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Abstract

We consider the problem of minimizing the risk of a financial position (hedging) in an
incomplete market. It is well-known that the industry standard for risk measure, the Value-
at-Risk, does not take into account the natural idea that risk should be minimized through
diversification. This observation led to the recent theory of coherent and convex risk measures.
But, as a theory on bounded financial positions, it is not ideally suited for the problem of
hedging because simple strategies such as buy-hold strategies may not be bounded. Therefore,
we propose as an alternative to use convex risk measures defined as functionals on L2 (or by
simple extension Lp, p > 1). This framework is more suitable for optimal hedging with L2 valued
financial markets. A dual representation is given for this minimum risk or market adjusted risk
when the risk measure is real-valued. In the general case, we introduce constrained hedging and
prove that the market adjusted risk is still a L2 convex risk measure and the existence of the
optimal hedge. We illustrate the practical advantage in the shortfall risk measure by showing
how minimizing risk in this framework can lead to a HJB equation and we give an example of
computation in a stochastic volatility model with the shortfall risk measure

1 Introduction

We are interested in the problem of hedging in an incomplete market: an investor decides to buy a
contract with a non-replicable payoff X at time T but has the opportunity to invest in a financial
market to cover his risk. By convention, the hedge will be a short position obtained by trading with
strategy H and borrowing the discounted amount $x from a riskless account. The final wealth for
the investor is X−(x+GT (H)) where GT (H) is the wealth at time T obtained through trading. The
question of hedging is the choice of the best pair (x,H) to minimize the total risk of the investor.

The standard for measuring risk in the industry, the VaR measure, has been criticized because it
fails to take into account the economically justified notion of reduction of risk through diversification.
Artzner et al. [1999] initiated an axiomatic approach to risk measures, namely coherent risk measures.
Their axiom of homogeneity was relaxed later by Föllmer and Schied [2002] to define convex risk
measures. However, these types of measures were defined only for bounded financial positions. This
appears too restrictive first because many common derivatives like call options are not bounded.
Also, in models not locally bounded, the only bounded investment is the zero investment. Therefore,
it seems practical to extend this concept to convex risk measure defined on broader spaces. Certain
spaces like Lp spaces with 1 < p < +∞ or Orlicz spaces LΦ are natural candidates for different
reasons.

Risk measures defined on L∞ are always finite as a simple consequence of the translation in-
variance and monotonicity. However it is easy to construct functionals on Lp spaces, extension of
convex risk measures on L∞, that can assume the value +∞. A classical example is the entropic risk
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measure ent(X) = log E[exp(−X)] on L1 for example. The question of +∞ has been approached in
two ways.

The first one requires the risk measure to stay finite and the right framework seems to be the
very general extension to Orlicz hearts proposed by Cheridito and Li [2009] which requires convex
measures to have a non-empty interior as stated in their Theorem 4.6 together with Lemma 4.1. This
result has been generalized to general Frechet lattice spaces in Theorem 1 of Biagini and Frittelli
[2009]. The other approach aims at enlarging the space while not guaranteeing the finiteness of the
risk measure, for example in Ruszczynski and Shapiro [2004] and Rudloff [2006] for Lp spaces, with
Orlicz spaces in Biagini [2006] or Biagini et al. [2008]. In Kloppel and Schweizer [2006], the special
case of convex risk measures defined through BSDEs gives an example of finitely valued measures
defined on L2.

Both approaches have advantages. Ensuring finiteness of the convex functional guarantees norm
continuity and therefore a natural dual theory which was one of the central points in the development
of convex risk measures on L∞. However, in the concern of hedging, general conditions of Orlicz-
integrability for the portfolio value do not appear to be explicit enough from a practical point of
view. As an example, the entropic risk measure can be defined on a Orlicz heart where it takes finite
values, but it is easy to see that in the case of a simple Black-Scholes model, the payoff of a short
position on a call option does not have the appropriate integrability since E[exp((ST −K)+)] = +∞.
However, it makes perfect sense to talk about hedging this position under this particular measure of
risk since it can be checked easily that by investing in only buy-and-hold strategy, one can achieve
a finite risk:

E[exp(−{ST − (ST −K)+})] < +∞.

It seems more natural from a practical point of view, if one wants to consider common risk
measures, such as the entropic one, to allow for the value +∞. The major inconvenience of this
point of view is that we lose a priori the natural duality theory since we need now to impose a
condition of lower-semicontinuity which was automatic for finite convex functionals. An important
recent contribution by Jouini et al. [2006] to the study of convex risk measures was the proof that
convex risk measures on L∞ which are law invariant (as the entropic measure or any utility based
risk measure) have automatically the Fatou property, and thus a clean dual representation in terms
of probability measures. This powerful and fundamental result unfortunately doesn’t extend to
R∪{+∞}-valued convex risk measures defined on Lp, as illustrated in Example 5.1 of Filipovic and
Svindland [2008] when studying the problem of extending convex risk measures to larger spaces.
The link between the Fatou property and pointwise (or order) lower-semicontinuity is investigated
in detail in Biagini and Frittelli [2009]. It seems however for the sake of simplicity to require the
condition of lower-semicontinuity to ensure the dual representation.

