SINGULAR PERTURBATIONS FOR BOUNDARY VALUE
PROBLEMS ARISING FROM EXOTIC OPTIONS *

AYTAC ILHAN', MATTIAS JONSSON¥, AND RONNIE SIRCAR?

Abstract. We study the pricing of three exotic derivative securities (barrier, lookback and
passport options) which can be characterized by boundary value PDE problems in the context of
popular Markovian stochastic volatility models of stock prices. By extending the fast mean-reverting
asymptotic analysis in [6], the usual ”Greek” correction to the Black-Scholes prices of these contracts
is further corrected by a boundary integral term that is rapidly computed numerically. In the case of
the passport option, the asymptotic method is effective in accounting for stochastic volatility effects
in a simple and robust fashion even in the presence of a highly nonlinear embedded stochastic control
problem.

1. Introduction. In this paper, we describe a framework for approximating the
prices of certain path-dependent derivative securities to take into account the observed
“implied volatility skew”, which contains information about the market’s view of the
asymmetry and leptokurtosis in stock price returns. The pricing problems for these
exotic options are characterized by boundary value problems for partial differential
equations, under the class of stochastic volatility diffusion models we consider here.
Our examples are a barrier option, a lookback option and a passport option, whose
prices solve Dirichlet, mixed and Neumann boundary value problems respectively.
From the point of view of the practical application, there is a need for a quick calcu-
lation from which a trader can quote a price to a client. The approximation method
used here is computationally fast and robust to specific modeling of the unobserved
stochastic volatility process.

The analysis extends the singular perturbation approximations for stochastic
volatility models studied in [6]. The basis of the approximations is a rapid time-
scale of fluctuation in the stock price volatility, relative to the time horizon of the
options contract. Such a fast scale has been identified in market data in [9, 1, 2] for
example, and is convenient for constructing approximations over times when other,
slower factors in the volatility can be considered relatively benign. Extension of the
approach in [6] to incorporate a slower scale is begun in [7]. Asymptotic analysis of a
different type of exotic path-dependent contract, Asian options, is studied in [5].

The three options studied here are called exotic (and are listed in increasing order
of ’exotic-ness’) because they are less heavily traded than standard (or vanilla) call
and put options. Lookbacks and passport options are usually sold as over-the-counter
products. However, market vanilla option prices contain valuable information about
the market’s perception of future risks. This is typically expressed in units of implied
volatility. Given the observed price C 4 of a European call option, which gives the
holder the right but not the obligation to buy one unit of stock for strike price K
on date T, the implied volatility I is defined as that volatility which equates the
Black-Scholes option pricing formula CP%(t, X;; K, T; 1) to this price:

CB3(t, X4 K, T;1) = Cyp.
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Here, t denotes the current time and X; the current stock price.

A basic problem in financial engineering is, given the market’s implied volatilities,
find prices of exotic contracts that are consistent with the principle of no arbitrage.
(In general, there is no unique solution without making further assumptions on an
underlying model).

Under a large class of fast mean-reverting stochastic volatility models, it is shown
in [6] that the implied volatility surface I(K,T) (that is, I considered as a function of
the option’s strike price K and maturity date T for fixed ¢t and X;) is approximated
by an affine function of the log-moneyness-to-maturity ratio (LMMR):

LMMR — 08U/ Xe).
T—t
(1.1) I ~axLMMR +b,

where a and b are some market constants to be estimated by fitting this formula to
option implied volatility data. See Figure 1.1.

0.4 T

9 Feb, 2000

0.3F Skew 7

0.251 b

Implied Volatility
o
N
T
|

0.15F Excess kurtosis b
Historical Volatility
0.1
0.05 B
0 1 1 1 1 1
0.8 0.85 0.9 0.95 1 1.05 1.1

Moneyness K/x

Fic. 1.1. Implied volatility as a function of moneyness for fixed maturity options. The
skew represents asymmetry in the returns distribution of the stock, and the increase in level
over historical volatility the excess kurtosis over lognormal models.

Then, given estimates of the slope a and the intercept b, we consider the problem
of finding consistent approximations for various exotic options. The cases of American
and Asian options were studied in [6], as well as barriers. The latter contained an
error in the calculation, and we include it here, corrected, and in a somewhat different
format from the subsequent erratum to [6], as our starting point.

When the formula (1.1) is fitted to certain regimes of S&P 500 implied volatility
data, the estimated parameters a and b have good stability properties [6, 8]. This
is particularly important for pricing path-dependent securities as considered here,
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because they depend not just on a one-time distribution of the stock price, but also
on the evolution of the process. The stability and goodness-of-fit, particularly to
short-dated options, can be improved by including time-dependent periodic factors,
as is done in [8].

Given the condensation of the pricing measure contained in a and b, we show that
the asymptotic correction term in these boundary value problems is explicit up to a
one-dimensional integral, which can be computed very fast. It is then easy to gauge
the impact of, for example, the slope of the implied volatility skew, measured by a, on
the prices of these path-dependent contracts, as we illustrate numerically. The upshot
of the analysis is that one obtains the usual asymptotic correction terms to the Black-
Scholes prices of the exotics (which can be expressed in terms of the ”Greeks”, or
partial derivatives of the Black-Scholes prices) plus an additional boundary integral
term that corrects the Greek correction for skew effects.

2. Barrier Options. A barrier option is a path-dependent claim whose payoff
depends on whether or not the underlying asset price hits a specified value before the
maturity date. One example of a barrier option is the down and out call option which
gives the holder the right to buy the underlying asset on expiration date T for strike
price K unless the asset price has hit the barrier B at some time before T', in which
case the contract expires worthless. The payoff at expiration T can be written as

h (XT) = (XT - K)+ l{minogtST XtZB}’

where 1 denotes the indicator function.

2.1. Asymptotic Approximation. The fast mean-reverting stochastic volatil-
ity approximation for barrier options was studied in [6]. In this paper, we give a brief
review, which derives the relevant PDE problems to solve for the terms in the asymp-
totic expansion. In this case, the boundary condition arises naturally due to the
structure of the option.

