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Abstract 
 
Selected hedge funds employ trend-following strategies in an attempt to achieve superior 
risk adjusted returns.  We employ a lookback straddle approach for evaluating the return 
characteristics of a trend following strategy.  The strategies can improve investor 
performance in the context of a multi-period dynamic portfolio model.  The gains are 
achieved by taking advantage of the funds’ high level of volatility.  A set of empirical 
results confirms the advantages of the lookback straddle for investors at the top end of 
the multi-period efficient frontier. 
 
 
 
1. Introduction 
 
Over the past few years, hedge funds and related alternative investments have gained in 
popularity as traditional assets such as equities, corporate bonds, and venture capital have 
lost considerable market value due to the worsening economic conditions.  Ideally, a 
hedge fund offers diversification benefits without a large reduction in expected 
profit/returns.  University endowments in the US have benefited by this approach (see 
Swensen 1999). In this context, a desirable pattern would be to achieve the expected 
gains of equity assets or even better, with substantial diversification benefits.  While this 
goal may be elusive in the short run, we show that certain forms of hedge funds – namely 
funds that follow trends – can play a role in dynamic, multi-period asset allocation.     
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Within the alternative asset universe, hedge funds are increasingly popular as 
possible investment opportunities for wealthy investors who possess long time horizons.  
It is therefore of interest to study the problem of how this alternative asset class modifies 
such investors’ allocation problem.  In this article, we employ a straightforward model of 
a certain type of hedge fund’s returns, namely a primitive trend-following strategy 
described by a lookback straddle.  Fung and Hsieh (1997) introduced this model; we 
describe how these funds capture long volatility positions and are thereby desirable for 
multi-period investors. 
  

Private investment vehicles, such as hedge funds, private equity and venture 
capital, have grown in size and importance over the past twenty years.  A characterization 
of hedge funds (and similar commodity trading advisors (CTAs)) is given by Fung and 
Hsieh (1999).  We consider only those hedge funds that are broadly described as trend 
following or market timing. According to Table 5 of Fung and Hsieh (1999), 58.1% of 
CTAs pursue trend following strategies. This may also be the case for a much smaller 
fraction of general hedge funds.  However, Fung and Hsieh (2001) discuss the connection 
between market timing, as described by Merton (1981), and trend following, so the 
present analysis may apply to a larger segment of the hedge fund world, namely market 
timers. 

 
  Fung and Hsieh analyzed the returns of many hedge funds and their empirical 

relationships to a number of asset classes and concluded that the primitive trend 
following properties of many of these funds was reasonably modeled by replicating a 
lookback straddle on equities.  They first used an extension of Sharpe’s (1992) asset class 
factor model for style analysis to illustrate that dynamic, rather than buy-and-hold, 
trading strategies better explain hedge fund returns (Fung and Hsieh, 1997).  Developing 
this idea further leads to the conclusion that selected hedge funds generate option-like 
returns.  Specifically looking at trend-following funds, Fung and Hsieh (2001) suggest 
the option that best models these strategies is a lookback straddle.  This is the model we 
shall use as a proxy for hedge funds. 
 

The next section sets up the framework for the environment in which the 
quantitative analysis was done.  We discuss constructing a lookback asset category and 
the multi-period stochastic optimization model.  Results and conclusions are presented in 
Sections 3 and 4.  We see that the lookback straddle benefits multi-period investors who 
have low levels of risk aversion. 
 
 
2. Methods and Models 
 
2.1: The Lookback Straddle 
 
The lookback straddle is a derivative security that pays the holder the difference of the 
maximum and minimum prices of the underlying asset over a given time period.   
Suppose this time period is [0,T] and let (St) denote the price process of the underlying.  
Then a lookback straddle is simply a combination of a lookback put, which pays 
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Smax - ST 
and a lookback call which pays 

ST - Smin . 
We shall refer to the straddle combination as a single derivative with payoff 

Smax – Smin . 
 

There is a closed form solution for the Black-Scholes no-arbitrage price of a 
lookback straddle.  The method for obtaining this formula, which is convenient for the 
simulation in Section 3, is discussed in Goldman et al. (1979) and results in the 
following: 
 
Define 
St  : The price of the underlying at time t; 
Jt  : The running maximum of S from time 0 up to time t; 
It  : The running minimum of S from time 0 up to time t. 
That is, 

0 0
min maxt u tu t u t uI S J S
≤ ≤ ≤ ≤

= = . 

