and pessimistic pricing and hedging is not satisfactory for practical
purposes.

It is possible to replicate a contingent claim exactly by dynamically trading in other
derivatives (“delta-sigma” hedging), but this is associated with much larger transaction costs.
Some component of the risk may be absorbed by static positions in the other derivatives. The
problem is then to hedge the remaining exposure by dynamic strategies in the underlying.

We are interested here in how best to hedge a contingent claim, according to some per-
formance criterion. If an institution is not willing to pay the large amount needed to guard
against the worst case, how well can it do with a given lesser premium? This question can
be asked in a complete market environment too, and has been solved recently (Follmer and
Leukert, 2000; Cvitani¢ and Karatzas, 1999). The answer is to perfectly hedge a cheaper
claim whose Black-Scholes price is equal to the premium put up.

The same problem in a general incomplete market setting has also been studied. It is
closely related to the classical economics problem of maximizing expected utility, and ex-
istence and uniqueness results about an optimal strategy, exploiting the semimartingale
property of asset price models that exclude arbitrage, appear in (Kramkov and Schacher-
mayer, 1999) and also in (Follmer and Leukert, 2000). Existence is also proven in It6 models
in (Cvitani¢, 2000). The answer is again to hedge a cheaper claim, but the structure of the
new security is not transparent. Even in the simplest examples, it is not obvious from these
results how to compute the best partial hedging strategy, since the dual problem, whose con-
struction is a powerful tool of the convex analysis methods commonly used in these problems,
is typically just as difficult.

In this article, we study the problem within a class of stochastic volatility models, analyzing
the associated Hamilton-Jacobi-Bellman (or simply Bellman) partial differential equation
(PDE). The main tool, convex duality and the Legendre transform are reviewed first in
the context of constant and time-dependent deterministic volatility and then for stochastic
volatility models.

We then exploit volatility clustering or fast mean-reversion to analyze the dual Bellman
equation by asymptotic approximations. The existence of a fast time-scale of volatility fluc-
tuation in financial data has been shown in the empirical analysis of S&P 500 high-frequency
data in (Fouque et al., 2000c¢), and also in exchange rate dynamics in (Alizadeh et al., 2001),
and we summarize those findings in Section 6.1. This property is used to construct two hedg-
ing strategies that well approximate the optimal ones. The first depends on the volatility
model mainly through the average volatility & := (0?)!/? and the harmonic average volatility

1Other examples include models with jumps such as in (Duffie et al., 2000). Here the incompleteness
problem is even more difficult, but this approach is also successful in explaining the smile.



0. = {0, %)71/2 where (-) denotes expectation with respect to the natural invariant measure

for the underlying volatility-driving process and (o;) is the volatility process. This strategy
is extremely robust in that it does not need full specification of a stochastic volatility model,
only estimation of these statistics of volatility and the present volatility level.

The second approximate strategy, which is a better approximation to the optimal strategy
for a fully specified volatility model, is given in terms of certain volatility group parameters
that can be estimated in a relatively robust manner from traded option prices and the form
of the stochastic volatility model. In fact what is needed about the rate of mean-reversion
of volatility and the correlation (or leverage) effect, which are the hardest parameters to
estimate from historical data, is obtained from the observed implied volatility skew.

Finally, we numerically compute the expected loss from the approximate hedging strategies
and examine the behavior of the strategies on simulated stock paths.

2. NoTATION & FORMULATION

Let (X});>0 denote the underlying asset price (which we shall also refer to as the stock price,
though it could be an exchange rate or a commodity price), modeled as a stochastic process
on a probability space (€2, F,P) equipped with an increasing filtration (F,);>¢ representing
information on X at time ¢. We assume that the stock price is known at time ¢ = 0 (now),
so that Fy is trivial.

An investor with initial capital v holds 7; dollars worth of the stock at times 0 < ¢ < T,
where T" < oo is some fixed time horizon, the maturity of the derivative contract we are
interested in hedging. We assume that he or she trades in a self-financing manner, meaning
that there is no further injection or extraction of capital after time ¢ = 0, so that the value
V; of his or her portfolio at time ¢ is given by

t
(2.1) V;:H/des,ogtgﬂ
0 Xs
when, as we shall henceforth assume, the interest rate is zero. The strategy process (m;)o<i<r
is predictable and suitably regular so that the stochastic integral in (2.1) is well-defined.
The investor holds a short position in a contingent (European) claim that pays h(X7) on
expiration date T', where h satisfies

FE{h(Xr)?*} < <.

The problem is to find a strategy (m;)o<;<r such that, starting with initial capital v, the
value of the hedging portfolio Vr at time T comes as close as possible to A(Xr). We want
the performance of the strategy to be penalized for falling short, with the actual size of
the shortfall taken into account, but when the strategy overshoots the target, the size of the
overshoot has no bearing on the measure of risk. For the explicit computations and examples
here, the penalty function we shall use is

B{5((h(Xr) Vi),

the one-sided second-moment, where £ = max{x, 0}.

One could also consider IE{I((h(Xr)—Vy)T)}, where I(-) is a positive convex loss function
with [(0) = 0, (as in (Foéllmer and Leukert, 2000)). This allows control of one’s risk aversion.
Typical examples are [(z) = 2P /p for p > 1. The analysis is identical up to changing terminal
conditions.



We shall also insist that V; > 0 for all 0 < ¢ < T almost surely for the strategy to be
admissible. That is, the hedging portfolio is bounded below by zero, a portfolio constraint.
The problem is to solve

2:2) Lmin (5 ((h(Xr) - Vi) ')

where V is defined in (2.1), given the initial premium v, subject to
(2.3) V;>0, forall0 <t <T.

The problem (2.2) is reminiscent of wutility mazimization and we shall reformulate it as
such, following (Follmer and Leukert, 2000). Namely, we consider the (state-dependent)
utility function

Ue,w) = 3 [(@)” ~ (h(x) )Y

For fixed z, this is concave in v on (0, 00), strictly concave on (0, h(z)) and satisfies U(z, 0) =
0, U(z,v) = 3h(z)? for v > h(z) (see Figure 1 for an illustration).

~
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FIGURE 1. Terminal conditions: if h(Xr) is the European claim we want to hedge,
for the one-sided second-moment loss function, these are typical graphs of the func-

tions
U(e,0) = 3ha)? = 5 (h(x) o)) Gla,2) = ((x) = 2)*
0(r,2) = 5 ((h(a) — 2)*)’
as functions of v (or z) for fized X7 = x.

It is then easy to see that (2.2) is equivalent to
(2.4) sup IFE{U(Xr,Vr)},

(Wt)ogth

subject to (2.3).

3. CONSTANT VOLATILITY

In this section we assume that the stock price is lognormal, which is an example of a
complete market model. We rederive, from the Bellman PDE, the optimal partial hedging
strategy as found in (Féllmer and Leukert, 2000) and (Cvitani¢ and Karatzas, 1999).
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3.1. Bellman PDE. We assume that we are in the Black-Scholes world, that is the stock
price (X;) and the value process (V;) satisfy:

dXx
(3.1) —L = pdt + o dW,
Xy

d% = T¢lb dt —+ Mo th,

for a strategy m;. Here p and o are constants and (W;) is a Brownian motion. We shall often
use for brevity the following notation for the infinitesimal generators:

o 1,0
e =g 57 g
0 2 282 2 2
Emv—ﬁm a_ ’S a 9
+7ruav+27r0(%2+7mxaxav

By the dynamic programming principle, the maximum expected utility
H(t,z,v) =sup IF,, ,{U(Xr, Vr)}

is conjectured to satisfy the Bellman PDE
H,+sup L, ,H =0,
i.€.
1
(3.2) H;, + L,H + sup <7r(,qu + o?xH,,) + §7r202Hm> =0,

inx >0,v>0,t<T. The terminal condition is
H(T,z,v) =U(z,v),
and the boundary condition is
H(t,z,0) = 0.
If one can find a classical solution of this equation to which It6’s lemma can be applied, then
proof of optimality follows from a verification theorem. See (Fleming and Soner, 1993), for
example.
The maximum in (3.2) occurs for

(uH, + o*xH,,)

o’H,,

(3.3) T (t,x,v) = —

and so we get the fully nonlinear PDE
(uH, + o*xvHy,)?