We shall look at stochastic volatility models in which volatility (o) is driven
by an ergodic process (Y;) that approaches its unique invariant distribution at an
exponential rate 1/e. The size of this rate captures the volatility decorrelation speed,
and in particular we shall be interested in asymptotic approximations when ¢ is small,
which describes fast mean-reverting volatility.

As explained in [6], it is convenient for exposition to take a specific simple exam-
ple for (Y;) and allow the generality of the modeling to be in the unspecified relation
between volatility and this process: o = f(Y};), where f is some positive, (and suffi-
ciently regular) function, bounded above and away from zero. Further, taking (¥;) to
be a Markovian Ito6 process allows us to simply model the asymmetry or fatter left-
tails of returns distributions by incorporating a negative correlation between asset
price and volatility shocks. We shall thus take (Y;) to be a mean-reverting Ornstein-
Uhlenbeck (OU) process, so that the stochastic volatility models we consider are

(21) dXt = /.LXt dt+(7tXt th,
Ot = f(n)a
V2

1

dY, = ~(m — Yy) dt + 2Y2 (det +/1-p? dZt) :
2 VE

where (X;) is the stock price process. Here (W;) and (Z;) are independent standard

Brownian motions on a probability space (2, F, IP), and p is the instantaneous corre-

lation between asset price and volatility shocks that captures the skew, asymmetry or
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leverage effect. The asymptotic results as they are used are not specific to the choice
of the OU diffusion process, nor do they depend on specifying f. In this scaling, the
invariant density of Y is Gaussian, N'(m, v?), which does not depend on ¢.

The model (2.1) describes an incomplete market meaning that not all contingent
claims can be replicated by trading only in the underlying stock, the volatility process
being untradeable. This has profound consequences for pricing, hedging and calibra-
tion problems for derivative securities. By standard no-arbitrage pricing theory [4],
there is more than one possible equivalent martingale (or risk-neutral pricing) mea-
sure IP*") because the volatility is not a traded asset; the nonuniqueness is denoted
by the dependence on v, which we identify as the market price of volatility risk.

By Girsanov’s theorem, (W}, Z}) defined by

t

* __ (M—T‘)
e _Wt+/0 Fo)

t
Zr =74 +/ ~sds,
0

are independent Brownian motions under a measure P*" defined by

dp* T n=r) ! LT (e=n\,
ar P ( [y [z [0 (Fay) o2 e)
assuming (7;) is a non-anticipating process with sufficient regularity.
In particular, ; is the risk premium factor from the second source of randomness
Z that drives the volatility. We shall assume that the market price of volatility
risk ; is a bounded function of the state Y;: v = v(Yz). As explained in [6], we
take the view that the market selects a pricing measure identified by a particular
which is reflected in liquidly traded around-the-money European option prices. Other
derivative securities must be priced with respect to this measure, if there are to be
no arbitrage opportunities. Under our assumption about the volatility risk premium,
the process (Y;) remains autonomous and Markovian under the pricing measure.
Under P*(V),

(22) dXt = T‘Xtdt + f(}/t)Xtth*,
u\/iA

@3) V= |2 =¥) = DEAW) e+ DF (pawy + T= P az;).
where
A = p YD) 4 T ).
f (%)

We also define the infinitesimal generator £° of (X,Y) under this measure, and
write it grouped in powers of € as:

1 1
(24) £5 = gﬁo + %El + 527

9?2 0
_ .2 _ _
(2.5) Lo=v By + (m y)ay,



0? 0
_ 9 L2 O 9 _
(2.7) £2—at+2f(y) x 8w2+r<max >

Here Ly is the infinitesimal generator of the mean-reverting OU process, £; contains

the mixed derivative (from the correlation) and the market price of risk v, and L is

the Black-Scholes partial differential operator Lps(f(y)) at the volatility level f(y).
The price P(t,z,y) of the down-and-out barrier call option satisfies

LP=0 inz>Bandt<T,

with a terminal condition at t =T, P(T,z,y) = (z — K)*, and a boundary condition
at x = B, P(t,B,y) = 0. The latter expresses the knock-out condition on the barrier.

As shown in Appendix A, the fast mean-reverting approximation (in the limit
e } 0) for the barrier option is given by

P(t,z,y) ~ PO (t,z) + PO (¢, z).

Here, P°(t, x) is the Black-Scholes price of the option with constant volatility param-
eter &, which is related to the original volatility model by

o = (f?),

where () denotes averaging with respect to the invariant density of Y, N (m,v?).
Notice that, under the fast volatility scaling, the first two terms of the expansion
do not depend on y, the level of the unobservable process Y. From (A.2), it is the
solution of the boundary value problem

(2.8) Lps(@)P® =0 inz>Bandt<T,
P(O)(T,.CL‘) = ('T - K)+7
POt B) = 0.

We can obtain a formula for P(%)(t, z) by the method of images (see [18], for example):

(2.9) POt 2) = CBS(t,1;5) — (%)H CBS(t, B?|; 5),

where k = 2r/5% and CB%(t, z) is the Black-Scholes pricing formula for a call option,
with the volatility parameter 7:

CBS(t,2;5) = eN(dy) — Ke " T=UN(dy),
d = log(z/K) + (r + 3%) (T — t)
VT —t
dy =dy — VT —t,

and N denotes the cumulative normal distribution function,

1 z 2
N(z) = E/ eV du.




2.2. First-Order Correction. From (A.5), the stochastic volatility correction

P (t,x), which is of order /g, satisfies the PDE problem

EBS(&)IEH) =AP® ingz>Bandt< T,
PO(T,z) =0,
PO(t,B) =0,

where A is defined as

.9 02 I
VN\/E

2.11 Vs = ———= (A¢'

( ) 2 \/5 < ¢>7

(212 vi = 28 (141,

V2

and ¢(y) is a solution of Lop(y) = f(y)> — 6. As shown in [6], the boundedness
assumptions on f and -y imply that we can choose ¢ to have bounded first derivative.