In addition, we define 
r   : The short rate or risk-free rate of return; 
σ  : The volatility of the underlying S; 
N : The cumulative normal distribution function. 
Then the formula for the price of the lookback call is: 
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 Similarly, the formula for the lookback put is: 
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The price of the lookback straddle is given by: 
 
 L( , , , ) ( , , ) ( , , )t t t t t t tt S I J P t S J C t S I= + . (2.3) 
 

The general idea is that the holder benefits from the dominant trend in the 
underlying over the given time period.  In particular, he or she profits from a large spread 
between the maximum and minimum, which is an indicator of high volatility.  The 
lookback straddle serves as a condensation of hedge funds’ strategies that seek to time the 
market and are neutral about its direction.  Although there may be simpler trend 
following rules, the lookback straddle is a convenient idealization of the concept of 
capturing the dominant trend of the underlying.  It is an extension of Merton’s (1981) 
market timer model which was simply a straddle. 
 
2.2: Market Model and Scenario Generation 
 

To model future uncertainty of asset returns in our portfolio problem, we utilize a 
representative set of scenarios. Stochastic differential equations and time series analysis 
are two commonly used techniques to generate anticipatory scenarios.  In this paper, we 
employ the former technique, in which a sequence of economic factors (for example 
GDP, corporate earnings, interest rates and inflation) drives the asset returns.  The basic 
idea is to generate a scenario tree (Figure 2.2) for the asset returns over a pre-defined 
planning horizon.  In our empirical tests, we discretize the planning period into 40 
quarterly time periods.  Each scenario depicts a single path in this scenario tree.  A 
standard variance reduction method, antithetic variates, is employed to improve the 
accuracy of the model’s recommendations.  We employ indirect inference methods for 
calibrating the parameters of the resulting stochastic system (Gourieroux, Monfort and 
Renault 1993). 
 

The expected annualized arithmetic and geometric returns and the expected 
annualized risks of each asset class in the opportunity set are shown in Table 3.1. 
 

  t = 0       t = 1  t = 2 t = 3 
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Figure 2.2: Standard tree representation for generating scenarios. 

   
 
 
2.3: The Lookback Straddle Asset Class 
 
The scenario generator simulates market conditions over a ten-year period at quarterly 
intervals.  To describe hedge funds as alternative investments, we use a rolling portfolio 
of lookback straddles on US equities.  There are many ways to construct this portfolio 
using options of different maturities each carrying different weights, which might be 
calibrated from real hedge fund returns.  In this paper, we choose to use a simple strategy 
of buying one lookback straddle at time zero, holding it until expiration, then rolling the 
payoff into a new straddle of the same maturity, resulting in a self-financing portfolio.  
We study the properties of returns generated by this strategy using lookback straddles 
with maturities as short as one quarter (3 months) up to ten years. 
 

The scenario generation produces quarterly returns, but a holder of a lookback 
straddle should obtain the difference between the maximum and minimum as if the 
underlying were monitored continuously.  To track the maximum and the minimum on a 
daily basis, we locally approximate the intra-quarter trajectories using geometric 
Brownian motion with the overall ten-year historical volatility of the scenarios (23%), 
constructed with a Brownian bridge.  Even though this reduces the monitoring bias, it 
does not eliminate it, and furthermore it introduces a new problem.  That is, we are now 
simulating the underlying asset class with geometric Brownian motion even though the 
scenario generator uses a more complex and realistic model. We deal with the collective 
effect of these biases by pricing the lookback straddles, using the Black-Scholes formulas 
given above, with a pricing volatility that is lower than the historical volatility of the 
scenarios. 
 

To find an asset class with the appropriate properties, we look at choosing 
different maturities and pricing volatilities.  The statistics are given in Table A.1.  There 
is a tradeoff between the pricing volatility and the trend-following horizon (or option 
maturity).  An investor with a short investment horizon is looking for a significant trend 
to materialize in the near future, and thus his returns are very sensitive to the price of the 
lookbacks, as can be seen from Table A.1.  Longer maturity investors’ returns are less 
sensitive to the price. 