3.4 H, + L, H—
(34) et 202H,,

=0.

3.2. Legendre transform. The nonlinear PDE (3.4) can be replaced by a linear PDE by
applying the Legendre transform. We assume initially that H is convex in v and we consider
the convex dual H of H (with respect to the variable v). This is defined by

~

(3.5) H(t,z,z) :=sup{H(t,x,v) — 2v} 0<z< o0
v>0

and is convex in z. We will also use

(3.6) g(t,z,2) = inf{v >0| H(t,z,v) > zv + ]f[(t,x,z)} ,
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roughly speaking, the smallest maximizer in (3.5). Under suitable smoothness assumptions
we have g = H, !, the inverse of marginal utility, and g = —H,.

The Bellman PDE (3.4) for H implies the following equations for H and ¢ (see Appen-
dix A.1):

A 12, - A
(3.7) H,+ L H + 5%221@2 — przH,, =0,
2 2
p 1 Lp
(38) gt + ?zgz + 50237291:1: — HTZGz- + §§z29zz - O:
in the domain z > 0, z > 0 and ¢ < T. Notice how the partial derivatives with respect

to z appear as logarithmic derivatives, that is, they are of the form zngz—nn. This is the

first indication that the dual variable z is related to a change-of-measure (Radon-Nikodym)
process.
The terminal conditions are

ﬁ(T,LE,z) = U(m,z), 9(T,z,2) = G(x, 2),
where U and G are defined by

Uz, 2) := sup {U(x,v) — 2v}

v>0
G(z,z) := inf{v >0|U(z,v) > zv—l—f](x,z)}.

These are illustrated in Figure 1. Both are convex in z, inherited from the convexity of U in
v. Tt follows from (3.7) and (3.8) that H and g are smooth away from maturity, and convex
in z. In fact for ¢ < T, they are strictly convex. As a consequence, H(t,z,v) is convex in v,
strictly convex and smooth for t < 7.

3.3. Interpretation. Notice that (3.7) and (3.8) are both linear PDE’s. This is typically
the case for duals of value functions in utility maximization problems in complete markets.
See (Karatzas and Shreve, 1998, Chapter 3) for references. In the case of a power (HARA)
separable utility function of the form U(z,v) = wu(z)v?/p, the value function inherits the
power dependence (as in the original Merton solution (Merton, 1969)) and convex duality is
the same as looking for a “distortion power” solution H(t,z,v) = H(t, )" Pv?/p (see (Za-
riphopoulou, 1999)). The connection is that the dual H also has power dependence, and in
fact

~ 1 — p B o\~

H(t,x,z) = (T) 2 PP (¢ ).

In our case, the linear PDEs can be interpreted as expectations as follows. Define the

process (Z;) by the SDE

(3.9) az, = Lz, aw,.
g
Then (3.7) shows that
(3.10) H(t,2,2) = By {U(Xr, Zr)}.

In fact, depending on the initial condition, (Z;) is proportional to the density process for the
unique equivalent martingale measure (EMM) @ ~ P under which the price process (X;) is
a martingale.



By Girsanov’s theorem, we have (under Q)

dX
7: = o dWf
dz, @
= —dt — = d
Zt 0_2 Wt ’
where (W) is a Q-Brownian motion. From (3.8), it follows that
(3.11) 9(t.2.2) = B, AG(Xr, Zr)},

the no-arbitrage price of the derivative security that pays G(Xr, Zr) on date T.

This observation is interpreted as follows: given (¢, x,v), find z (uniquely) such that the
no-arbitrage price of the claim G(Xr, Zr), with X; = x, Z; = 2z, is exactly v. Then the
maximum expected utility H (¢, z,v) is given by

H(t,x,v) = zvo+ H(t,z, 2).

More importantly, the optimal strategy is the hedging strategy for the claim G(Xr, Zr).

To see this we first notice that, on the one hand, (3.3) implies

) B 1
(3.12) T (t,x,2) = xg, — 329

(see Appendix A.1). On the other hand, if the price of the claim G(Xr, Zr) at time ¢ is
given by some smooth function g(¢, Xy, Z;), with
(3.13) §(T,2,2) = G(z, 2),

then we can try to set up a riskless and self-financing portfolio containing the claim and —A;
units of stock, i.e.

Ht = Q(t, Xta Zt) - AtXt-

By It6’s Lemma we have (under the real-world measure):

2
57 Xibes t 53

+ [athm - gztgz — AwX,| AW,

1 Lu? _,. _
dH gt + _Zt Gzz — ,U/XtZtg:cz - At/LXt dt

using also the self-financing property. Thus the portfolio is instantaneously riskless if and
only if

NZt~

Ay = §.(t. X4, Zy) — X, —0.(t, Xy, Z3).

Further, by no-arbitrage, § must satisfy the PDE.

2 2
gt + 30—2372911 - ,U/xz.amz + ;MQZ gzz + %Zgz — O:
which is the same as the PDE (3.8) satisfied by g. The terminal condition (3.13) for § is
the same as that for g, and so, from uniqueness, g = g. Thus 7} = A; X, and is exactly the
hedging strategy for the claim G(Xr, Zr).
These results are given more generally, for arbitrary complete semimartingale market
models in (F6llmer and Leukert, 2000) and (Cvitani¢ and Karatzas, 1999).
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In the case of the lognormal model (3.1), it follows from the geometric structure of

both (3.1) and (3.9) that
Zp = XM

for a constant ¢ (depending on z, z, u, o). Hence the optimal strategy is a hedging strategy
for a European claim G(Xp, Zp) = G(Xr;z), where the initial value z is chosen so that
the price of this claim is exactly the initial capital v. Thus the European structure of the
hedging strategy is preserved under partial hedging. This remarkable fact is an artifact of
the constant volatility assumption and will not hold in more general models.

This type of result where a modified or reduced terminal payoff absorbs the “departure
from Black-Scholes” is seen in other contexts too, for example in superhedging of claims
under portfolio constraints (Broadie et al., 1998).

3.4. Explicit Computation: Call Option. For the call option with strike price K, the
payoft is
h(X7) = (X7 — K)*.

The modified payoff function G(X7; 2) is given by
. 2y +
G(Xp;2) = ((XT - K)t - ch;“/g ) ,

and the typical shape is shown in Figure 2.
The formula

9(t,z,2) = EL{G(Xr; 2)}

gives
(3.14)  glta.2) = oN(dy + oVT) = KN(d) - 2e7 " N(d — £/7),
H(t,z,z) = %x26(2“+”2)7]\7(d; + (20 + g)\/F) + %KQN(dQ + ;\/F)
+ %ZQeZ_zTN(d; — gﬁ) — 2Ket"N(dy + (0 + g)\/F)
(3.15) — 22N (dy + 0/7) + KzN(ds).

where 7 =T —t, N(-) is the standard normal cumulative distribution function, and dy is the
unique solution of the equation

_1 2 e I
ze~ 30T U\/?dQ_K 262 2T+ \/_d2:0.