To be more precise, this condition of lower semicontinuity is the strongest norm continuity
assumption one can make since continuity forces a fortiori the convex risk measures to be finite at
least for Lp spaces and certain Orlicz spaces. This result is a consequence of Lemma 2.6 in Filipovic
and Svindland [2005].

So far, it seems necessary to impose a lower-semicontinuity condition. This allows a duality
representation which is the common ground of all these frameworks. Therefore, it is the latter
approach, with measures defined on a Lp(P) space, 1 ≤ p < ∞, on which we will focus here. This
duality question appears to us to be a crucial criteria for the choice of Lp. The choice of Lp = L1

with dual Lq = (Lp)∗ = L∞ is however not well adapted to market adjusted risk measures. Indeed,
their dual representations would be written on bounded martingale measures – where we identify
measures absolutely continuous with respect to P with their Radon-Nikodym derivatives. They is
in general not possible in continuous time finance. For simplicity, we see in L2 a natural candidate
for a first approach but Lp spaces would behave in a similar way. It fits the historical development
of the theory of stochastic integration with semimartingales. Moreover, as we will see, a condition
of existence of an optimal constrained hedging strategy relates to the closedness of the space of
attainable claims {GT (H)}, a question which appears naturally in the quadratic hedging theory (we
refer to Schweizer [2001] for a survey on the subject).
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Therefore, our approach to hedging in incomplete markets will focus on the minimization

X 7→ inf
H
ρ(X − (x+GT (H))) (1)

where ρ will be a convex risk measure defined on L2. Minimal conditions will imposed on the
set of trading strategies and the financial market for GT (H) to be square integrable and buy-hold
strategies to be admissible.

2 L2 Convex risk measures

In this section, we define and study L2 convex and coherent risk measures defined on the set of
square integrable random variables.

2.1 Definition and properties

Let (Ω,F ,P) be a probability space. We write L2 or L2(P) for L2(Ω,F ,P) when no confusion is
possible.

Definition 2.1. An L2 convex risk measure is a proper functional ρ : L2(P) → R ∪ {+∞} which
satisfies the following properties: for all X,Y, (Xn) ∈ L2(P), α ∈ (0, 1),m ∈ R,

(A1) Convexity: ρ(αX + (1− α)Y ) ≤ αρ(X) + (1− α)ρ(Y ).

(A2) Monotonicity: X ≤ Y P-a.s ⇒ ρ(X) ≥ ρ(Y ).

(A3) Translation Invariance: ρ(X +m) = ρ(X)−m.

(A4) Lower semicontinuity: ‖Xn −X‖L2 → 0, then ρ(X) ≤ lim infn ρ(Xn).

If moreover, ρ satisfies

(A5) Positive homogeneity: ∀X ∈ L2, t ≥ 0, ρ(tX) = tρ(X)

then ρ is called an L2 coherent risk measure.

We see that there are two differences with the usual definition as seen in Föllmer and Schied
[2002].

(1) We allow ρ to take the value +∞. Economically, a financial position X such that ρ(X) = +∞
is terrible: whatever the amount of cash we add, we cannot make this position acceptable, that
is, find an amount of cash m such that ρ(X + m) ≤ 0. However, mathematically, real valued
convex risk measures such as the L2 shortfall are therefore easier to work with, since if ρ is real
valued (with value in R) and satisfies (A1), (A2), (A3), then it automatically satisfies (A4).

(2) We introduce the lower semicontinuity as a part of the definition whereas, in the usual L∞ case,
the translation invariance makes risk measures Lipschitz and therefore norm continuous. This
property is a necessary condition to obtain any kind of dual representation and is preserved by
inf-convolution under some compactness condition.

The property of translation invariance gives the risk measure the meaning of a cash requirement.
The risk ρ(X) is the minimum amount of cash to add to the position to obtain a zero risk, ρ(X +
ρ(X)) = 0. A position with a negative risk does not need any cash to make it riskless. We define
the set of all financial positions with negative risk.

Definition 2.2. A financial position X is said to be acceptable if ρ(X) ≤ 0 and we define the
acceptance set Aρ of ρ to be the the set of all acceptable positions:

Aρ := {X ∈ X | ρ(X) ≤ 0}. (2)
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The economic justification of the lower semicontinuity is less obvious a priori than the other
three properties. However it can be checked that the lower semicontinuity is equivalent to the much
more natural concept of continuity from above:

Definition 2.3. We say that ρ is continuous from above: if Xn ↘ X a.s., then

ρ(Xn)↗ ρ(X).

Proposition 2.4. Let ρ be an L2 convex risk measure, then the following are equivalent

(i) ρ is lower semicontinuous.

(ii) ρ is continuous from above.

The proof was first established in the L∞ framework in Föllmer and Schied [2002] in Lemma
4.16. We reproduce it with the appropriate modifications to cover the L2 case. A proof in a more
general framework is given in Proposition 24 of Biagini and Frittelli [2009].