The interpretation of the two market constants above are as follows: Vi con-
tains the effect of the market price of volatility risk; Vi contains the effect of the
correlation, or skew, p. In the case of zero correlation, Vi = 0, and our correc-
tion formulas (2.19), (3.11) and (4.19) below collapse and do not require numerical
integration. However, in equity markets, p is typically estimated to be negative.

In practice, we do not use the homogenization formulas (2.11) and (2.12) to obtain
Vs and Vi from a specific stochastic volatility model. Rather, they are calibrated from
liquid European options prices, or the implied volatility surface using the LMMR
formula (1.1). As computed in [6], V5 and Vi are obtained from @ and b in (1.1), and
from the long-run mean historical volatility & estimated from stock returns, by

)+ 0-0)).

N | =

The problem of solving this boundary value problem with a source term can be
simplified to a one-dimensional integral by defining

. Vs 15
P(t,z) = P(1)+ 2P 4 2 P()

for # > B. Then P(t,z) solves

(2.13) Lps(a ) P (t, :c)_() inz>Bandt<T,
(T ) =

where we define

(2.14) g(t) = 2P\)| ..



This is because the barrier option Vega V = PC-EO) solves the PDE problem
Lps(3)V =—52°P% inz>Bandt<T,
V(Ta 'T) =0,
V(t,B) =0,

as can be seen by formally differentiating (2.8) with respect to . Differentiating again
with respect to x, we can see that the Vega of the hedge U = xPég) satisfies

v 9 (a0 _
Lps(@)U = —oTa- (a: P ) , U(T,z) =0,

but U(t, B) # 0 in general.

2.3. Interpretation of the Greeks. In the case of a regular option without a
barrier boundary condition, the correction to the price is given by

V3E

o

p = Y5, p@ _ V2 po)
6_ (o )

which corresponds to the alternative formulation

0 0? 0?2
1) — _ _ e 2 2 Y 2 Y (0)
PO = —(T —1%) <V3a: <a: m2>+V23: 2>P

given in [6] because

(2.15) V =6(T - t)z*PY
O _ 57— 022 (22P©
(2.16) 2Pf) = 5(T — Has- (a: PM).

While it is convenient for intuition to present the asymptotic correction in terms
of the so-called ” Greeks” PESO) and ng?,), the intuition can be misleading because, here,
these terms are evaluated at the long-run mean volatility &, and not at (an estimate
of) the current volatility level f(Y;). In other words, these terms represent sensitivity
to the global mean volatility rather than local sensitivity, as is how the Greeks are
usually employed in practice. The asymptotic calculation has highlighted the Vega
and Vega of the Delta Pég) as primary measures of the effect of stochastic volatility on
pricing in the fast mean-reversion limit, but the current volatility level is unimportant
to this order. It is analogous to a central limit theorem correction to a law of large
numbers.

In the case of path-dependent options considered here, these Greek terms do
not comprise the whole correction, and the term 15, which can be represented as a
boundary integral as we shall see below, plays an important role.

2.3.1. Calculation. The problem (2.13) can be transformed to a constant co-

efficient backward heat equation by the simple transformations

—lo£
n= gB

P(t,z) = gv(t,n) exp (—éa2(1 + k(T —t) + %(1 - k)n) .
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Then v(t,n) solves

(2.17) v + %621;7777 =0 inp>0andt<T,
v(T,n) =0,
v(t,0) = g(b),

where

g(t) — 6%62(1+k)2(Tft)Bfé(lfk)g(t)_
The probabilistic representation of v is simply

v(t,n) = E{g(T)1{r<7y | Be = n > 0},
where (B;) is a Brownian motion with (B), = ¢, and 7 is the first time after ¢
that it hits 0. Using the distribution of the hitting time 7 (see e.g. [16, Chapter 2,
Proposition 8.5]), the solution is given by the one-dimensional integral

(2.18) =257 (s=1) () ds.

I Y
U(tﬂ?)—&\/%/t (5—t)3/26

The boundary condition v(¢,0) = §(¢) holds in the following sense: v(t,n) is the
convolution of § with the kernel ¢ —» nt=3/2¢=7°/25°t Ag 5 — 0, the kernel tends
weakly to the Dirac mass at ¢t = 0 and v(t,n) — §(t) pointwise as n — 0.

We obtain the correction to the barrier price as

VE VE
(219) PO(t,z) = -2 2P (t,2) — 2P (t,2)
a a

T
+§£log (E) ! / e—%dB(s—t)Zﬂds
g t (

& B B/ 5+/27 s—t)3/2
where
1 B 1
du(r) = 28@/B) Ly eyr
o\/T 2

Explicit formulas for g(t) and ﬁ(t, x) are given in Appendix B. These are illustrated
in Figures 2.1 and 2.2.

2.4. Convergence. In the case of a smooth payoff-at-maturity function, the
proof of the convergence result

|P(t,2,y) — (PO (t,2) + PO(t,2))] = Oe)

at a fixed point (¢, z,y) is obtained by an adaptation of the proof given in [6, Section
5.4]. The error Z°(t,z,y) defined by

P=PO 4 /ePW 1 cp® 4 312pO) _ 7¢
satisfies

L5275 =e(L1PO) 4 Lo PP)) 4322, PO)
Z5(T,z,y) = ePO(T,z,y) + £/ PON(T, z,y),
Z°(t,B,y) = eP?(t, B,y) +**P¥(t, B,y),
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Fic. 2.1. Effect of changing the slope of the skew a on down and out call option price.
The parameters used for pricing the contract are K=100, B=89, T'=.5, 6=0.17,b= 0.23. As
shown more closely in the right figure, near the barrier, making a more negative increases
the price. This effect reverses at higher stock prices. In the figures,the solid line shows the
corresponding Black-Scholes price. In the right figure, the values of a reading upwards after
Black-Scholes pricing curve are a = —0.02, —0.04, —0.09, —.18.
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Fi1g. 2.2. The first order correction for down and out call option at time t=0. The
parameters used for pricing the contract are as in Figure 2.1 with a = —0.154. The solid

line shows the first order correction 1;\(_1/), the dotted line is 15, and the dashed line is the
contribution of the Greek terms to P(1) in (2.19).