 
In our analysis, we choose lookback straddles with one-year maturity priced at 

14% volatility. This asset class has low geometric return (5%) and high volatility (59%) 
and captures the basic characteristics of the primitive trend following strategies (PTFS) 
used by Fung and Hsieh (2001, Table 1). 

 
To summarize the characteristics of this asset class, we compute the geometrically 

averaged return over each ten-year scenario.  We also constructed for comparison an 
alternative portfolio consisting of European straddles, which comprises a call and put 
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both with at-the-money strike prices.  This is Merton’s market timing model.  The 
histograms of the returns for the two investments are shown in Figure 2.3. 
 

 
 

Figure 2.3: Return histograms for the different portfolios over the 1000 scenarios 
used in the simulations.  Notice that the lookback straddles generate more positive 

returns with a narrower spread than the European straddles. 
 
The mean geometric returns over the scenarios are given below: 
 

Portfolio Type Mean Geometric 
Return 

European Straddle -0.1134 
Lookback Straddle 0.0506 

 
This shows that the lookback straddle outperforms the European straddle, but its return is 
significantly lower over the ten-year period than the return on US equities, which is 9% 
in these simulated scenarios. The average volatilities are: 
 

Portfolio Type Average Volatility 
European Straddle 141.83 % 
Lookback Straddle 59.49% 
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Notice, the volatility of the lookbacks are lower than the European straddles, but they are 
still significantly higher than, for example, US equities (23%). 

 
Finally we show in Figure 2.4, the sensitivity of the risk and return of the 

lookback asset class to small changes in the pricing volatility. Note that the risk is 
relatively insensitive, but that taking a pricing volatility 14.7% results in a negative 
geometric return. We discuss in Section 4 how asset classes with negative geometric 
returns would not improve the efficient frontier. 

 
 

 
 

Figure 2.4: Sensitivity of lookback straddle asset class geometric returns and 
volatility to the pricing volatility. 

 
On the face of it, even the lookback asset class that we choose, with high 

volatility and low (positive) return, also would not seem like a good investment by any 
reasonable optimization criteria.  However, in a multi-period framework, there is 
opportunity for volatility pumping, as we will show in Section 3.  That is, the real value 
to an investor of dynamic strategies such as lookback straddles is when they are 
incorporated within a portfolio model with dynamic rebalancing. 
 
2.4: Stochastic Optimization Algorithm 
 
In this section, our goal is to analyze the effects of adding lookback straddles as an 
alternative investment option into a portfolio consisting of the following asset classes: 
cash, US equity, European equity, Far East equity, Private equity, government bonds and 
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US high-quality bonds. For the purpose of simplicity, we make the following 
assumptions.  

1. Transaction costs, market impact costs, and liquidity considerations are 
ignored.  

2. Alternative investments are held through tax-exempt or tax-deferred 
locations.  

In this paper we will stick with those assumptions but the model can be adjusted to 
incorporate taxes or transaction costs (see Kipcak 2001).  Our analysis is presented in 
terms of efficient frontiers, plotting expected return versus risk. 
 
2.5: Static Portfolio Model 
 
First, we consider a static portfolio model, which is an application of the buy-and-hold 
decision rule over the 40 quarters. An investor who employs the buy-and-hold policy, as 
its name implies, decides upon a certain asset allocation to start with and does not trade at 
all until termination. This is the traditional Markowitz mean-variance framework.  Note 
that short positions are not allowed.  The algebraic formulation of the optimization model 
is as follows: 
 
Parameters: 
M  : Number of scenarios (1000) 
N : Number of asset classes (8) 
T : Number of periods (40) 

,
s

i tr : Rate of return for asset class i  at time period  under scenario  t s
α : Reward coefficient ( 0 1α≤ ≤ ) 
 
Variables: 

ix : Weight of asset  in the portfolio at the beginning of the investment horizon i
s
tR : Total return of the portfolio at time period t  under scenario  s

 
Model 1: 
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1
1

N

i
i

x
=

=∑          (2.7) 

 
0 for all 1..ix i≥ N=       (2.8) 

 
Equation (2.4) illustrates the bi-criteria objective function. The first term, weighed by α , 
depicts the expected final wealth after T  quarters. The second term, whose weight is 
(1 )α− , is the expected annualized temporal variance of portfolio returns over the 
investment horizon.  It acts as a penalization term.  Equations (2.5) and (2.6) define the 
total portfolio returns per period under each scenario.  Constraint (2.7) makes sure that 
the asset weights add up to 1. For convenience, the initial wealth is assumed to be 1 unit.  
Finally, constraint (2.8) assumes that short selling is not allowed. 