Proof. Suppose first that (i) holds. Consider Xn ↘ X a.s. By the monotonicity of ρ, (ρ(Xn)) is
increasing. Since 0 ≤ Xn −X ≤ X0 −X, by the dominated convergence theorem, (Xn) converges
in L2 to X. By the lower semicontinuity of ρ, ρ(X) ≤ lim inf ρ(Xn). Since Xn ≥ X, we have also
that ρ(Xn) ≤ ρ(X) so that lim inf ρ(Xn) ≤ ρ(X) and lim inf ρ(Xn) ≤ lim sup ρ(Xn) ≤ ρ(X). So
ρ(X) = lim inf ρ(Xn) = lim sup ρ(Xn) = lim ρ(Xn) and we get ρ(Xn)↗ ρ(X) which is (ii).
Suppose now that (i) doesn’t hold. There exists (Xn) convergent toX such that ρ(X) > lim inf ρ(Xn).
There exists a subsequence (nk) such that lim ρ(Xnk) = lim inf ρ(Xn). Since (Xnk) converges also to
X in L2, there exists a further subsequence (km) such that (Xnkm

) converges pointwise to X. Define
Ym = supi≥mXnki

, so that (Ym) decreases pointwise to X almost surely. We also have by monotonic-
ity that ρ(Ym) ≤ ρ(Xnkm

). We deduce that lim inf ρ(Ym) ≤ lim inf ρ(Xnkm
) = lim inf ρ(Xn) < ρ(X),

which proves that (ii) doesn’t hold.

We will see in two steps that lower semicontinuity is the strongest assumption that one can take
which still allows for the value +∞. A first result due to Ruszczynski and Shapiro [2004] in this
framework is of great use when ρ is real-valued, applied to the special L2 framework.

Theorem 2.5. [Ruszczynski, Shapiro] Assume ρ satisfies (A1), (A2) on L2, then ρ is norm con-
tinuous and weakly lower semicontinuous on int dom(ρ). In particular, if ρ satisfies also (A3) and
is real valued, it is an L2 convex risk measure.

For the proof of Theorem 2.5, we refer to Ruszczynski and Shapiro [2004]. Their proof shows also
that real valued convex risk measures are subdifferentiable. We show now that if dom(ρ) 6= L2(P),
then int dom(ρ) = ∅. We reproduce the proofs for their simplicity.

Proposition 2.6. If there exists X such that ρ(X) = +∞, then int dom(ρ) = ∅.

In view of using Lemma 2.6 in Filipovic and Svindland [2005], we will need a small lemma first:

Lemma 2.7. Let ρ be an Lp convex risk measure, then

int dom(ρ) = ∅ ⇔ int Aρ = ∅.

Proof of the proposition. Since ρ is l.s.c. and dom(ρ) 6= Lp, then by Lemma 2.6 in Filipovic and
Svindland [2005], int Aρ = ∅ and by Lemma 2.7, int dom(ρ) = ∅. This result also appears as a
remark in Filipovic and Svindland [2008].

Proof of the lemma. Since Aρ ⊂ dom(ρ), ‘⇒’ is immediate. To prove the other direction, assume
that int dom(ρ) 6= ∅, and pick x0 in this interior. There exists δ > 0 such that B(x0, δ) ⊂ dom(ρ).
By a classical result of convex analysis, ρ is continuous on B(x0, δ) and so for ε > 0, there exists 0 <
δ′ ≤ δ such that for all x ∈ B(x0, δ

′), |ρ(x)−ρ(x0)| ≤ ε so that ρ(x)−ρ(x0)−ε = ρ(x+ρ(x0)+ε) ≤ 0
which means that B(x0 + ρ(x0)− ε, δ′) ⊂ Aρ and therefore int Aρ 6= ∅.
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2.2 Dual representation of L2 convex risk measures

Standard results of convex analysis allow to derive a dual representation of L2 convex risk measures.
For proofs, we refer for example to Filipovic and Svindland [2005]. We denote by P2

a the probability
measures absolutely continuous to P with square integrable Radon-Nikodym derivatives:

P2
a :=

{
Q� P | E(

dQ
dP

)2 < +∞
}
, (3)

and P2
e the subset of P2

a of measures which are also equivalent to P.

Theorem 2.8. Let ρ be an L2 convex risk measure. Then ρ admits the dual representation:

ρ(X) = sup
Q∈P2

a

{EQ[−X]− α(Q)} (4)

for a functional α : P2
a 7→ R ∪ {+∞} defined in terms of the acceptance set of ρ as

α(Q) := sup
X∈Aρ

EQ[−X]. (5)

If ρ is real-valued, we can replace the sup in the dual representation by a max. If dom(α)∩P2
e 6= ∅,

then we have

ρ(X) = sup
Q∈P2

e

{EQ[−X]− α(Q)}. (6)

When the risk measure is also coherent, we have a nicer dual representation.