This is illustrated in Figure 2.
Notice that when z = 0,
7 log(z/K) — 30°T
2 — 0\/7—_ ’
which is the usual “dy” appearing in the Black-Scholes call option pricing formula. In
this case, the investor has sufficient capital to hedge the call option perfectly, G(XT; 0) =
(X7 — K)*, and g(t,,0) is just the Black-Scholes call option pricing function.
Finally, the optimal hedging ratio A; = 7} /X is given from formula (3.12) by

A(t,.ﬁE,Z):N(dg—FU\/_)—F—ﬁC "N(dy — 'U;/F).

See Figure 2 for a graph.
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FIGURE 2. Reduced call options. The first picture shows the payoff functions
é(x;z), x = X for the reduced call for z = 0, z = 1 and z = 10. The second
picture shows the prices g(t,x,z) of the three claims as a function of v = X; with
T —t = 0.5. The third picture shows the deltas A(t,z,z). Notice that a large z
corresponds to a cheap option and that z = 0 gives the standard call. The price
function g(t,x,z) is a decreasing function of z (for fized t and x); this is not true
for the delta A(t,x,z). In fact, we can have A > 1 near the expiration date and

deep in the money.

4. TIME-DEPENDENT VOLATILITY

A slight extension of the Black-Scholes model is obtained by allowing volatility to be time-
dependent but deterministic: o = o(t). This market is still complete, but the simplicity of
the constant volatility calculation, in which the European structure is preserved under partial
hedging, is lost, and the optimal strategy involves hedging of a path-dependent claim. We
present, the calculation of this case here in some detail, not because this is a useful model
in practice, but because it is a natural bridge to the stochastic volatility models we want to
study and, in particular, their analysis by asymptotic methods. It highlights the key features
of the stock price and the volatility paths that the new claim depends upon.

While the analysis of Sections 3.1 and 3.2 carry over directly in this more general case,
replacing o by o(t), the interpretations will not be the same as in Section 3.3. The model



for the stock price (X;) and the value process (V) is:

dXx
(4.1) —L = pdt + a(t) dW,
Xi

d% = T4 dt + 7Tt0'(t) th,

for a strategy m;, where o(t) is a deterministic function of time.
The Bellman PDE for the value function H(t,z,v) is

(4.2) H,+ £, H—

(uH, + o(t)*xH,,)? _9

20(t)2H,
where

L,H = prH, + %a(t)Qaj?Hm.
The optimal strategy is given by

(uH, + o(t)*xHy,)
o (t)2Hy, '

(4.3) ™ (t,x,v) = —

By applying the Legendre transform (3.5)- (3.6) as before, we get linear PDE’s for H and
g:

2

~ ~ 1 7 ~ ~
4.4 H + L, H+ = ’H,, — pxzH,, =0,
(4.4) ¢+ + 5 a(t)QZ HTz
M2 1 2 2 1y 2
45 o z = t rxr — xz ’S 2z — 07
(4.5) 9+ S E + 50(1)°27ges — pxzg @

with terminal conditions

H(T,z,2) = Uz, 2), 9(T,x,z) = G(x, 2).

4.1. Interpretation. The interpretation of 7* as the hedging strategy for a new claim
G(Xr, Zr) still holds. Now (Z;) satisfies

W
dzy = ———7Z,dW,,
t U(t) t t
and so is still proportional to the density process for the unique EMM (). However, if
o(t) is nonconstant, then Zr is not a point function of X7, and so the claim G(Xr, Zr) is
path-dependent.
In this case,

T T 2
uo dX; 1/ 1
4.6 I = — — d
(4.6) T ZexP( /1t 265X, 2/, #2e%)

so the optimal strategy is to perfectly hedge the claim which pays G(Xr, Z7), the payoff
at time T depending on the terminal price X¢ and the volatility-path-weighted return (4.6).
The constant z is chosen so that the price of this claim is equal to the initial capital v.

10



Finally, notice from (4.4) and (4.5) that H(t,x,z) and g(t,z, z) depend on the volatility
path {o(s) : t < s < T} only through the averages

1 T
(4.7) o= T——t/t o(s)2ds
1
(48) 0'* = : = - .
\/ T—1 ft st

This can be seen, for example, by changing to logarithmic spatial variables (log z,log z) to
obtain constant (in space) coefficient PDEs and then taking the Fourier transform in both
spatial variables to obtain a linear ODE which can be integrated. The dependence on the
integrals in (4.7) and (4.8) survives the inverse Fourier and Legendre transforms (which act
only on the spatial variables) and so the value function H (¢, z,v) also depends only on these
averages.

However while the optimal expected utility (or equivalently the minimum expected short-
fall from hedging) only depends on the volatility path through these averages, formula (4.3)
shows the optimal strategy depends on the whole path because 7*(¢, z,v) depends explicitly
on o(t). The volatility must be entirely known to use the best strategy. This observation
will be important in using the asymptotic results of Section 6.

We always have the inequality o, < &, and equality holds if and only if o(¢) is a constant
function. This follows from Jensen’s inequality. The extent to which o, differs from & is a
measure of the size of the fluctuations of volatility. We will come back to this in Section 6.

5. STOCHASTIC VOLATILITY

We are interested in more realistic market models, particularly ones in which volatility
is uncertain. Motivation for stochastic volatility models and their success in describing the
observed implied volatility skew from traded European option prices is described in (Fouque
et al., 2000a), for example. There are a number of practical complications that arise from this
generalization, in particular because volatility is not a directly observed or traded process.
We cannot perfectly hedge derivatives by trading in just the underlying stock, though we
may be able to by selecting another derivative security as part of the hedge. As explained in
the introduction, we are interested in computation of less prohibitively-expensive strategies
that dynamically trade only the underlying and allow possibility of shortfall.

5.1. Volatility Mean-Reversion. Mean-reversion as a much-observed characteristic of eq-
uity, FX and commodity volatility is important to model, as is the correlation between
volatility and asset price shocks which directly accounts for the skew and asymmetry in
empirical returns distributions. For this reason we write our canonical class of stochastic
volatility models as a positive function of a simple ergodic It6 process, a mean-reverting
Ornstein-Uhlenbeck process:

L,

(5.1) —L = pdt + f(Y) AW,
t
(5.2) dY, = a(m — Y,)dt + B <det /12 dBt)

11



Here the volatility process is

Oy = f(}/t)a
and (W) and (B;) are independent Brownian motions with —1 < p < 1 the instantaneous
correlation coefficient between asset price and volatility shocks. The factor (Y;) is called the
volatility-driving process and f is some positive suitably regular function whose specification
is unimportant for the principal asymptotic approximation derived in Section 6.

5.2. Bellman PDE. The maximum expected utility
H(t,x,y,v) =sup Ey 4, {U(Xr, Vr)}

is now a function of the additional state variable and is conjectured to satisfy the Bellman
PDE

Hy+sup Ly, H =0

i.e.

1
(5.4) Hy + L, H + sup (W(qu + f(y)*xHy, + pBf(y)Hy,) + §7r2f(y)2Hm> =0,
where

1 1
£937?JH = MIHx + a(m - y)Hy + §f(y)2m2H:v:v + pﬁf(y)IH:vy + §ﬁ2Hyya

the infinitesimal generator of (X, Y}).
The max in (5.4) occurs for

(nH, + f(y)’xHy + pBf(y)Hyy)
f(y)?H,,

(5.5) 7 (t, Y, v) = —

and so we get the fully nonlinear PDE

(4Hy + f(y)*eHey + pBS (y) Hyp)?
2f(y)?Hyy
in the domain x > 0, —oo <y < 0o, v > 0 and ¢ < T" with terminal condition

H(T,z,y,v) =U(z,v).