 
In order to draw an efficient frontier, we solve the optimization problem using a 

non-convex solver (Maranas et al. 1997, and Mulvey and Ziemba 1998).  Different points 
on the frontier are found by varying the value of α . Because we are interested in the 
effect of the allowing lookback straddles in our portfolio, we first restrict its weight to be 
0 (eliminating it from the opportunity set). Then, we reintroduce it by removing this 
restriction.  
 
2.6: Dynamic Portfolio Model 
 
Next, we examine a dynamic portfolio model, which relies upon a fixed-mix decision 
rule. An investor who employs this fixed-mix policy sets a target asset allocation and 
maintains it throughout the planning horizon by trading at all available trading dates. As 
asset values move randomly, asset weights diverge from the target mix. The investor 
rebalances his portfolio to the target weights by transferring assets from one to another at 
the end of each trading date (i.e. every quarter, in our case).  As is well known (Merton, 
1990), many simple continuous-time investment models for utility maximization yield 
fixed-mix optimal strategies, which motivates these as a convenient basis for our 
dynamic portfolio model.  See Mulvey et al. (1997) and Perold and Sharpe (1988) for 
further applications. 

 
By omitting transaction costs, we eliminate the need to keep track of the weights 

before and after rebalancing.  Instead, each period’s portfolio return can be found simply 
by using the target mix and the individual asset returns for that period. Then, by 
accumulating the period returns, we will obtain the return over the investment horizon. 

With the definition of the parameters and variables remaining the same, the 
dynamic portfolio model is formulated as follows: 
 
Model 2: 

( ) ( )
( )24
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subject to 
 

( ),
1

1 for all 1..  and 1..
N

s s
t i i t

i
R x r t T s

=

= + = =∑ M    (2.10) 

 

1
1

N

i
i

x
=

=∑          (2.11) 

 
0 for all 1..ix i≥ N=       (2.12) 

 
This model is different from the static model in two aspects. First, the return part (the first 
term) of the objective function (2.9) is defined as the expected annualized geometric 
return of the portfolio. The second difference can be observed in equation (2.10), where 
the total portfolio return per period is defined for each scenario. 
 
3. Results 
 
We generate 1000 equally likely return scenarios for each asset class for a period of ten 
years or forty quarters (Mulvey [1996 and 2000]).  Using these return scenarios, we come 
up with the return-risk characteristics of each asset class in the opportunity set (shown in 
Table 3.1). 
 

Asset Class 
Annualized 
Arithmetic 
Return (%)

Annualized 
Geometric 
Return (%)

Annualized Risk 
(Standard Deviation 

of Return) (%) 
Cash 4.92 5.01 0.36 
European Equity 11.41 8.92 24.17 
Far East Equity 11.67 9.11 24.74 
Government Bonds 6.98 6.71 9.49 
Lookback Straddles 18.29 5.06 59.49 
Private Equity 11.71 9.41 23.78 
US Equity 11.17 8.96 23.27 
US High Quality Bonds 7.00 7.03 5.69 

 
Table 3.1: Attributes of Asset Classes 

 
For the static portfolio problem (Model 1), we find that the presence of lookback 

straddles in the opportunity set leaves the results unaltered. In other words, the lookback 
straddles do not improve the portfolio in a static portfolio optimization framework. Upon 
further examination, this is an intuitive conclusion, because for a buy-and-hold type 
outlook, an investor would not want to carry an asset class that has the properties of the 
lookback straddles (i.e. low geometric return and high volatility/risk).  
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The green line in Figure 3.1 depicts the efficient frontier for the single-period 
problem, with the corresponding mixes given in Table 3.2 (all numbers in percent). 
 