Theorem 2.9. Let ρ be an L2 coherent risk measure. Then ρ admits the dual representation:

ρ(X) := sup
Q∈Q

EQ[−X], (7)

where Q is a closed convex subset of P2
a . Moreover, in terms of its acceptance set Aρ:

Q = A◦ρ := {Q ∈ P2
a | EQ[−X] ≤ 0, for all X ∈ Aρ}. (8)

If ρ is also real-valued, then Q is L2 bounded and weakly compact and we can replace the sup in the
dual representation by a max.

Note that the sup cannot be replaced by a max in general for a risk measure possibly taking
the value +∞ even when ρ(X) itself is finite as illustrated in Example 1. We give two well-known
examples of risk measures, namely the entropic risk measure and the L2 expected shortfall, which
are L2 convex risk measures, and we give their dual representations.

2.3 Examples: entropic and L2 shortfall risk measures

Both examples belong to the natural class of utility based shortfall risk and are therefore law invari-
ant. Giesecke and Weber [2008] analyse the qualitative behavior of these utility based measures of
risk and justify their use for looking at large losses when they become much more suitable than the
Value at Risk (which fails in general to be convex).

Definition 2.10. For every X ∈ L2(P), we define the entropic risk measure ρ by

ρ(X) = log E exp(−X). (9)

Proposition 2.11. The entropic risk measure is an L2 convex risk measure. In particular, it is
lower semicontinuous. It is continuous from above. Continuous from below is however only assured
on its domain.
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Proof. These follow from simple application of Fatou’s lemma and the dominated convergence the-
orem.

Proposition 2.12. The entropic convex measure admits the following dual representation

ρ(X) = sup
Q∈P2

a

{EQ[−X]−H(Q|P)}. (10)

Using the example of the entropic risk measure, we show here a case where the sup in the dual
representation is not attained although ρ(X) < +∞.
Example 1. Consider Ω = {1, 2, . . . }, F = 2Ω, P defined by P{ω = n} = pn = a/n3, n ≥ 1 where a is
chosen for normalization. Now, consider the random variable X defined by X(n) = − log(bn) =: xn
for b > 0 to be chosen later. X is in L2(P) for all b since

∑
| log(nb)|/n3 is convergent. We look at

the following equivalent problem:

−ρ(X) = inf
Q∈P2

a

{EQ[X] +H(Q|P)} =: Ā.

and the extended problem (by dropping the square integrability of the Radon-Nikodym derivative
of Q):

A := inf
Q∈Pa

{EQ[X] +H(Q|P)}.

We can prove that Ā = A ∈ R and that there exists a unique minimizer reaching Ā which does not
belong to P2

a and leave the details to the reader. Therefore our claim is proved.
We can define a real-valued risk measure, the L2 shortfall measure of risk, via its acceptance

set, that is, financial positions which we find acceptable in the sense that their expected losses are
smaller than a certain threshold. This was studied in some detail under the name Utility Based Risk
measure by Giesecke and Weber [2008].

Definition 2.13. For x0 > 0, we define the set of financial positions with losses bounded in L2:

A := {X ∈ X |E
[
(X−)2

]
≤ x0}, (11)

and the L2-shortfall at level x0 is defined for every X ∈ L2 by

ρ(X) := inf{m ∈ R | m+X ∈ A} (12)

= inf{m ∈ R | E
[
(m+X)−

]2 ≤ x0}. (13)

It is straightforward to check that the shortfall risk measure satisfies the following.

Proposition 2.14. The L2 shortfall is a real valued L2 convex risk measure and its set of acceptable
position is A. For every X ∈ L2, ρ(X) is the unique solution m ∈ R of the equation

E
[
(m+X)−

]2 = x0.

Proposition 2.15. The L2-shortfall convex measure ρ admits the following dual representation

ρ(X) = max
Q∈P2

a

{
EQ[−X]−

√
2x0

∥∥∥∥dQdP
∥∥∥∥

2

}
. (14)

Proof. We proved that dom(ρ) = L2(P) so ρ is a lower semicontinuous convex risk measure and
therefore admits a dual representation with penalty function

α(Q) = sup
X∈A

{EQ[−X]} .

The rest of the proof is identical of the one of Theorem 4.61 by Föllmer and Schied [2002] except
there is no need for localization due to the larger class of random variables L2.

We will see that the problem of optimal hedging can be viewed as a particular case of inf-
convolution of a risk measure. The next subsection studies the properties of this operator in an L2

framework.
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2.4 Inf-convolution of risk measures

The inf-convolution of convex risk measures was introduced in Barrieu and Karoui [2004] and Barrieu
and Karoui [2005] in the L∞ framework where we could use monotonicity pointwise convergence
results so that the lower-semicontinuity was obtained in generality. In an L2 framework, since
we cannot reduce norm convergence to pointwise convergence, the lower semicontinuity of the inf-
convolution is not automatic.