Remark: Tt follows from a general result in (F6llmer and Leukert, 2000) based on the dual-
ity theorem in (Kramkov and Schachermayer, 1999) that H is convex in v. As in the constant
volatility case, we shall work with the Legendre-transformed variables for interpretation of
the optimal strategy in Section 5.4 and also computation using asymptotic approximations
in Section 6.

(5.6) Hy+ Lo H — =0

5.3. Legendre transform. We again consider the convex dual HofH (with respect to the
variable v). This is defined by

H(t,x,y,v) == 81;13 {H(t,z,y,v) — zv}
v
and is convex in z (from the concavity of H(t,z,y,v) in v). We will also use
g(t,z,y,z) = inf{v >0 H(t,z,y,v) > zv+ﬁ(t,x,y,z)}.
The function g should be thought of the inverse of marginal utility; under suitable smoothness

assumptions we have g = H, ' = —H,.
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The Bellman PDE for H implies the following equations for H and ¢ (see Appendix A.2):

A

(5.7 H,+L ]fl+1 w2 2H,, — uxzH _@Z}} _}52(1_p2)H§z:0
z,y Qf(y)2 2z xz f(y) yz 9 HZZ ,

L@ pBu 1

9t + Loyg+ =570 — fT2G0, — 20y + =529

t 2 f(y)? ) 7T )2

pBu R o [20090: 9,
5.8 —uzgy — g — =B — p?) |2 Tvg =,

(5.8) % 2 ( ) . ,

with terminal conditions

A A

H(T,z,y,z) =U(x,2), 9(T,z,y,2) =Gz, 2).

Note that, in contrast to the constant volatility case, these are still nonlinear PDEs.

5.4. Interpretation. One can see that (5.7) is the Bellman PDE for the stochastic control
problem

H(t,z,y,2) = inf By, , {U(X7, Y7, Z))}
B!
where (X;,Y}) satisfy (5.1) and (5.2), and (Z;') is defined through

(5.9) dz) = —%Zﬁ AW, + v, dB,.

We will also see that the optimal strategy is the perfect hedging strategy for the claim
G(Xr, Z1), where Z7 is the density process of the “optimal” EMM. To this end we observe
that (see Appendix A.2)

(5.10) T (t,z,y,2) = xg; + %gy — f(Z)ngz

We know that the Radon-Nikodym process of any EMM is proportional to Z = Z7 for
some suitable process (7). This follows from Girsanov’s theorem and can be thought of
as follows: the first Brownian motion (W;) must be “shifted” (by a drift) so that (X;) is
a martingale or has drift zero in (5.1). However the second Brownian motion (B;) can be
shifted arbitrarily (up to regularity) by some adapted process (7).

Let us try and choose (7;) so that the claim G(Xr, Z)) can be hedged perfectly with just
the underlying. Suppose first that the price of this claim at time ¢ is given by ¢(¢, Xy, Y3, Zy),
for some smooth function g to be determined, with

g(T’ 1‘7 y’ Z) = G(‘/L‘7 Z)'
Then consider the portfolio containing the claim and —A; units of stock at time t:
I, = Q(t, Xy, Vi, Z?) — A X

13



The portfolio is traded in a self-financing manner and by It6’s Lemma we have:

d]._.[t(t; Xt; }/t, Zt) |:gt -+ L ’yg ILLXt tg:vz <,Y/6\/7 /’[/ﬁp ) »

12

+% (72 + L (7)) ) G2z — AuXt} dt

+ [f(Yt)thm + pBijy — ﬁzzgz = Atf(Yt)Xt] aw,

+ [BvT= 3, + 3| dB.
Thus the portfolio is instantaneously riskless if and only if we choose
_ Bp . Iz . g
Ay =g, + — Z)g, and = —By/1—p2Z.

Normally we would not expect to be able to hedge most claims perfectly by trading in only
the stock, but the extra parameter v allows us to do this in this case. By no-arbitrage, ¢
must satisfy the PDE

N Lo, . pBu . .
g + Em, g + 3 2022 — MWTZGz: — 7~ %0y + 7/ 9”9
P f(y)2 fy)™ " f(y)?

~oYzz:
z z

P L [2§y§yz_ﬁ_i~ ]:
HGa = 9 BE(1—p7) | — 0

But this is exactly the (transformed) Bellman PDE (5.8) satisfied by g. Since g and g also
have the same terminal condition, we conclude that § = ¢g by uniqueness.
Therefore, we have

bp L - A
JO) X JEP X

9
(5.12) = =BT = o2 g—y.
Comparing (5.11) with (5.10), we see that 77 = X;A,, and so is the hedging strategy for the

claim G(Xr, Z)), where 7 is chosen so that this claim can actually be hedged perfectly by
trading only the stock.

(5.11) Ay=g,+

6. ASYMPTOTICS FOR PARTIAL HEDGING

In this section, we study the effect of uncertain volatility on the partial hedging strategies
and optimal expected shortfall. We take advantage of fast mean-reversion or clustering in
market volatility that is described in (Fouque et al., 2000a) and use a singular perturba-
tion analysis to find relatively simple hedging strategies that well approximate the optimal
one. The empirical basis for this approach is described in the study of S&P 500 data
in (Fouque et al., 2000c), and summarized in Section 6.1 below. The analysis in Section 5
still has not yielded a way to compute optimal strategies short of solving one of the nonlin-
ear PDEs (5.6), (5.7) or (5.8) which have three spatial dimensions. One of the benefits of
the approach described here is easing of this dimensional burden. Hedging under uncorre-
lated stochastic volatility is also studied in a nonparametric way using asymptotic methods
in (Sircar, 2000; Sircar and Papanicolaou, 1999).

14



In the zero-order approximation derived here, two kinds of average volatilities emerge: 7 :=
(62)1/? and o, := (072)71/2, where (-) denotes a particular averaging procedure described
below. The first-order approximation also takes information from the observed implied
volatility skew from traded options prices to account for the effect of volatility correlation, or
asymmetric returns distributions. Other market information that is needed can be estimated
from this in a relatively robust manner.

6.1. Fast Mean-Reversion of Volatility. In (Fouque et al., 2000c), we studied high-
frequency S&P 500 data over the period of a year to estimate the order of the rate of
mean-reversion of volatility. The major difficulty with high-frequency data is pronounced
intraday phenomena associated with microscopic trading patterns as described, for example,
in (Andersen and Bollerslev, 1997). In (Fouque et al., 2000c¢), it was shown how this periodic
day effect’” impacted the variogram and spectral methods used to analyze the data, and
therefore how to account for it.

The result was, for the S&P 500 data examined, the clear presence of a fast time scale of
volatility fluctuation, corresponding to a rate of mean reversion o ~ 130 —230 (in annualized
units). The important qualitative information here is two-fold: first that the rate of mean-
reversion of the unobserved volatility process is extremely difficult to estimate precisely,
hence the large range. This was confirmed from tests on simulated data. Second, we can
nonetheless be precise about the order of magnitude of o from this estimate: it is large.

Many empirical studies have looked at low-frequency (daily) data, with the data necessarily
ranging over a period of years, and they have found a low rate of volatility mean-reversion.
This does not contradict the empirical finding described above: analyzing data at lower
frequencies over longer time periods would primarily pick up a slower time-scale of fluctuation
and could not identify scales at the same order as the sampling frequency. The combined
conclusions suggest that there are (at least) two important scales in volatility, and has led
recently to the study of two-factor stochastic volatility models (Chernov et al., 2001)% where
one factor is slowly mean-reverting and the other is fast mean-reverting.