using the definitions of P(®) (¢, z), P(V)(t,z), and choosing P?) (¢, z,y) and P®) (¢, z,y)
as solutions of (A.1) and (A.3) respectively. The latter can be chosen to be at most
logarithmically growing in y by the properties of the Poisson equations (A.1) and (A.3)
and the assumed boundedness of f and A. The result follows from the Maximum
Principle because smoothness of the payoff implies P(?) and P®) are smooth with
bounded derivatives.
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When the payoff is only continuous as in the case of the barrier call option here,
the argument of [10] can be adapted to show that

|P(t,2,y) — (PV(t,2) + PO (t,2))| = O )

for any p > 0. This involves a regularization of the payoff, which can be conveniently
done by replacing the nonsmooth call payoff (x — K)T by the Black-Scholes barrier
option price PO (T —§,x;5) a small time § > 0 from maturity. This payoff is smooth
and zero at the barrier £ = B, and we can utilize the explicit Black-Scholes barrier
option pricing formula (2.9) to easily estimate the blow-up rates of derivatives at
r=Kasdl0andt —>T.

The important point is that the barrier price P(®) is smooth in 2 > B and its
derivatives have finite limits as  — BT. Therefore the presence of the knock-out
barrier introduces no further complications.

The only further adaptation to the proof in [10] that needs to be made is in
showing that the solution of the regularized problem converges to the solution of the
unregularized problem as § | 0 at a rate independent of . This can be achieved by
a rotation of co-ordinates so that the two solutions can be written as expectations of

functionals of independent processes (£,Y), where £ = X — F(Y) and F' = l‘//\g/gf,

stopped on a curved boundary. (Such a transformation is not computationally conve-
nient but is useful to derive regularity properties). The result follows by conditioning
on the subordinating process Y and e-independent moments of this process.

3. Lookback Options. Lookback options are path-dependent options whose
payoff depends on the realized maximum or minimum of the underlying asset price
during the life of the option. One example of this class of options is the floating strike
lookback put which pays the difference of the realized maximum of the underlying
asset during the option’s life and the asset price itself at the expiration time T'. Its
payoff can be expressed as

where we define the running maximum J; as

Jy = max X;.
0<s<t

Pricing equations for lookback options in the Black-Scholes constant volatility model
were first given and solved in [11]. A combination of a lookback call (paying the
difference between the terminal stock price and the minimum) and a lookback put
can be used to model trading strategies employed by many trend-following hedge
funds, as discussed in [3] for example.

In a stochastic volatility environment, the price P(¢,z, J,y) of this option satisfies

LSP=0 inzx<Jandt<T,

with a terminal condition P(T,z,J,y) = J — z, and a boundary condition at z = J,
Pjy(t,J,J,y) = 0. The derivation of the boundary condition is given in [11], and it
expresses the fact that the price of the lookback option for X; = J; is insensitive to
the small changes in J; because the realized maximum at time 7' is larger than the
realized maximum at time ¢ with probability one.
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The problem of finding P(t,z, J,y) can be reduced to a two (space) dimensional
boundary value problem with the following similarity reduction:

§=a/J, and P(t,z,Jy) =JQ(t & y).

We can express Q(¢,&,y) as the solution of

<%Eo+%ﬁ1+ﬁ2>Q:0, foré<landt<T,
Q(Tagay) = 1_57
(Q£ _Q) (ta]-ay) =0,

where, in a slight abuse of notation, we redefine £; and £, as the same as (2.6) and
(2.7), but with ¢ replacing z.

3.1. Asymptotic Approximation. Our approximation for the lookback price
is

Qt.&y) ~ QU (1,6 + QW (t,6),
where PO (t,z,.J) = JQ©)(t,z/J) is the Black-Scholes price of the option with
volatility parameter 7. That is, following the argument in Appendix A, Q© solves
1 .
(3.1)(£2)Q = QEO) + 562526222) (ng - Q0 ) =0 iné<landt<T,
QUT,§=1-¢
(@€ - Q@) .1 =0.

The correction term solves the analog of (A.5), namely
(32 Q"+ —*2£2Q§§ +r (5@” Q(1)> =AQ® im¢<landt<T,

with QU(T,€) = 1 — € and

<QTD —6@) (t,1) = 0.

Here, the operator A is as in (2.10), but with £ replacing x.

3.2. Zero-Order Term. Although the pricing formula P (¢,z,.J) for a look-
back put is well-known, we will start by deriving P(®) (t,z,J), as the transformations
will also be useful in the derivation of PN (¢, 2, J) = JQW (¢, z/.J).

The PDE problem (3.1) can be transformed to a PDE with constant coefficients
by using logarithmic variables. That is defining

n=log¢, u(tn) =Q(t¢),

we find u(® (t,n) to satisfy

1
(3.3) (0) + 20 u,(7(,)7) + (r - §U2> u,(70) —ru® =0 inp<Oandt<T,
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with the conditions
U’(O) (T7 77) =1- 677,
(u%o) - u(o)) (t,0) = 0.

We first find w© (¢, n) = u{” (¢,n) — u® (¢, n) which solves the following (Dirichlet)
boundary value problem,

1 1
w® + 5521117(797) + (r - 552> w® —rw® =0 inn<Oandt<T,

with the conditions

w(O) (T7 77) = _17
w® (¢,0) = 0.

The solution for w(9) (¢,1) can be found via method of images:

(3.4) w® (t,n) = e T |eU=RIN (¢) (T — 1)) = N (eo(T — 1))
where
_.n 1 _ _-n 1 i}
a(r) = 5—\/; + 5(1 —k)ayT and c(7) = 6—\/7_' 5(1 —k)ay.