Definition 2.16. Let ρ be an L2 convex risk measure and φ a functional on L2(P). We define the
inf-convolution of ρ and φ as

ρ�φ(X) := inf
Y ∈L2(P)

{ρ(X − Y ) + φ(Y )} = inf
Y ∈L2(P)

{ρ(Y ) + φ(X − Y )} (15)

The inf-convolution of an L2 convex risk measure with a functional is in some cases again an L2

convex risk measure. As in Barrieu and Karoui [2004] and Barrieu and Karoui [2005], it is easy to
check that for any φ, ρ�φ has the monotonicity and cash translation invariance property. For ρ�φ
to be an L2 convex risk measure, we need therefore to impose conditions for ρ�φ to be R ∪ {+∞}
valued, i.e. ρ�φ to be proper, convex and lower semicontinuous. Unfortunately, so far, we cannot
derive a general theorem, so we divide into two cases, when ρ is real-valued and when it isn’t, where
we impose more conditions on φ.

Proposition 2.17. Suppose that ρ is a real valued L2 convex risk measure. If φ is convex, proper,
such that ρ�φ is proper, then the inf-convolution ρ�φ is also a real valued L2 convex risk measure
and admits the dual representation in the sense of convex risk measures with penalty function

αρ�φ(Q) = αρ(Q) + αφ(Q) (16)

where

αφ(Q) := sup
X∈L2(P)

{EQ[X]− φ(X)} . (17)

Proof. We refer to Toussaint [2007].

If we drop the assumption on the continuity of ρ, then we need first to ensure that φ is lower
semicontinuous as well. The inf-convolution of two convex lower semicontinuous functionals is not
trivially lower semicontinuous. In fact, a necessary and sufficient condition for ρ�φ to be lower
semicontinuous is epi (ρ) + epi (φ) to be closed. But since the sum of convex closed subsets may not
be closed, the lower semicontinuity of the inf-convolution is not automatic. However, if the domain
of φ is weakly compact, then we can obtain the following result:

Proposition 2.18. Suppose that ρ is an L2 convex risk measure. If φ is convex, proper and lower
semicontinuous with dom(φ) weakly compact and dom(ρ) ∩ dom(φ) 6= ∅, then the inf-convolution
ρ�φ is also an L2 convex risk measure and admits the dual representation in the sense of convex
risk measures with penalty function

αρ�φ(Q) = αρ(Q) + αφ(Q). (18)

Proof. Since we can write,

ρ�φ(X) = inf
Y ∈L2(P)

{ρ(X − Y ) + φ(Y )} = inf
Y ∈dom(φ)

{ρ(X − Y ) + φ(Y )}

and since Y 7→ ρ(X − Y ) + φ(Y ) is weakly lower semicontinuous (since lower semicontinuous and
convex), then either ρ�φ(X) = +∞ or ρ�φ(X) is finite since we minimize a lower semicontinuous
functional on a weakly compact set. And since dom(ρ) ∩ dom(φ) 6= ∅, ρ�φ is proper. As in
the previous proof, the convexity, the monotonicity and the translation invariance properties are
satisfied. We need to check the lower semicontinuity. We want to check that, for all r ∈ R,

S(r) := {X ∈ L2(P) | ρ�φ(X) ≤ r}
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is closed. Consider a sequence (Xn) in S(r) convergent to some X. For every ε > 0, there exists
Yn ∈ dom(φ) such that

ρ(Xn − Yn) + φ(Yn) ≤ r + ε.

Since (Yn) is a sequence in a weakly compact set, there exists a weakly convergent subsequence (Ynk)
converging to some Y in dom(φ). Since Xnk → X also, Xnk − Ynk converges weakly to X − Y , and
since ρ and φ are weakly lower semicontinuous,

ρ(X − Y ) + φ(Y ) ≤ lim inf ρ(Xnk − Ynk) + lim inf φ(Ynk)
≤ lim inf ρ(Xnk − Ynk) + φ(Ynk) ≤ r + ε.

Since this holds for every ε, we deduce that X ∈ S(r) which completes the claim.

In view of applying this result to optimal hedging, we investigate the case where φ is an indicator
function (in the sense of convex analysis) of a convex set in L2(P) where the proof is a simple corollary
of the previous result.

Proposition 2.19. Let C be a non-empty convex, closed subset of L2 and define the functional φ
on L2 to be the indicator function of C, in the sense of convex analysis.That is, for all X ∈ L2(P)

φ(X) := δC(X) :=
{

0, if x ∈ C
+∞ otherwise.

Then φ is a proper convex, lower semicontinuous functional. If C is bounded, then dom(φ) = C
is weakly compact. If C is a symmetric cone, i.e. R+C := {λc | c ∈ C, λ ≥ 0} = C and
−C := {−c | c ∈ C} = C then its penalty function as defined in Proposition 2.17 is:

αφ(Q) = δC⊥(dQ/dP)

where C⊥ is the orthogonal of C.

With these results of stability of lower semicontinuity, we can introduce the concept of a C-
constrained L2 convex risk measure, where C is a subset of L2(P).

Definition 2.20. Suppose that ρ is an L2 convex risk measure, we define the C-constrained L2

convex measure ρC by:

ρC(X) := inf
Y ∈C

ρ(X − Y ). (19)

This can be written as a special case of an inf-convolution of ρ:

ρC(X) = inf
Y ∈L2(P)

{ρ(X − Y ) + δC(Y )} = ρ�δC(X).