If indeed the latter is a fairly accurate model of market volatility, then the traditional
use of stochastic volatility models corresponds to ignoring the fast factor, on the grounds
that it averages out, and concentrating on the slow factor for derivative pricing and risk
management. However, when these one-factor models are calibrated from S&P 500 option
prices, the estimated ”v-vol” (volatility of volatility) is unreasonably large in comparison to
the small rate of mean-reversion. Even adding jumps to the model does not seem to resolve
this problem. See (Bakshi et al., 1997) and (Duffie et al., 2000) for details. One possible
explanation is that the fast factor, modeled as having a large rate of mean-reversion and a
large diffusion coefficient in order to balance the characteristic size of volatility fluctuations,
shows up in option prices. In other words, if one factor could be safely ignored, it is not the
fast one.

Another recent empirical study (Alizadeh et al., 2001), this time of exchange rate dy-
namics, finds ”the evidence points strongly toward two-factor [volatility] models with one
highly persistent factor and one quickly mean-reverting factor”. To pull one estimate from
their Table VI, they find the rate of mean-reversion of the fast volatility factor for the US
Dollar-Deutsche Mark exchange rate to be v = 237.5 (in annualized units). For the other
four exchange rates they also look at, the order of magnitude of this parameter is the same
(hundreds).

2We are grateful to a referee for pointing us to this reference and helpful suggestions on this topic.
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In the remainder of this section, we focus on the effect of the fast volatility scale on the
partial hedging problem for a European derivative with expiration on the order of a few
months. In the context of a two-factor stochastic volatility model, this would correspond to
ignoring the slow factor. This is reasonable if the lifetime of the derivative is on the order of
the typical half-life of that factor, or less, because that factor would act approximately like
a constant as far as expectations were concerned. Often, the slow factor half-life is found
to be on the order of 70 — 90 days in equity indices (Engle and Patton, 2001). For partial
hedging problems involving derivative with longer maturities, one would have to consider the
full two-factor model and deal numerically with the resulting high-dimensional (four spatial
plus time) Bellman partial differential equation.

6.2. Singular Perturbation Analysis. We introduce the scaling
a=1/¢e
—Vau/VE

where 0 < e < 1 and v = O(1) (fixed), to model fast mean-reversion (clustering) in market
volatility. Recall that o measures the characteristic speed of mean-reversion of (V;) and 1/
is the variance of the long-run distribution, measuring the typical size of the fluctuations of
the volatility-driving process.

Then g = ¢° satisfies the PDE (5.8), which we re-write with the new notation as:

(6.1) (éﬁo + %ﬁl + £2> g + V;(l —pNL* =0,

where we define

(6.2) Ly=v 88—22+( y)aa—y

(6.3) L1 =V2pv <f(y)fﬂaj;y - f@)zaj; - ff )§)

(6.4) L 8 o+ f( )x 28822+fé§) <2 aa; + ag> _““8:?—(292’

and the nonlinear part is

5 e\ 2
0z \ ¢; g \g

Notice that Ly is the usual (scaled) OU generator and £, takes derivatives in y and kills
functions that do not depend on y.

The approach is now to think of the actual market (and our hedging problem) as embedded
in a family of similar problems parametrized by (small) values of e. For ¢ = 0, volatility is
mean-reverting “infinitely fast” and can be replaced by some average as far as expectations
are concerned. However two different averages are needed for different facets of the optimal
strategy. This principal approximation may be sufficient for many purposes. It can be
improved by perturbation or expansion around € = 0, but the cost is greater reliance on
model specification, as we describe.

We also point out that the asymptotic analysis presented here differs substantially from the
problems described in (Fouque et al., 2000a) on derivative pricing problems in the following
regard:
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e the partial differential equations in the previous work were linear whereas (6.1) is
nonlinear;

e the analysis here is on a dual equation arrived at after the Legendre transform has
isolated the nonlinearity due to market incompleteness;

e the nonlinearity is strong in that it appears as an order 1/e term and so plays a role
immediately in the construction of the expansion.

6.2.1. Ezpansion. We look for an expansion

g (t,m,y,2) = gO(t, 2y, 2) + Veg W (t, z,y,2) + gD (t, 2,9, 2) + -+ -

for small €.

6.2.2. Term of Order 1/e. Inserting the expansion and comparing terms of order 1/e gives

(6.5) V4% + (m — y)g® — (1 — ) W)
: vy y 9z ggo) g

This implies that ¢(°©) does not depend on y, assuming that ¢(® is smooth and of controlled
growth. To see this ®, we define

M%@:—AgmmOM;

this would be the leading term in the asymptotic expansion of H. Clearly k, = —¢© and
so (6.5) leads to the following PDE for :

(kye)®

= 0.
kzz

(6.6) V2kyy + (m —y)k, — V2(1 - :02)

The pricing function g(t, z, ) is strictly decreasing in z for ¢ < T'; thus the same must be
true for the leading term ¢(®, and so k,, = —g, > 0 everywhere. Using this, and fixing z we
obtain the following ordinary differential inequality:

Vky, + (m —y)k, > 0.
By integrating we get

y—m)?

ky(y,z) > ky(m,z)e 27 for y > m
(y=m)?

ky(y.2) < hy(m, 2)e "S5 fory <m

N

We conclude that k,(m, z) = 0, because otherwise k, would grow too fast as y — £oc. This
implies that any solution & to (6.6) is independent of y. To see this, write I(z) := k(m, z) and
define k(y, 2) := I(2). Then k is clearly a solution to (6.6) and satisfies k,(m, 2) = k,(m, z) =
0, k(m, z) = k(y, z) = I(2), so by uniqueness k = k. Thus neither k nor ¢® = —k, depend
on y.

3We are grateful to J. Rauch for suggesting the following argument.
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6.2.3. Term of Order 1/+/e. At the order 1/4/z,
L1990 + Log® =0,

which implies ¢V also does not depend on y because £1¢® = 0 and Ly has null space
spanned by constants. This is a general property of generators of “nice” ergodic processes
like the OU.
Since both ¢(® and ¢(" do not depend on y, the nonlinear term is effectively
NL® = O(¢?)

and only contributes to the asymptotics when we compare order £ and higher. We will go
as far as order /¢ so we are dealing essentially with linear asymptotics (except for the very
first equation).

6.2.4. Zeroth-order Term. At order 1, we have
Log(Q) + £1g(1) + £Qg(0) =0.

The middle term is zero because g) does not depend on y. We have a Poisson equation
(in ) for ¢®. The solvability condition is that L£o¢(® must be centered with respect to the
invariant distribution of the OU process (Y;) (equivalently, orthogonal to the null space of
the adjoint of Ly, the Fredholm alternative). Therefore

(6.7) (L29") = (L2)g"" =0,

where (-) denotes the averaging

1 &0 (m=y)2
v) = / U(y)e =22 dy,
(W) =~ - () Y

that is, the average with respect to the A(m,v?) distribution, the invariant or long-run
distribution of the OU process (V7).
The averaged operator is

0 1,,8 W@2(1,8 0 o
o) =5t 37 o Y 2 37 a2 Y 78: ) TP gaas
where we define
(6.8) a* = (f?*
1 1
(6.9) o2 = <F>-

The terminal condition is
gO(T, 2, 2) = G(s, 2).
The problem for ¢(°)(t,z, 2) is similar to the constant volatility problem (3.8), with two
important differences:

(1) The zeroth-order approximation ¢{¥ depends not just on the usual long-run average
historical volatility &, but also on the harmonically-averaged volatility o, defined
by (6.9). Thus the asymptotic approximation of the optimal strategy will depend on
estimating this unusual volatility too. By Jensen’s inequality, o, < ¢ and equality
holds if and only if volatility is constant a.s. This statistic also arose in the asymptotic
analysis of the Merton problem under stochastic volatility in (Fouque et al., 2000a,
Chapter 10).
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(2) The “homogenized” operator (L,) is nondegenerate even though Lo is. As a re-
sult, ¢© (t,x,z) is the expectation of a functional of a two-dimensional Brownian
motion, unlike the expectation in (3.11). In other words, the zero-order asymptotic
approximation is not simply the complete market problem with constant averaged
volatility.