 
 

Point Cash European 
equity 

Far East 
Equity 

Government 
Bonds 

Lookback 
Straddles

Private 
equity 

US 
Equity 

US HQ 
Bonds Return Risk 

1 99.91 0.00 0.00 0.00 0.00 0.09 0.00 0.00 5.02 0.36 
2 77.31 0.00 0.00 0.00 0.00 1.40 0.00 21.29 5.50 1.48 
3 54.18 0.00 0.00 0.00 0.00 2.76 0.00 43.06 6.00 2.80 
4 31.16 0.00 0.00 0.00 0.00 4.20 0.00 64.64 6.50 4.06 
5 8.24 0.00 0.00 0.00 0.00 5.73 0.00 86.03 7.00 5.26 
6 0.00 0.53 2.21 0.00 0.00 15.36 2.48 79.42 7.50 7.24 
7 0.00 4.34 5.54 0.00 0.00 29.17 4.02 56.93 8.00 10.95 
8 0.00 8.12 8.99 0.00 0.00 42.72 5.78 34.39 8.50 14.96 
9 0.00 11.42 12.28 0.00 0.00 55.36 9.30 11.64 9.00 19.02 

10 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 9.41 23.78 
 

Table 3.2. Efficient points for the static model 
 
For the multi-period portfolio case (Model 2), we conduct the same strategy for 
generating an efficient frontier. Using a non-convex solver and varying values for α , we 
first restrict the weight for lookback straddles to be 0. The red line in Figure 3.1 depicts 
the resulting efficient frontier for this multi-period model, with the corresponding mixes 
given in Table 3.3 (all numbers in percent).  Observe that the portfolios at the top of this 
frontier consist of multiple assets, as compared with the results of the static model.  This 
result is common for multi-period investment models. See Mulvey (2000), and Fernholz 
and Shay (1982). Examination of the efficient portfolios shows the tendency to allocate 
more capital to private equity over public equity.  This is due to its more attractive risk-
return qualities, which do not take into account things such as liquidity and transaction 
costs (which we have ignored).  In practical situations, these constraints would need to be 
included in the optimization model. 

 
 
 

Point Cash European 
equity 

Far East 
Equity 

Government 
Bonds 

Lookback 
Straddles

Private 
equity 

US 
Equity

US HQ 
Bonds Return Risk 

1 99.83 0.00 0.00 0.00 0.00 0.17 0.00 0.00 5.02 0.35 
2 83.67 0.09 0.17 0.00 0.00 2.69 0.00 13.38 5.50 1.12 
3 66.33 0.20 0.53 0.00 0.00 5.06 0.00 27.88 6.00 2.16 
4 48.64 0.31 0.90 0.00 0.00 7.48 0.00 42.67 6.50 3.23 
5 30.58 0.41 1.28 0.00 0.00 9.95 0.00 57.78 7.00 4.34 
6 12.14 0.52 1.66 0.00 0.00 12.48 0.00 73.20 7.50 5.47 
7 0.00 2.07 2.92 0.00 0.00 15.91 0.00 79.10 8.00 6.68 
8 0.00 6.63 6.06 0.00 0.00 21.33 0.00 65.98 8.50 8.51 
9 0.00 11.72 9.87 0.00 0.00 27.88 0.00 50.52 9.00 11.13 

 



 12

10 0.00 18.70 14.65 0.00 0.00 36.08 0.00 30.57 9.50 14.82 
11 0.00 27.15 23.19 0.00 0.00 49.67 0.00 0.00 9.95 20.79 
 

Table 3.3: Efficient points for the dynamic model without lookback straddles 
 

Next, we remove the restriction on the lookback straddles, and thus include them 
in the opportunity set. The efficient frontier for this model is the blue line in Figure 3.1, 
along with the optimal mixes in Table 3.4 (all numbers in percent). We see that the 
lookback straddles appear in the portfolio at every point except for the minimum risk 
point. Indeed, we would not expect it to be visible in a minimum risk portfolio due to its 
high standard deviation. 
 