Proposition 2.21. Suppose C is a symmetric convex cone and ρ is a real valued L2 convex risk
measure with penalty function α such that ρ�δC is proper, then ρC = ρ�δC is again an L2 convex
risk measure and has the following dual representation

ρC(X) := sup
Q∈P2

a∩C̄⊥
{EQ[−X]− α(Q)}. (20)

Proof. Since ρ is continuous, ρC = ρC̄ and the proof is a direct consequence of Propositions 2.17
and 2.19.

In the case where ρ is only lower semicontinuous, we need to consider only bounded sets C, so
the inf-convolution defines again an L2 convex risk measure.

Proposition 2.22. Suppose C is a bounded closed convex set and ρ is an L2 convex risk , then
ρC = ρ�δC is again an L2 convex risk measure.

Proof. This is a direct consequence of Propositions 2.18 and 2.19.

In the next section, we define a financial market with mathematical properties matching the
framework of L2 convex risk measures. In particular, we insist that in common models simple
buy-and-hold or buy-sell strategies lead to square integrable terminal wealth.
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3 Dynamic hedging in incomplete markets

3.1 Arbitrage restrictions on the financial market

In general, investment strategies in the financial markets are given by predictable processes satis-
fying some integrability condition sufficient to rule out inconveniences such as doubling or suicide
strategies. In the seminal paper of Harrison and Pliska [1981] and in most general literature on arbi-
trage mathematics, see for example Delbaen and Schachermayer [2006], the convention is to consider
strategies in L(S) such that the portfolio value is bounded from below by a constant independent
of time, economically justified as the line of credit of the investor. However, we can imagine models
where this restriction is problematic, namely models where the price process is not locally bounded:
discrete time models in the first place but also continuously traded models with unbounded unpre-
dictable jumps where no short strategy satisfies the lower bound. Generalizations to a random lower
bound have been proposed and investigated in particular in Biagini and Fritelli [2005]. We choose
a different approach and do not require any bound on the portfolio value. However, we require a
stronger integrability of strategies to match our L2 framework: our maximal set of trading strate-
gies will be L2(S) instead of the more general L(S). By definition, GT (H) ∈ L2(P). We consider
also stronger integrability condition on the semimartingale to ensure that a large class of strategies
produces a terminal wealth in L2(P). As we would like this class of strategies to contain simple
bounded strategies, we will consider H2 semimartingales as defined in Protter [2005]. For the sake
of completeness X ∈ H2 if X = M + A where (Mt)t∈[0,T ] is a squared integrable martingale and A

a predictable process of finite variation such that
∫ T

0
|dAt| is square integrable. We have

(H1) : S ∈ H2(P) and Θ := L2(S). (21)

We remark that we do not require uniform boundedness from below for the value of the portfolio
Gt(H), where

Gt(H) :=
∫ t

0

HudSu := (H · S)t. (22)

If (H1) is satisfied then all uniformly bounded strategies are admissible. In the section on bounded
trading strategies, we will use the assumption that the financial market is L2 closed, i.e.

(H2) : GT (Θ) :=

{∫ T

0

HtdSt, H ∈ Θ

}
is closed for the L2 norm. (23)

Necessary and sufficient conditions for the case S continuous are given in Delbaen et al. [1997]. See
also Schweizer [2001] for a survey.

The investor’s measure of risk is given by an L2 convex risk measure ρ as defined in Definition
2.1: compared to the L∞ framework, ρ takes values in R ∪ {+∞} and is required to be lower-
semicontinuous. Every L2 convex risk measure admits a dual representation with a penalty function
α defined on the set P2

a .
Often, we identify Q and dQ/dP. We denote byMa (resp. Me) the set of absolutely continuous

(resp. equivalent) local martingale measures for S, and we define:

M2
a := {Q ∈ P2

a ∩Ma}; ,M2
e := {Q ∈ P2

a ∩Me}. (24)

The condition of no arbitrage we will use here is the following:

(H ′3) : M2
e := {Q ∈ P2

a ∩Me} 6= ∅, (25)

and it can be proved that (H ′3) implies the classical no arbitrage condition (NA). We define the
stronger assumption:

(H3) : M2
e,f := {Q ∈M2

e | α(Q) < +∞} 6= ∅. (26)

9



This condition is a simple sufficient condition for the market adjusted risk measure to be proper
which is economically relevant as we will explain after Theorem 3.4.

What is important here is the following characterization of martingale measures as the orthogonal
space of trading strategies:

Theorem 3.1. Let S be in H2. Then the following are equivalent:

(i) Q ∈M2
a(P),

(ii) Q ∈ P2
a(P) and EQ[(H · S)T ] = 0 for all H ∈ L2(S).

The same equivalence holds with equivalent probability measures instead of only absolutely continuous
ones.

The proof and details on notations are given in Toussaint [2007].