To recover u(9)(t,1) from (3.4), we use the relationship
n
(3.5) wO(t, ) = / 10O (¢, 2)dz + e"u® (1, 0),
0

and to find the initial condition u(®)(¢,0), we substitute (3.5) into (3.3), set n = 0,
and conclude that «(?)(¢,0) should satisfy

1
ul?(t,0) = —50° W) (t,0).
Therefore u(® (¢,7) is given by

w(® (t,n) = e~ T(T—t) [_kfle(lfk)ﬂN (e (T —t)) + N (e2(T — t))]

(3.6) +e" [(L+k~")N (e3(T —t)) — 1],
where
c3(r) = %ﬁ + %&(1 + k)T

Restoring all other transformations, we get, in the notation of [18],

POz, J) = —z +2(1 + k)N (dy) + Je T <N(d5) e (%)H N(d6)> :
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where

3.3. First-Order Correction. Analogous to the zero-order calculation, we de-
fine

n=log¢,  ull(t,n) =QW (),
and, from (3.2), find u")(t,7) to satisfy

1 -
3.7) ul” + 5621&7) + (r - ) D — D = Au® inp<Oandt<T,

152
2

u (T, ) =0,
(u%l) - u(l)) (t,0) =0,

where

Defining L1, by

we can verify by differentiating (3.3) with respect to & that
£LBUE70) _ _5(u§797) —u)  and LLBUE%) = —5(® —u®)

n nnn nn

with ug)(T n = (uy, (0) - uéo))(t,O) = 0, and with u(f)(T n) = 0, but (u;%)ﬁ -
(0))(75 0) #0in general
This motivates us to define 4(t,n)

by
Vs 1
i = a4 = (V) + i)
a
We find that @ solves
1 1
ﬁt+§6212m7+ (r—502> Up—ra=0 inn<Oandt<T,

12( ,n) =0,
g(t

where we define

(3.8) g(t) = (“1(7(1)7)& - u;%))|n:0 - w7(7(‘)_’) |77=0'
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Defining w = 4, — @, w(t,n) solves the Dirichlet boundary value problem

DN | =

1

ﬁbt+§62u§nn+ <r— 62>u§n—ru§:0 inp<0andt<T,
w(T,n) =0,
w(t,0) = g(t).

Following the analysis leading to (2.18), we can write

77677 T67%03(sft)2 g(S) ds.
ov2r )i (s — )32

(3.9) (k) = —

This formula, together with a Taylor expansion of g, yields

1

g (1,0) = 51~ R)gt).
To recover 4(t,n), we use
(3.10) a(t,n) = /077 e w(t, z) dz + eh(t),
where
B'(t) = —=&%,(t,0) — rg(t), h(T)=0
Therefore

After some computation, we obtain

T ) ) - .
ﬂ(tﬂ?) = 66”/ (6_563(3_75) _ 6—563(8—t) ) ds
t

g(s)
27r(s —t)
T

— %(k +1)5° /t [N(cs(s —t)) — N(és(s —t))] g(s)ds

+ é(k + 1)e” [1 — e T T=UN (& (T — t)) — N(&s(T — t))] ,
where

. 1 _ . 1 _

é3(r) = 5(1 +k)ayT and é(r) = 5(1 —k)o/T.

In the original variables we can write

(3.11) PO(t,2,J) = -2 2P (t,z) — sz
o g

0 Vi
PO (t,z) + - Ja(t,log(x/J).
Explicit formulas for the Greeks and g are given in Appendix C.

Figure 3.1 illustrates the effect of the two parts of the correction, and for various
skew slopes.
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Fic. 3.1. The left graph shows the effect of changing the slope of the skew a on the look-
back put option price. The parameters of the contract are T'=.5, =0.17,b= 0.23. The current
running maximum is J=111. The solid line shows the corresponding Black-Scholes price, the
values of a reading downwards at the right of the graph are a = —0.02, —0.04, —0.09, —.18.
When the stock price is near to its running maximum, making a more negative decreases the
option price. The right graph shows the percentage of first order correction to the Black-
Scholes price for the lookback put option at time t=0. The parameters of the contract are as
in the left figure with a = —0.154. The solid line shows the whole first order correction, the
dashed line shows the contribution of the Greek terms in (3.11) and the dotted line shows
the remainder, i.e. the boundary correction.

3.4. Convergence. From (3.6), second and higher derivatives of u(®) with re-
spect to n blow up as ¢t — T and  — 0, similar to the Black-Scholes price of a
European call option with log strike price equal to zero. Therefore the proof of a
convergence result of the form

\P(t,z, J,y) — (PO (t,z,.]) + PO(t,z,.]))| = O(c'P)

for any p > 0 at a fixed point (¢,z, J,y) requires the regularization techniques in [10],
discussed in Section 2.4.

4. Passport Options. A passport option allows its holder to trade the stock
continuously, starting with initial capital v, and collect his or her profit at the expi-
ration date T, if any, with losses written off. Its price is studied by Hyer et. al. [13]
where they assumed a log-normal process for the underlying. They derive and solve
the Hamilton-Jacobi-Bellman equation for the price. Shreve and Vecer [17] used
probabilistic techniques to price this option as well as other variants. Henderson
and Hobson [12] analyzed passport option pricing under stochastic volatility models
where they assume independence of the volatility driving process from the stock price
process. They give the price analytically using power series expansion methods for
different volatility models.