Point Cash 
European 

equity 
Far East 
Equity 

Government
Bonds 

Lookback 
Straddles

Private 
equity 

US 
Equity

US HQ 
Bonds Return Risk 

1 99.83 0.00 0.00 0.00 0.00 0.17 0.00 0.00 5.02 0.35 
2 83.85 0.00 0.12 0.00 0.10 2.66 0.00 13.28 5.50 1.12 
3 66.81 0.00 0.39 0.00 0.26 4.98 0.00 27.56 6.00 2.15 
4 49.41 0.00 0.67 0.00 0.41 7.35 0.00 42.16 6.50 3.23 
5 31.65 0.00 0.94 0.00 0.58 9.77 0.00 57.07 7.00 4.33 
6 13.55 0.00 1.21 0.00 0.74 12.24 0.00 72.26 7.50 5.46 
7 0.00 0.00 2.09 0.00 1.39 15.25 0.00 81.26 8.00 6.63 
8 0.00 1.35 4.23 0.00 3.35 19.63 0.00 71.44 8.50 8.29 
9 0.00 2.95 6.49 0.00 5.61 24.62 0.00 60.34 9.00 10.55 

10 0.00 4.66 9.30 0.00 8.37 30.30 0.00 47.36 9.50 13.47 
11 0.00 6.83 12.56 0.00 12.13 37.51 0.00 30.96 10.00 17.41 
12 0.00 9.92 18.19 0.00 19.80 49.41 0.00 2.69 10.50 24.77 
13 0.00 5.77 18.50 0.00 24.80 50.93 0.00 0.00 10.54 26.82 

 
Table 3.4. Efficient points for dynamic model with lookback straddles  

(1 Year, Vol. = 14.0%) 
 

To compare results, we plot all three efficient frontiers on the same chart, 
depicted in Figure 3.1.  The lookback options improve the performance of the multi-
period investor by taking advantage of the asset’s high volatility.  Again, the top end of 
the efficient frontier consists of multiple assets, within the context of re-balancing rules. 
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Figure 3.4. Efficient frontiers for all models 
 
 
4. Conclusions 
 
This article provides a starting point for studying how hedge funds can affect an 
investor's optimal investment strategy.  By using a crude proxy, the lookback straddle, for 
a trend-following hedge fund, we find from simulation and numerical optimization that 
the presence of this high volatility, low return asset class can be used in a multi-period 
setting to improve the efficient frontier.  In constructing the asset class, issues such as 
monitoring bias introduced by the discretization are dealt with by adjusting the volatility 
used in the Black-Scholes pricing formulas so that the asset class has the desired 
characteristics.  The sensitivity to the choice of volatility is also an output of this analysis 
and is shown in Figure 2.4.  This locates the pricing volatility of 14.7% as approximately 
the cost beyond which trend following will produce negative returns and will no longer 
improve the efficient frontier. 
 

There are several directions for improvement: constructing a more accurate proxy 
for hedge funds, for example by employing other derivative securities calibrated from 
data; removing the restriction that feasible strategies are fixed-mix or buy-and-hold; 
incorporating transaction and market impact costs. In addition, CTAs invest across a 
range of asset classes, for example currencies and commodities, not just equities, so a 
future direction we have undertaken is to build a lookback asset class based on a wider 
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range of underlying securities. The lookback approach can also be extended to model 
characteristics of hedge funds that might be focusing, for example, on the trend of a 
spread between two assets, rather than the trend of one underlying. This has been 
implemented in the context of convergence trades on credit spreads in Fung and Hsieh 
(2002) under the Black-Scholes pricing assumptions.  For more complex fixed-income 
models, this would lead to interesting problems of pricing lookbacks on spreads. 
 

This work is also a contribution to the literature on understanding how to trade 
optimally with derivatives in a realistic (incomplete) market. Here, simulations and 
stochastic programming methods provide some insight where the models are beyond the 
scope of existing analytical methods.   
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Appendix A 
 