3.2 Market adjusted risk measures

The problem of optimal hedging with $x corresponds to the objective of minimizing the risk of
X − (x+GT (H)) over all admissible trading strategies H ∈ Θ:

inf
H∈Θ

ρ (X − (x+GT (H))) . (27)

We define for all X:

ρGT (Θ)(X) := inf
H∈Θ

ρ (X −GT (H)) . (28)

We notice that ρGT (Θ), the market adjusted risk, is the inf-convolution of ρ with the indicator
function of a convex set in L2. A goal of this paper is to extend the results in L∞ of Barrieu
and Karoui [2004] and Barrieu and Karoui [2005] when possible and in particular obtain a dual
representation for ρGT (Θ), that is to ask the question if ρGT (Θ) is again an L2 convex risk measure:
this is a structural question. In some cases, this is not an immediate extension: in L∞, the dual
representation is equivalent to a point-wise monotonic lower-semicontinuity. The monotonicity of ρ
makes it easier to obtain the same property for the inf-convolution of ρ. However, in L2, the dual
representation is equivalent to a norm lower-semicontinuity and thus the same conclusion does not
hold. When ρ is finitely-valued, it is easy to extend this standard result to our framework.

Theorem 3.2. Suppose (H1) and (H3) hold true. Let ρ be a real valued L2 convex risk measure, then
ρGT (Θ) is again a real-valued L2 convex risk measure and it has the following dual representation:

ρGT (Θ)(X) = sup
Q∈M2

e,f

{EQ[−X]− α(Q)}. (29)

The proof is given in the appendix.
For risk measures which can take the value +∞, we have seen that the optimal hedge does not

define immediately another well-behaved L2 convex risk measure because of the uncertainty of the
lower semicontinuity of the inf-convolution. We investigate therefore the economically relevant case
of an investor who would only be allowed to invest with bounded strategies. In this case, we will see
that the question of the existence of an optimal hedge depends on some closedness property of the
set of final trading wealth.

We can suppose an investor only allows for the hedging strategies where the allocation in the
asset are limited by a set K. For example, he could restrict his hedging portfolio to only have a
positive fraction of the asset, in that case K = [0, 1]. A set of constraints K ⊂ R+ forbids short
selling in general.

For a trading constraints set K, we define the set ΘK of trading strategies lying in a convex
compact set K, i.e.

ΘK = {H ∈ L2(S) | H(t, ω) ∈ K for all (t, ω)}.

10



A weaker condition is needed as detailed in Toussaint [2007]. Here, the problem of constrained
optimal hedging is:

ρGT (ΘK) := inf
H∈ΘK

ρ (X −GT (H)) . (30)

We have these two results, whose proof are given in the appendix:

Theorem 3.3. Suppose that (H1), (H2) and (H3) hold true. Let ρ be an L2 convex risk measure,
then ρGT (ΘK) is an L2 convex risk measure.

Theorem 3.4. Suppose that (H1), (H2) and (H3) hold true. Let ρ be an L2 convex risk measure,
then there exists an optimal hedge in ΘK.

The proofs are given in the appendix.

We remark that the properness of ρGT (Θ), namely that it is not possible to obtain an arbitrary
low risk through hedging is economically sane and should be true in any model.If it were not true
for a certain payoff X, for any amount of cash x, we could find a hedging strategy H such that
ρ(X − (H · S)T − x) ≤ 0. In other words, we could take away any amount of money from our
portfolio and still find a hedging strategy that makes the total position acceptable in term of risk.

One advantage of the dual representation is that it is equivalent to a stochastic control problem
where the control determines the set of martingale measures. However, to use dynamic programming
methods, one often asks for strong integrability on the control, much stronger generally that what
is necessary to define in our case a martingale measure which could be the reason of a gap between
the primal problem and the HJB solution, a classical example being the Merton problem and the
difficulty in incomplete markets to prove that the HJB solution is indeed equal to the primal problem.
We will provide in the last section a case study of the L2 shortfall risk within a stochastic volatility
model, and a condition for which the set of controls can be taken to be square integrable.

4 Shortfall Risk in a stochastic volatility model

In the Merton problem with a classical complete Black-Scholes model, it is well known that the
optimal terminal wealth (Brownian Motion plus a drift, calculated from the Hamilton Jacobi Bellman
equation) is not in L∞, but it is in L2, so the formulation on L∞ is not satisfactory (i.e. not that
the HJB solution is suboptimal) but a L2 framework is more robust in that view.