Let (g¢)o<t<T be a possible trading strategy, where ¢; is the number of stocks
held in the trading account at time ¢. Additionally,

-1<¢: <1



16

at all times, so the trader is restricted to be at most long or short one stock at any
time. Let (V;) be the value of the holder’s portfolio so that

(4.1) dVy = rVidt + q. f (Y1) X, AW,

written in terms of the risk-neutral Brownian motion W* because cash flows are
priced under P The payoff of the passport option is simply VT+ and and so the
no arbitrage pricing function P(t,x,y,v) of the contract is given by

P(t,z,y,v) = sup IE*(AY){e_T(T_t)VTJr | X: =z,Y: =y, V; =v}.
[gI<1

This is conjectured to solve the Hamilton-Jacobi-Bellman PDE

oP
— + sup L) P =0,
ot g T

where 5;%,@ is the infinitesimal generator of (X,Y, V), plus the discounting term:

1 9?2 9?2 0?2
(9) — = 2.2 (2 27
Ll 2f(y) v (8:62 + 2q8:ﬂ8v T4 81}2)
/2 ? ? 102 92
VA (—axay + q—ayav> 3T

0 0 1 vv2 0
+r <x% —l—v%) + (g(m—y)—fz\(y)> a—y—r-.

The terminal condition is

+p

P(T7x7y7v) = /U+7
and the domainist < T, z > 0, —o0 < y,v < 0.

4.1. Similarity Reduction. We first take advantage of a natural homogeneity
in the problem. From (2.2) and (4.1), we see that scaling X and V by a common
factor, say 6

X = 60X V=6V
does not change those equations. In other words,
P(t,0x,y,0v) = 0P(t,z,y,v),
and so we look for a solution of the form
P(t,z,y,v) =2Q(t,&,y);  =v/z,

for some function Q.
Substituting this form gives that Q(t,&,y) solves the PDE problem

(42) Qe+ sup {%f(yf(q - € Qee + p”—ff(qu - S)Qay}

lg]<1
u\/ﬁA /2

1
g(m—y)—\/g (y)+p\/g

f(y)] Ry =0,
Q(T7 f’ y) = £+7

102
taelwt
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in the domain t < T, —o0 < £,y < oo. Interestingly, r has disappeared from the
problem.
Consider the quadratic (in ¢) term in (4.2)

1 V\/§

31— ) Qec + p?f(y)(q —6)Qey-
Assuming that Q¢ > 0 for ¢ < T', the maximum of this quadratic over ¢ € [-1,1] is
at the boundaries:

qg ==+1

at each point in the domain. Therefore (¢*)> = 1 and the sup term in (4.2) can be
replaced by

V2

%f(y)Q(l +&)Qee — P$f(y)fQ£y +f()? |6Qec — —jg}g) Qey

Let R(t, &, y) be the solution to PDE (4.2) with terminal condition R(T, ¢, y) = |¢].
It is then straightforward to verify that the function £ (¢ + R(t,&,y)) verifies both the
PDE and the terminal condition in (4.2), so we have

(43) QU,6.) = 36+ B(t,6.1).
The PDE problem for R is therefore:
1 vV2 102

Rut JF0° 0+ E0Ree — o2 F)ERey + 5 Ry
1 2 2

+Z(m—y) - %A(y) + pff(y) R,

(4.4) +f(y)? |ERee — %Rﬁy =0.
R(T,&,y) = [¢].

Observe that (4.4) is unchanged by the transformation £ — —¢£. As a consequence,
R(t,€,y) is an even function of . This property carries over to the first two terms of
our expansion, where we will take advantage of it.

4.2. Asymptotic Expansion. We re-derive the asymptotic expansion for this
option to highlight the differences with the calculation for the previous two cases
given in Appendix A. See [15, 14] for approximations for related stochastic control
problems.

The expansion is written here for R, but applies, with obvious modifications to
the terminal condition, for (). Under the usual fast mean-reversion scaling, we rewrite
the PDE (4.2) as

1 1
L —L Ly) R+NL* =0
(5 o+ \/g 1+ 2) + ,
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where Ly, £1 and Ly are the linear differential operators
2

0 0
Ly =v? W+( —y)a—

—V2prf(y)¢

Lr= o+ 2f (1 +€)

seg VIV W) =AW 5

82
o€

and NLF? is the nonlinear term

pr/2

NL® = f(y)2 §Ree — ngy

We look for an expansion
R=R® +/eRM + cR® ...,
valid for small € > 0. Inserting the series and comparing terms of O(s~!) gives
LoR") =0,

which implies that R(© does not depend on y, as explained in Appendix A. Hence in
the expansion of NL®

e oz | V2 R®) + RO prV2 )
NL* = £ =g v +8Fee — Ty Ry + OWVE))

the O(e~'/?) disappears.
Comparing terms of O(e~'/?) therefore gives

LoRM + LR = 0.
Since L takes y-derivatives, this reduces to
LoRWY =0,

which implies that R(") also does not depend on y. Now

ERY + 2 (fRé? pf” (\/)_R(2)> +0(e),

including the next order. The O(1) terms of the expansion in the PDE give

(4.5) NL® = f(y)?

(4.6) LoR® + L RY + LR + f(y)? |€| RY =0,

where we have assumed that Rég) > 0, that is the leading term inherits the convexity

of R in €. The second term £, R™) = 0 because R™") does not depend on y. We view
(4.6) as a Poisson equation for R(?). For there to be a solution, the source term must
be centered with respect to the invariant distribution of the OU process (Y;), namely

(4.7) <L~2> RO =y,
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where we define

N , 0
Lo=Lo+ f(y) |€|8_§2
0 1 9?
= o + §f(y)2(1 + |£|)28—§2

The averaged operator simply replaces f(y)? by the constant 2. Therefore RO)
when transformed back, gives the passport option pricing function with the constant
long-run average volatility 6. To move to the next order, we formally linearize the

expression (4.5) for NL®:
) + O(e).

LoR® + L1R® + LoRM + sgn(€) [g Fy)* RS — pv/2f (y) Rg)] —0.

V2
R(l) _pv R( )
3 33 f(y) gy

NL® = f(y)? (|5|R§? +V/Z sgn(é)

Now comparing terms in the expanded PDE of O(,/2) gives

This is a Poisson equation for R(®) whose solvability condition gives

()R = = (- 21 sl a?;y>R<2>>

(148) = VB { (of sn(©1 + 1) 5 — (0 - 113 ) BD).