Pricing 
Volatility 3 Months 6 Months 1 Year 2 Years 10 Years 

11.0% 
Return = 0.4418 

Risk = 1.49 
Return = 0.4797 

Risk = 1.02 
Return = 0.321 
Risk = 0.7127 

Return = 0.2217 
Risk = 0.5417 

Return = 0.1252 
Risk = 0.3191 

11.5% 
Return = 0.2104 

Risk = 1.4262 
Return = 0.3576 

Risk = 0.9799 
Return = 0.267 
Risk = 0.6894 

Return = 0.1979 
Risk = 0.5285 

Return = 0.1221 
Risk = 0.3154 

12.0% 
Return = 0.0234 

Risk = 1.3677 
Return = 0.2499 

Risk = 0.943 
Return = 0.217 
Risk = 0.6677 

Return = 0.1753 
Risk = 0.5161 

Return = 0.1191 
Risk = 0.3118 

12.5% 
Return = -0.1288 

Risk = 1.3137 
Return = 0.1544 

Risk = 0.9091 
Return = 0.1708 

Risk = 0.6475 
Return = 0.1538 

Risk = 0.5044 
Return = 0.1161 

Risk = 0.3085 

13.0% 
Return = -0.2539 

Risk = 1.2638 
Return = 0.0693 

Risk = 0.8777 
Return = 0.1279 

Risk = 0.6288 
Return = 0.1334 

Risk = 0.4934 
Return = 0.1131 

Risk = 0.3052 

13.5% 
Return = -0.3573 

Risk = 1.2175 
Return = -0.0068 

Risk = 0.8487 
Return = 0.0879 

Risk = 0.6112 
Return = 0.114 

Risk = 0.483 
Return = 0.1102 

Risk = 0.3021 

14.0% 
Return = -0.4435 

Risk = 1.1745 
Return = -0.075 
Risk = 0.8219 

Return = 0.0506 
Risk = 0.5949 

Return = 0.0954 
Risk = 0.4732 

Return = 0.1073 
Risk = 0.2992 

14.5% 
Return = -0.5157 

Risk = 1.1343 
Return = -0.1366 

Risk = 0.7969 
Return = 0.0157 

Risk = 0.5796 
Return = 0.0777 

Risk = 0.4639 
Return = 0.1044 

Risk = 0.2963 

15.0% 
Return = -0.5766 

Risk = 1.0969 
Return = -0.1922 

Risk = 0.7738 
Return = -0.017 
Risk = 0.5652 

Return = 0.0608 
Risk = 0.455 

Return = 0.1016 
Risk = 0.2936 

15.5% 
Return = -0.6283 

Risk = 1.0618 
Return = -0.2426 

Risk = 0.7522 
Return = -0.0477 

Risk = 0.5518 
Return = 0.0446 

Risk = 0.4466 
Return = 0.0989 

Risk = 0.2911 

16.0% 
Return = -0.6723 

Risk = 1.0289 
Return = -0.2885 

Risk = 0.7321 
Return = -0.0766 

Risk = 0.5391 
Return = 0.0291 
Risk = 0.4386 

Return = 0.0962 
Risk = 0.2886 

16.5% 
Return = -0.71 
Risk = 0.9979 

Return = -0.3304 
Risk = 0.7134 

Return = -0.1038 
Risk = 0.5273 

Return = 0.0143 
Risk = 0.431 

Return = 0.0935 
Risk = 0.2862 

17.0% 
Return = -0.7424 

Risk = 0.9687 
Return = -0.3687 

Risk = 0.6959 
Return = -0.1295 

Risk = 0.5161 
Return = 0.0000 
Risk = 0.4238 

Return = 0.0909 
Risk = 0.284 

17.5% 
Return = -0.7704 

Risk = 0.9412 
Return = -0.4038 

Risk = 0.6795 
Return = -0.1537 

Risk = 0.5056 
Return = -0.0137 

Risk = 0.4169 
Return = 0.0883 
Risk = 0.2818 

18.0% 
Return = -0.7948 

Risk = 0.9152 
Return = -0.4361 

Risk = 0.6643 
Return = -0.1767 

Risk = 0.4958 
Return = -0.0269 

Risk = 0.4103 
Return = 0.0858 
Risk = 0.2798 

18.5% 
Return = -0.816 
Risk = 0.8906 

Return = -0.4659 
Risk = 0.65 

Return = -0.1985 
Risk = 0.4865 

Return = -0.0396 
Risk = 0.4041 

Return = 0.0833 
Risk = 0.2778 

 
Table A.1: Properties of different lookback straddle asset classes.  Those highlighted 

in green are those that most resemble those of the PTFS used by Fung and Hsieh 
and will affect the efficient frontier by way of volatility pumping.  Those highlighted 

in red would also affect the efficient frontier but purely because they have high 
returns. 