The consequences of this are discussed within the call option example in Section 6.3.

6.2.5. Zero-order Strategy. The optimal zero-order strategy is given by
0 uo 0

6.10 o — 22 0

(0:10) v = (v o)

Notice that this does depend on tracking volatility f(y) even though the corrected minimum
expected loss does not (to zero-order).

6.2.6. Interpretation and Estimation of o,. One possible way to estimate o, is to use the
Taylor expansion

1 1
o} a2+ (02 —5?)

- (15)+ (57)]
g g ’

Q

~2

o

so that ( 4>
1 o

<0—t2> ~ o6

The long-run volatility & and the fourth-moment (o}) can be estimated stably from the

second and fourth-moments of high-frequency historical returns (see (Fouque et al., 2000b),
for example). There is no need to specify a volatility model f(Y}).
This rough estimator also shows that

52
(6.11) — N
o
and so /o, is a measure of excess kurtosis.

6.3. Explicit Computation: Call Option. As in Section 3.4, we consider partial hedging
of a European call option with strike price K. To compute the zeroth order approximation
g (t,z, 2) to the dual variable g(t,z,v, z), we start with the probabilistic representation of
the PDE problem (6.7).

Let (Bgl),B,fQ)) be a two-dimensional Brownian motion on some probability space and
define It6 processes (Xs, Zs)tgng by

X ap

X, ’

dZ, 1 1

“s =B gs— 2 (paBM + /1 AQdB(Q))

7 sta*(ps+Vps,
where

Oy

6.12 pi= =
(6.12) pi= =



If we define starting values

then
9O (t,2,2) = B { (X7 = K)" = Zr)* ).

Note, we can think of (X;) as a stock price in a “shadow” market with constant volatility
o, and (Zt) as something reminiscent of a Radon-Nikodym process. The parameter p, which
satisfies 0 < p < 1 by Jensen’s inequality, can be thought of as a correlation coefficient and is
a measure of how much volatility is fluctuating in the real market. In particular, p = 1 if and
only if volatility is constant a.s. In the expOU model for example, the approximation (6.11)
turns out to be exact and p = e 2, where 2 = 32/2a is a measure of the size of volatility
fluctuations.

The expectation can be simplified to reveal ¢(*) as an average of prices of “reduced” calls
of the form (3.14) with o = & and varying z. To see this, define a random variable S by

and write

5) = VTSR

a

Then S ~ N (0,1) and we may alternatively write

Zp = A:(FS), in distribution,

where Zﬁs) satisfies the one-dimensional SDE

ngs) MQ
7

S

5 — @ ngl),
o

with the random independent initial condition
219 = za(S).
Thus, comparing with the analysis in Section 3.4, we see that
9Ot 2, 2) = E{g(t,x,2a(5); )},

where ¢(t,, z;7) is given by (3.14) and S is drawn from a standard A/ (0, 1) distribution.
We can also use (6.3) to compute derivatives of ¢'9. For instance, we get

9Ot 2, 2) = IE {gy (t, z,2a(S); 0)}
ggo)(t, x,z) = IE{a(S)g, (t,z,za(S);7)} .

Similar results also hold for H© (t,z, z), the zero order approximation to ﬂ(t, Y, 2).
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6.4. First Correction. The zeroth-order approximation may be sufficient and the most
practical. It depends only on estimation from data of & and o, which can be done in a model-
independent manner (no need to specify a function f). We can compute the correction g
in order to improve the approximation to the optimal partial hedging strategy. Of course,
this will depend on greater specification of a stochastic volatility model (so far we have only
had to estimate & and o). We shall discuss robustness to model specification in Section 6.5.
A standard multiple-scales argument (see Appendix B) shows that gV satisfies
(6.13) (L2)g") = (L1L5H (Lo = (£2)))g"”

with zero terminal condition. It is more convenient to multiply by /¢ and write the equation
for

namely
<£2>9(1) = «49(0)-
It remains to compute the operator
A= Ve(LiLy (L2 — (L2))).
We have that

(6.14) Ly —(Ly) = %(f(y)2 - 52)56288—; + i (ﬁ - i) (5 aa_:z * %)

so that

A= %<<f(y)x8:f;y - ffy) (28322 ;ﬂ) <¢ g H (z 58—22 +22§>>>’

where ¢ and v satisfy the Poisson equations

(6:15) Lot = f)* =
1 1
(6.16) Loy = W — O—Z.
This becomes
0? 0 9 93 0?
A—(2C’1—/LC3)ZE W—FC’lZE W—FCQM < 882+2$Zaxaz>

o? 0 o 0
- 2 oy (14— — +2
HCsze 0220z Cant ( +28z> (z 022 N 8z>

where

(6.17) Cr = (14
Cy = T=(fv)
= 7
c = 2y

V2a' f
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The solution is

g0 = —(T — 1) Ag®

0* 0 o 0?
— (T — _ 2 O 3. 9 2, 2 9
=—(T-¥) [(201 HCs) 0x? + G 0x3 = Cop (mz 01022 * 2x28z82>

(6.18) Ciza? o Cupt? 383+5282+4 0 ©)
. —nCszx — 2P —— 4+ 52" —= + 42— .
Hos2t 52205 i 023 022 5z ) |7
6.4.1. Corrected Strategy. Given that ¢(® and g™ do not depend on ¥, the corrected optimal
strategy is given by

(6.19) I— <x% — ﬁza> (g(O) +g)

V2pv (1 1
<§¢’(y)x29§£3 + 12 () (522923) + zg,io))) :

va f(y)

This is derived in Appendix B.

6.5. Estimation of Parameters and Robustness. The approximation to the optimal
strategy in Section 6.4.1 depends on the average volatilities

0, Oy
and the group market parameters
C’la CQ) C3a C14-

Given a fully specified and estimated model of volatility (a, v, m, p, f(+)), these can all be
computed using the formulas (6.8)- (6.17). The function ¢'(y) and ®’(y) which are also
needed in (6.19) are found as a by-product of these calculations. However, it is well known
that estimates of the correlation p and the mean-reversion rate a are extremely unstable
because volatility is not a directly observed process. See, for example (Fouque et al., 2000c)
for a discussion of this issue. The advantage of the asymptotic approximation is that what is
needed about these two parameters can be obtained more stably from the implied volatility
skew from liquidly traded option prices.

First, notice that p, v and « appear as pv//« in the formulas (6.17), so we only need
(to this level of approximation) this grouping. Further, the parameter C; is exactly the
parameter V3 that arises from the asymptotic approximation of derivative prices, as discussed
in (Fouque et al., 2000a). It is estimated from fitting the implied volatility surface I to an
affine function of the log-moneyness-to-maturity ratio (LMMR)

log(K/x)

I =
Tt

+b.
From the estimated slope a, V3 = —a5>.

Having obtained C; = V3 from the skew, it remains to find the other C’s. This will depend
on further model specification, in particular choosing a function f(-).