As in Section 2.2 let ¢(y) be a solution to Lod = f(y)? — 52. Then (4.6) gives

RO) = —Zo(y)(1 + 6)*RY + D(t,)

for some function D that does not depend on y. Substituting and computing the
right-side (4.8) gives a combination of second- and third-derivatives of R(®) in the ¢
variable.

As usual, we absorb the /¢ term into the correction and call

RM = \/ZRW.

Then R (¢,€) solves

]- — £ £
(49) Y +55% L+ DR = = (Vi = V5) (L +16D*RY

— Vi sgn(&)(1+ [¢])° R,

where Vi and Vi are the market group parameters defined in (2.11) and (2.12). The
terminal condition is

ROV(T, ¢) = 0.
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4.3. Zero-Order Term. Again we start by finding the zero-order approxima-
tion. We work with R(t,&,y) and recover Q(¢,£,y) using (4.3). Thus R(®) satisfies

(4.10) R§°)+2 20+ €)*RY =0 in —oo<E<ooandt < T,
(4.11) RON(T,€) = |¢].

Thus R (¢,-) is even at all times, so by the smoothing properties of (4.10) we
have Réo) (t,0) =0 for t < T. Hence we can solve

(4.12) R + 5621+ €?RY =0 in¢>0andt<T,

0 (T7 E) = f
R"(t,0) =0

1
2

and obtain the solution in £ < 0 by the even extension.
We transform to constant coefficients via

n=log(1+¢), RO(t¢=u"(n).

Then u(®) (t,n) solves the Neumann boundary value problem

1
(4.13) ul® + 562(u§797) —ul”)=0 inp>0andt<T,
U(O) (T7 77) =e' - ]-7
u®(t,0) = 0.

We first find the partial derivative w(® = u% ), which solves a Dirichlet boundary
value problem:

n n
w® (T,n) = e,

w® (t,0) =0

1
(4.14) w,go) + 562 (w(o) - w(o)) =0 inp>0andt<T,

By the method of images,
w O (t,n) = "N(cs(T —t)) — N(cg(T — t)),
where

(4.15) cs(t) = a\/_ + = O'\/7_' and cg(7) = 6_—\/777_- +%6\/7_'.

As in the lookback option case, u(% (¢,7) can be recovered from w(®)(t,n) to give

u® (t,m) = e"N(es (T — t)) = N(—cg(T — 1))
+VT —t(N'(cg(T —t)) + c6(T — t)N(ce(T — t))) .

Restoring all the transformations gives P()(t,z,v) as

1
PO == {v + zu® <t,log <1 + M))]
2 T



21
which can be written in the notation of [17] as
1
PO = = [v + (z + [W)N(dy) — zN(d_) + zoVT — ¢t N'(d_) — 2o/T —td_N(—d_)] ,

where

4.4. First-Order Correction. The first order correction 1/%\(?) satisfies the PDE

R+ 5071+ EDPRE) = —(VF — V)1 + E)PREY - VE(1+16)* R,

with terminal condition R (T, &) = 0. Thus R() is again an even function of &,and
we can solve

RY + o211 02D = — — v+ 2R - Vi (1 + 0° R,

bDlhﬂ

with the terminal condition R )(T,€) = 0 and the boundary condition R( )(t, 0)=0
in £ > 0,t < T. We will subtract the “particular solution” at a later stage when it
becomes easier to identify.

Applying the same set of transformations, namely

n=log(1+&), ROEE) =uD(t,p),

we get from (4.6) that

1 -
(4.16) ugl) + 552 (u%ln) - u%l)) =Au® inp>0andt<T,
u)(T,n) =0,
uM(t,0) =0,
where
- o? 0? o? 0
A= (g - ) + 05490 (g7 - 7).

Defining £, by

L9 1,(d 9
&=+ (7 )

we can verify by differentiating (4.13) that

Epugo) = —6(u7(7[,)7) — u%o)) and £pu(0) (“7(797)77 u%%))

Moreover, u( ) = (0) u® =0 fort=T and u(-) (t,0) = 0 but u'®

WWU nno
general. This motlvates us to define 4 by

Vs . u ﬁu;%) _ <§ + 5) w0
ag

(t,0) # 0 in

—u = = 5 -
G o G
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Further, defining @ = 4, to reduce to a Dirichlet boundary value problem, we find
that (¢, n) solves

1
ﬁ;t+§&2(u§nn—u§n):0 ingp>0andt<T,
w(T,z) =0,
w(t,0) = g(t),
where
- _,0 — _ 9
(4.17) g9(t) = —tiyps n=0 — Wz Ip—o-

We now follow the analysis in Section 3.3. First, the analogue of (3.9) is

T
A _ 77 —lc (s—t)2 g(S)
t,n) = sea(s—t)’ %) __g
w( 777) 5’\/%/t € (8—t)3/2 5,

which in particular gives

i (1,0) = 5g(0).

The solution for (t,n) is recovered from

(4.18) alt,n) = /On (t, ) dz + h(t),
where

WD) = 55° (9t) —y(1,0)),  K(T) =0
Thus

T
h(t) = —i#/t g(s)ds.

The solution for 4(t,n) can be obtained as

T
- - g(s) —Lag(s—1)2 _ —Les(s—t)2
u(t,n) =& ——— [e 2 —e 2 ds
(o) /t \27m(s —t) ( )
1, [T y
+ 562 / g(s) (N(—cg(s —t)) — N(é(s —t))) ds
t
1/1
+ 2 (5-Near-m),
g \2
where cg is defined in (4.15) and (1) = —35/7.
By restoring all transformations we obtain the first-order correction for the pass-
port option as

PO (1, 2,0) = — & (1+ i) PO _ (V_ _ V__) PO

a ] g g |vl

(4.19) + lvéml (t,log <1 + M)) .
20 T

Explicit formulas for the Greeks and g are given in Appendix D.
Figures 4.1 and 4.2 illustrate the effect of the correction and the slope of the
implied volatility skew.
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Fic. 4.1. The left graph illustrates the effect of changing the slope of the skew a on the
passport option price. The parameters of the contract are x = 100, T = .5, ¢ = 0.17, and
b = 0.23. As |v| gets larger, making a more negative increases the option value, while this
effect reverses as |v| gets closer to 0. The right figure shows more closely the upper right
corner of the left figure. The solid line shows the corresponding Black-Scholes price, the values
of a reading upwards after the Black-Scholes pricing curve are a = —0.02, —0.04, —0.09, —.18
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Fic. 4.2. The first order correction for passport option at time t=0. The parameters
of the contract are as in Figure 4.1 with a = —0.154. The solid line shows the full first
order correction, the dashed line shows the contribution of the Greek terms in (4.19) and
the dotted line shows the remainder, i.e. the boundary correction.