 

 



 16

References: 
 

Fernholz, R., and B. Shay. (1982): Stochastic Portfolio Theory and Stock Market 
Equilibrium. Journal of Finance, Vol. 37, No. 2, pp. 615-624. 

Fung, W., and D.A. Hsieh. (1997): Empirical Characteristics of Dynamic Trading 
Strategies: The Case of Hedge Funds. Review of Financial Studies. 10, 275-302. 

Fung, W., and D.A. Hsieh. (1999): A Primer on Hedge Funds. Journal of Empirical 
Finance, 6, 309-331. 

Fung, W. and D.A. Hsieh. (2001): The Risk in Hedge Fund Strategies: Theory and 
Evidence from Trend Followers. Review of Financial Studies, 14, 313-341. 

Fung, W., and D.A. Hsieh. (2002): The Risk in Fixed-Income Hedge Fund Styles.  
Forthcoming in Journal of Fixed Income 

Goldman, M., H. Sosin, and M. Gatto. (1979): Path Dependent Options: ‘Buy at the low, 
sell at the high.’ Journal of Finance, 34, 1111-1127. 

Gourieroux, C., A. Monfort, and E. Renault (1993): Indirect Inference. Journal of 
Applied Econometrics, Vol. 8, December, S85-S118. 

Kipcak, H. (2001): Multi-Period Optimization in the Presence of Transaction Costs. 
Master’s thesis, Princeton University, November. 

Maranas, C., I. Androulakis, A. Berger, C.A. Floudas, and J.M. Mulvey. (1997): Solving 
stochastic control problems in finance via global optimization. Journal of 
Economic Dynamic Control 21, 1405–1425. 

Merton, R. C. (1981): On Market Timing and Investment Performance I: An equilibrium 
Theory of Value for Investment Forecast.  Journal of Business  54, 363-407. 

Merton, R.C. (1990): Continuous-time Finance.  Cambridge University Press. 
Mulvey, J.M. (1996): Generating scenarios for the Towers Perrin investment system. 

Interfaces 26, 1–15 
Mulvey, J.M., D.P. Rosenbaum, and B. Shetty. (1997): Strategic financial risk 

management and operations research. European Journal of Operations Research. 
97, 1–16 

Mulvey, J.M., and W. Ziemba (1998): Asset and liability management systems for long-
term investors. in Worldwide Asset and Liability Modeling. (eds. W. Ziemba and 
J. Mulvey) Cambridge University Press. 

Mulvey, J.M. (2000): “Multi-Period Stochastic Optimization Models for Long-term 
Investors,” Quantitative Analysis in Financial Markets (vol. 3), (M. Avellaneda, 
ed.), World Scientific Publishing Co., Singapore. 

Perold, A.F., and W.F. Sharpe. (1988): Dynamic strategies for asset allocation. Financial 
Analysts Journal 44, 16–27 

Sharpe, W. F. (1992): Asset Allocation: Management Style and Performance 
Measurement. Journal of Portfolio Management. 18, 7–19. 

Swensen, D.F. (2000): Pioneering Portfolio Management: An Unconventional Approach 
to Institutional Investment. The Free Press, April. 

 
 

 


	Abstract
	2. Methods and Models
	2.1: The Lookback Straddle
	2.2: Market Model and Scenario Generation
	
	Figure 2.2: Standard tree representation for generating scenarios.


	2.3: The Lookback Straddle Asset Class
	2.4: Stochastic Optimization Algorithm
	3. Results
	Asset Class
	Table 3.1: Attributes of Asset Classes
	Table 3.2. Efficient points for the static model
	Table 3.3: Efficient points for the dynamic model without lookback straddles
	Table 3.4. Efficient points for dynamic model with lookback straddles
	(1 Year, Vol. = 14.0%)
	Figure 3.4. Efficient frontiers for all models


	4. Conclusions
	Acknowledgements
	Appendix A
	
	Table A.1: Properties of different lookback straddle asset classes.  Those highlighted in green are those that most resemble those of the PTFS used by Fung and Hsieh and will affect the efficient frontier by way of volatility pumping.  Those highlighted