If we define

1 (m—y)?
[0)) = e w?
(y) or
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the density of the invariant distribution A'(m,v?) of the OU process (Y;), then from (6.15),
it follows that

so that, after integration-by-parts,

(f¢') = —(F(f* = 3%)),
where F(y) is an antiderivative of f(y). Similarly, using also (6.16),

(6.20) () = =P (55 = 22,
and
(6.21) (&) = ~(F (- )
(6.22) () =~(P5 - )
where F'(y) is an antiderivative of 1/f(y).

For the expOU model, f(y) = ¢¥
(6:23) (Fol) = &5 - s

<¢%> _ gty gt
51/2

(Fif) = e ety

<£’> — 673m+# _ 673 +¥
f )
and
(6.24) g2 = 2mt’
(6.25) o2 =2

The estimation procedure is then as follows:

(1) From historical returns data, estimate & and o, as discussed in Section 6.2.6. These
estimates are typically very stable and do not use any correlation structure.

(2) Compute m and v from (6.24) and (6.25).

(3) From the skew, estimate V3 = C}.

(4) Compute Cy, C3 and Cy using (6.17) and the formulas (6.23).

We shall illustrate the effectiveness and computational simplicity of the asymptotic for-
mulas from simulations in Section 7.

Remark: The expOU model violates conditions for applying Girsanov’s theorem. Therefore
we shall always assume a cutoff version in the application and in simulations, where the
cutoffs are sufficiently above and below not to affect any of the calculations to the order of
the asymptotic approximations.
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7. NUMERICAL RESULTS AND SIMULATIONS

In this section we present numerical results that illustrate the results described above. In
particular, we demonstrate the performance of the zero- and first-order hedging strategies.

First we show how these two strategies behave along a simulated stock path in a specific
stochastic volatility model.

Then we compare the two loss functions associated to the zero- and first-order strategies,
respectively.

7.1. Strategies along a volatility path. We examined the behavior of the zero-order and
first-order hedging strategies along a typical stock path, and compared with the Follmer-
Leukert hedging strategy, pretending that volatility is constant.

For this we used the explicit model

dX,

dY; = a(m = Y,)dt + BpdW; + /1 — p*dB,
dX
d‘/t :ﬂ-tTtta

where p = 0.2, K = 100, a = 200, p = —0.2, m = —2.3651 and v = 0.25 for simulation.
This gives 6 = 0.1 and o, = 0.0882.
To compute the three strategies along the path we did as follows.

(1) For the Follmer-Leukert strategy we pretended that volatility is constant, equal to
a. Given t, X; and V; we solved numerically the equation ¢(t, Xy, z;5) = V; for z,
where ¢ satisfies (3.14). The hedging ratio A = 7/X is given by

z
E ~ 9z (t: Xt7 Z)

At = gm(t:Xtaz) - ?X
t

and the value of the portfolio was updated using dV; = A, dX;. (Note the z changes
with time too although we do not denote its dependence here).

(2) For the zero-order strategy we did as follows. Given ¢, X; and V; we solved the
equation gV (¢, X;,z) = V; for z, with ¢(¥ from (6.3). The hedging ratio was then
chosen as

() RN (1)
At =0, (t7 Xt7 Z) €2Yt thz (ti Xt: Z)
and the value of the portfolio updated using dV; = A, dX;.
(3) The computation for the first-order strategy is very similar. Given ¢, X; and V;
we solved the equation (¢(® + gW)(t, X;,2) = V; for z, with ¢(® as above and g(V)
from (6.18). The hedging ratio was then chosen as

— L —

Ay = (g9 + gM),(t, Xy, 2) — ﬂz(gm) +gM),(t, Xy, 2)

and the value of the portfolio updated using dV; = A; dX;. For simplicity of imple-
mentation, we omitted the last grouped term in the formula (6.19) for the first-order
approximation to 7*. As discussed below, we still observe an improvement over the
other strategies without this term.
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The portfolios were re-hedged 200 times over the life of the option.

Figures 3, 4 and 5 illustrate the relative performances along a typical simulated path
when the initial capital was 60% of the Black-Scholes price of the claim computed with the
volatility & and the option started at the money. Clearly on such a path, the zeroth-order
strategy has outperformed the constant volatility strategy and the first-order has come closer
to the terminal payoff than either of them. An interesting observation from Figure 4 is that
the hedging deltas are often bigger than one when the option is in the money. This can be
thought of as the investor’s aversion to high losses (measured by the shortfall measure of
risk) driving him to capitalize on the rising stock.
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10 — First order
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FIGURE 3.  Portfolio values along a path. The cross at the right side of the
picture illustrates the value of the option (X7 — K)* at expiration. The full stock
price and volatility paths are shown in Figure 5. The initial capital was 60% of the
Black-Scholes price of the claim computed with the volatility a. The bottom graph
magnifies how the values of the three hedging portfolios differ near expiration.

Figures 6, 7 and 8 show the differences in a more dramatic situation, when the investor
starts with a low initial hedging premium (20% of the Black-Scholes price of the option). In
the path shown, the differences in performance of the first-order strategy over the zeroth-
order and even the zeroth-order above the constant volatility strategy are quite significant.

7.2. Loss functions. It is also of interest to study the expected losses under the zero- and
first-order strategies. The principal (¢ = 0) approximation H(® to the dual value function
H satisfies the PDE

12, - - A
§M—2z2H£2) — pzzHO =0, HONT, z,2) = Uz, 2).
o

*

N ~ 1 ~
(7.1) H® 4+ pzHO + 50 e HY) +
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FIGURE 4. Strategies along the path shown in Figure 5 measured by the number of
stocks in the portfolios corresponding to Figure 3. The bottom graph magnifies how
the deltas of the three hedging portfolios differ near expiration.
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FIGURE 5. Stock price and wvolatility paths for the simulation whose results are
shown in Figures 8 and 4. The starting stock price is at the money of the option
being hedged (Xo = K = 100.)

This follows from the analogous calculation of Section 6.2 starting with the PDE (5.7) for
H. The PDE (7.1) for the approximation is linear, and we have a semi-explicit formula for
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FIGURE 6.  Portfolio values along a path. The cross at the right side of the
picture illustrates the value of the option (X7 — K)* at expiration. The full stock
price and volatility paths are shown in Figure 8. The initial capital was 20% of the
Black-Scholes price of the claim computed with the volatility &.

its solution, analogous to computing ¢(® in Section 6.3. From that formula we can easily
compute H©® and its derivatives to very high order of accuracy, and that allows us to find
the principal approximation H(® (¢, z,v) to the value function H(t,z,y,v) using the formula

(7.2) HO(t,z,0) = 20 + HO(t, 2, 2), v =gz 2).

Namely, given (t,z) we compute HO (t,z,2) and g9 (t,z, z) for a grid on the z-axis. Then
we pick z such that ¢{®(¢, 7, z) = v, and we use (7.2) with this z to compute H® (¢, z,v).
For the first-order strategy, we instead use

e~
e~ o~

(7.3)  (HO 4 HO)(t,2,0) = 20+ (HO + HO)(t,2,2), v = (g© + g0D)(t,2,2).

Notice that value of z corresponding to a given triple (¢, x,v) will depend on whether we
use the zero- or first-order strategy. If we would use the full strategy (no asymptotics), then
we would get another value of z, depending on the quadruple (¢,z,y,v), but all these values
are close for small ¢.

In the computations illustrated below we used & = 0.1, o, = 0.0874, p = 0.2, K = 100,
T —t =0.5. We also converted the two utilities to losses, using the formula

loss = \/max utility — utility.