4.5. Convergence. The existence of a smooth solution to (4.4) is an open ques-

tion. If such a solution exists so that B¢ =0
nonlinear error equation for Z¢ defined by

at £ =0 for t < T, then one can write a

R=R® 4+ eRY +¢R® 4 32RG) — 7¢
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with suitable terminal and boundary conditions. Under strong regularity hypotheses
on the solution, a weak convergence result may be obtained by introducing test func-
tions in (£,y). The convergence is necessarily weak in this case because of the sense
in which the expansion of the | - | function can be used.

Appendix A. Asymptotic Calculation. We present the formal asymptotic
expansion that yields the PDE problems to be solved for the Black-Scholes price and
stochastic volatility correction for the first two exotic options considered here. Further
details are presented in [6]. In the case of the passport option, the argument is more
involved because of the embedded nonlinear optimization problem.

Let P(t,x,y) solve L5P = 0 in the domain t < T, y € IR and x > xg, where L° is
of the form (2.4). The key features are

e Lg, given in (2.5), is the generator of an OU process;

e [, takes derivatives in y and so kills any function that does not depend on y;

e [o takes derivatives in ¢ and x, but not y. It has coefficients that depend on
y and an associated boundary condition at x = zy which does not depend on
€ ory.

e The terminal condition at ¢t = T does not depend on ¢ or y.

Inserting an expansion P = Py + /P! +eP® 4 ... and comparing powers of
g1 gives Lo P(® = 0. This is an ODE in y, and from the properties of Lo, the only
solutions with reasonable growth at infinity are constants in y. Therefore we take
P = PO (t g). Similarly, comparing terms of order e /2, we conclude P() also
does not depend on y.

The order 1 terms give

(A1) LoPP + £,P© =,

which is a Poisson equation in y for P(?), By the Fredholm alternative, £, P(®) must
be orthogonal to the null space of the adjoint of Ly, which here is spanned by the
invariant density N'(m,v?) of Y. Denoting by (-) averaging with respect to this
density, P(©) (¢, z) must solve

(A.2) (L) P =0,

with the associated boundary condition at = xp. In the case of the barrier, the
averaged operator (L£») is given by

0 1, , 9
(Lo) =gy 370 8m2+r<x8m )

where 62 = (f?). We also write (L) = Lps(7). In the case of the lookback, we have
the same operator with £ replacing z.
Comparing terms of O(y/¢) in the PDE, we find

(A.3) £oP® = = (£, P+ £,P0)

which we look at as a Poisson equation for P®) (¢, z,y). Just as the Fredholm solv-
ability condition for P(?) determined the equation for P(%), the solvability for (A.3)
will give us the equation for P(V) (¢, z). Substituting for P®*)(t,z,y) with

(A4) PO = —£5" (Ly — (£2)) PO + cft, ),
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for some function ¢ not depending on y, this condition is
(£2PM) = £1£5" (£ = (L)) PO) =0,
where
(Lo My = (Lo) P

since P(1) does not depend on y. Absorbing the \/z factor and calling

P = \/epD),
gives that
(A.5) (Lo)P1) = AP
where we define

A= VE(LiILy" (Ls— (L)),

plus the homogeneous boundary condition at x = zy and homogeneous terminal
condition at t =T

In the case of the barrier option, direct computation leads to the formula (2.10),
and similarly for the lookback with £ replacing z.

Appendix B. Formulas for Barrier Option Correction. Here, we include
the explicit formulas for the terms in (2.19): ¢(t), defined in (2.14) is given by

21
o8 K VES (. B) + ZC’BS(t,B)

g(t) = - PT -1

and Greek terms for the barrier option are given by
1—k B2 4 1—k B2

PO (t,2) = VBS(t,z) — (%) yBS <t, —) - _—Zlog% (%) CBS <t, ?> :
—k [} — B?

ez ) (50 () o et ()

Fir _ ps(, B

() (s e (1)

x\ —(k+1) T ps (., B®

s (5) emga (“7 ’

where AB3(t,z), VBS(t,z), CB5(t,z) are the Greeks of a call option that has the
same parameters:

ABS(t,z) = CB3(t,2) = N(dy),

2/ —t
VBS(t,2) = CBS(t,2;6) = we 3%

055 (t,2) = Y 2) (1_ & )
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Appendix C. Formulas for Lookback Option Correction. The formula for
g(t) in the case of the lookback option, defined in (3.8) is

1 e §(1+k)%5%(T—t)

g(t) = %ﬁeiT(T%)N <§(1 —k)yovT — t) - QW.

And the Greek terms for this option referred in (3.11) are

1—k 7 7
PO (t,2) = —Je (T (%) <% + ;log %) N(ds(T - t)) + %mN(d7(T — 1),

O 2y = (T 1og L 7 _2152) 2 _
Py (t,z) = <63 log i log J) mN(dﬁ(T t))
J

—ﬁgNl(de(T —t)+ g%N(dNT —t)).

Appendix D. Formulas for Passport Option Correction. In the case of
the passport option, g(t) defined in (4.17) is simply given by

e—%(ﬁ(T—t)

The Greek terms used in (4.19) are as follows

P (t,z) = 26(T — t)N(d_) + 2aVT — tN'(d_),

POe)  2ollos+ )
T

P (t,x) =
(t.2) (@ + [0)o2VT — 1
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