The three graphs show the two losses (Figures 9 and 10) and their difference (Figure 11)
as a function of the initial stock price x and the fraction ( of the initial capital to the
Black-Scholes price of the call using constant volatility &, i.e. ( = v/Cps(t,x;5, K). We
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FIGURE 7. Strategies along the path shown in Figure 8 measured by the number of
stocks in the portfolios corresponding to Figure 6. The bottom graph magnifies how
the deltas of the three hedging portfolios differ near expiration.
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FIGURE 8. Stock price and wvolatility paths for the simulation whose results are
shown in Figures 6 and 7. The starting stock price is at the money of the option

being hedged (Xo = K = 100.)
see that the expected loss is smaller when using the first-order strategy. Also notice that
both losses appear close to zero for ( = 1. This is because ( = 1 corresponds to z = O(¢)

and from the asymptotic formulas the loss is O(¢) in this case. As a consequence, if the
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FIGURE 9. Zero-order loss.

FIGURE 10. First-order loss.
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8. CONCLUSIONS
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FIGURE 11. Difference between the two losses

follows from convex duality that the optimal strategy is to perfectly hedge a cheaper claim
whose payoff depends on the terminal values of the stock price process and one of the change-
of-measure processes (7). The analysis reveals that the “correct” change-of-measure process
is chosen so that the new claim can indeed be perfectly hedged. However, optimal strategies
depend on solution of a high-dimensional nonlinear Bellman equation and in general will be
sensitive to volatility model specification.

To compute robust approximations to the optimal partial hedging strategy, we exploit
volatility clustering. An asymptotic analysis shows

e The long-run mean volatility ¢ and the harmonically-averaged volatility o, are im-
portant statistics for this problem, independent of a specific volatility model.

e If more model details are specified, the approximation can be improved. The diffi-
culty of estimating the correlation p and the rate of mean-reversion « of the volatility-
driving process is removed by using information from the slope of the implied volatil-
ity skew.

In future work, we will investigate estimators for the unusual volatility o, and the sensi-
tivity of the strategies given here to model misspecification. Another interesting problem we
have not considered is the effect of filtering the volatility level f(Y;) from data.

The asymptotic method has many applications as a computational tool to related sto-
chastic control problems in finance. It can also be thought of as a device for robust control
in which stochastic volatility models uncertainty about what volatility the hedger will face.
The zeroth-order strategy is then a robust modification of the constant volatility optimal
strategy.
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APPENDIX A. CALCULATIONS

A.1. Constant volatility.

A.1.1. Convez duals.
Hy(t,z,g(t,x,2)) =z

H(t,z,v) =vg(t,z,v) + ﬂ(t, z, §(t,x,v)) ﬂz(t, x,g(t,z,v)) = —v
H(t,x,2) = —z2g(t,x, 2) + H(t,z, g(t, z, 2)) H,(t,z,v) = §(t, z,v)

~

H,(t,x,z) = —g(t,z,2)

A.1.2. Equations for H.

1
va - — =
H, ==z [fzz
3 Hmz
Ht = Ht Hm'u = — =
H,=H, e
v ¢ ﬁzzﬁmm - H2
H:c:c — v Tz
sz

This implies:

N 2 Hggz)
2 Z— 0 "T==
1 2 QH:CZ _ <M H.

Hv 2H:cv2 3 Yy
(uH, + 0"z ) =H,+L,H— —o"z"—

H,+ L,H —

202va 2 sz _202/HZZ
N N 1 MQ 97 N
=H,+L,H+ 5;2 H,,— pxzH,,

=0.

A.1.3. Equations for g. The PDE for g is most easily obtained by using g = —H,. Namely,
by differentiating (3.7) with respect to z we get

R R 1u2 0 R R
02th+£tz+§%a_ (22 zz_MxZHmz)

(2292 - szgm)> ’
which leads to (3.8).

A.1.4. Optimal controls. We have
(:U’Hv + O-QLEH:M))
0’H,,

M A~ A

——

_ I
= Ts — 5292
o
A.2. Stochastic volatility.
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A.2.1. Convez duals.
Hv(ta T, Yy, g(t: €, Z)) =z

H(t’ I’ y’ U) = Ug(t7 :'L" y’ ,l)) + 'H(t’ I’ y’ g(t7 :'L" y’ v)) _Hz(t’ :'L" y’ g(t’ I’ y’ U)) = _U
H(t,z,y,2) = —2g(t, x,y, 2) + H(t, 2,9, g(t, 2,7, 2)) H,(t,z,y,v) = §(t, z,y,v)

A

Hz(ta z,y, Z) = _g(t’ r,y, Z)

A.2.2. Equations for H.

Hv:Z va:_f{ Hm:z:: f{
H=H : h e
t At H,, — _Ii[:zrz H. — HZZH?{EU H,,
H, = H, H.. " H..
Hy = Iy Hyv — _IA{?JZ H. — szH:vy - H:vzHyz

This implies:
(pH, + f2xHyy + pBfHy)”

H + L, ,H—

2f2H1]’U
A Pt — pgpte)”
e A, 1 i (pe Pl psrge)
= Hy+ LogH — S f22 255 — ppfa =V g2 b A
Z 7y L o o pBu gy 1 i
t+ Loy +2f22 Uz 7 ZHy 2( p°)p i

A.2.3. Equations for g. As in the case of constant volatility, the PDE for ¢ is most easily
obtained by using g = —H,. Namely, by differentiating (5.7) with respect to z we get

- o 1?0 & pBu 1 17,
0=H,, +LyyH, + 3129, <22H22 — przH,, e H,, 5(1 — p*) 2 f:z
142 9 pBu 1 9
= - L:c S 79 0 2 z x5 - —-(1- %) B
(gt+ w9+ 57205 (z 9. — pr2g 79 5(L=p7)8 )

which leads to (5.8).

A.2.4. Optimal controls. We have

v =—py1—p?=E

zZ

=p/V1- pQHyv

= —fV1 —pQZ—y
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and
o (pHy + fPaty, + pBf Hy)

f2Hm)
_ b, el - H
pB p

=gy + 7934 - Fzgz

APPENDIX B. EQUATION FOR THE FIRST-ORDER TERM

We present the argument for the equation (6.13) for the first-order term ¢(") in the ap-
proximation to the dual function g. It is the same mathematical argument seen in pricing
problems (Fouque et al., 2000a), but the differential operators £; and L, are different in the
present context.

The key features are

e L, is the generator of an ergodic Markov process with a unique invariant distribution;

e [, takes derivatives in y and so kills any function that does not depend on y;

e The zeroth-order approximation ¢(®(¢,z,z) and the first-order term ¢(V)(¢,, z) do
not depend on y.

Comparing terms of O(y/¢) in the PDE for g, we find
(B.1) Log® = — (£1g®) + L2gV) ,
which we look at as a Poisson equation for ¢'® (¢, z,y, 2). Just as the Fredholm solvability
condition for ¢ determined the equation for ¢(®), the solvability for (B.1) will give us the
equation for ¢!V (¢, z, v). Substituting for ¢? (¢, z, y, z) with
(B2) 9(2) = _‘Cal (‘62 - <‘C2>) g(U) + C(t: z, Z),
for some function ¢ not depending on y, this condition is

<£29(1) — L1Ly1 (Ly — (L)) 9(0)> =0,
where
(L29) = (L2)g"

since gt does not depend on y. Hence we obtain equation (6.13).
To obtain the expression for the optimal strategy 7* up to order /¢, we insert the expan-
sion for g into (5.10), which gives

0 12 0 ) (0) e \/ipl/ 2
=0 — ——2— ] (g9 4+ ¢) + 4@
(2 = Flpeae ) 0"+ 90+ 5 o
omitting terms of higher order. From (B.2) and (6.14), we compute

1 1
9y = 50 W)2*gl) + 1*¢' (v) (52292‘? + zgﬁ‘”) :

which leads to (6.19).
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