We consider the Brownian-based stochastic volatility model. The model consists of two correlated
assets when only one can be traded and an option is written on possibly the two assets.{

dSt = µ(Yt)Stdt+ σ(Yt)StdW
(0)
t , S0 = s

dYt = b(Yt)dt+ a(Yt)(cdW
(0)
t + c̄dW

(1)
t ), Y0 = y,

(31)

where (W (0), (W (1)) are independent Brownian motions, c ∈ (0, 1), c̄ =
√

1− c2. The filtration
(Ft)t∈[0,T ] is the augmented filtration generated by (W (0), (W (1)) on [0, T ]. We assume that µ and σ
are continuous and bounded functions, with σ(·) ≥ σ > 0. We assume also that b and a are globally
Lipschitz. These conditions guarantee that both Y and S exist as strong solution of the system of
SDEs. We write (31) in integral form:

St = S0 +
∫ t

0

µ(Yu)Sudu+
∫ t

0

σ(Yu)SudWu = At +Mt, (32)

where At := S0 +
∫ t

0
µ(Yu)Sudu and Mt :=

∫ t
0
σ(Yu)SudWu and we can prove that S is a H2

semimartingale and its unique decomposition is given as above by noticing that the coefficients
are bounded and that Y is continuous and µ(·) and σ(·) are continuous. In this case, in formal

11



notations, dAt = µ(Yt)Stdt where µ(Y.)S. is indeed predictable as it is adapted and continuous; and
dMt = σStdWt, so

d〈M,M〉t = σ(Yt)2S2
t dt (33)

and we can write

dAt =
µ(Yt)

σ(Yt)2St
d〈M,M〉t = λtd〈M,M〉t (34)

where λt := µ(Yt)
σ(Yt)2St

. We remark that since λ is adapted and continuous, it is therefore predictable
and we check that

Kt =
∫ t

0

λ2
ud〈M,M〉u =

∫ t

0

µ(Yu)2

σ(Yu)4S2
u

σ(Yu)2S2
udu ≤

µ̄2

σ2
t < +∞ (35)

where µ̄ and σ are respectively the upper and lower bound of µ(·) and σ(·). The uniform bound on
K is a strong condition as seen in Delbaen et al. [1997] for (H2) to be satisfied.

We would like to consider European-style options on S, Y , i.e. contracts where the payoff can
be written X := h(ST , YT ) ∈ L2(P) where h is some positive function, and try to solve numerically
the optimal hedging problem under the L2 shortfall risk. By Proposition 2.14, the L2 shortfall is a
real-valued L2 convex risk measure.

We prove that assumption (H3) holds true, i.e. that M2
e,f is not empty. By the assumption

of boundedness on the coefficient, we can check that the Novikov’s condition holds for µ(Y.)
σ(Y.)

·W (0)

so ET (µ(Y.)
σ(Y.)

·W (0)) is the Radon-Nikodym derivative of an element Q0 of M2
e,f . This element is

usually called the minimal martingale measure and we will write λ0 = µ(Y.)
σ(Y.)

. Therefore, we know
from Theorem 3.2 that

inf
H∈Θ

ρ(X − (H · S)T ) = sup
Q∈M2

e,f

{
EQ[−X]−

√
2x0

∥∥∥∥dQdP
∥∥∥∥

2

}
. (36)

But by Proposition B.2.1 in Musiela and Rutkowski [1998], for every measure Q equivalent to P,
there exists an adapted process λ such that dQ/dP = ET (λ ·W ), where W = (W (0),W (1)). Since
the first coordinate of λ has to be µ(Y.)/σ(Y.), the only freedom is on the second coordinate, which
we write λ as well. Define then the following set of adapted processes:

Λ := {λ adapted,
∫ T

0

λ2
tdt < +∞ , a.s, E[ET (λ0 ·W (0) + λ ·W (1))] = 1,

E[ET (λ0 ·W (0) + λ ·W (1))2] < +∞}.

This complicated set characterizes completely the set of martingale measures whose Radon-
Nikodym derivatives have finite second moments. For each element λ of Λ, we define Qλ by

dQλ

dP
= ET (λ0 ·W (0) + λ ·W (1)). (37)

We remark that by definition, 0 ∈ Λ so our previous notation for the minimal measure Q0 is
consistent. Through this characterization, we can write the problem of risk minimization as

inf
H∈Θ

ρ(X + (H · S)T ) = sup
λ∈Λ

{
EQλ [−X]−

√
2x0

∥∥Qλ
∥∥

2

}
=: sup

λ∈Λ
U(X,Qλ, x0). (38)

This dual is not expressed as the expectation under P of a random quantity because of the term
E[(dQλ/dP)2]2 =

(
EQλ [dQλ/dP]

)2. We follow Ilhan et al. [2009] to obtain from there a problem that
can be solved with dynamic programming methods.
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Recall that the quantity we are looking for in the optimal hedging problem is

u(x0) := sup
λ∈Λ

U(X,Qλ, x0), (39)

where U(X,Q, x0) = EQ[−X]−
√

2x0 ‖dP/dQ‖2. We remark that, as a function of x0, U is convex
and continuous. Therefore, we can apply Fenchel’s theorem, fixing Q and X (which we don’t write):

U(Q, x0) = sup
z>0

(Û(Q, z)− zx0) where Û(z,Q) := inf
x0>0

(U(Q, x0) + zx0). (40)

But on the other side,

u(x0) = sup
λ∈Λ

sup
z>0

(Û(Q, z)− zx0) = sup
z>0

sup
λ∈Λ

(Û(Q, z)− zx0), (41)

and Û has the nicer expression

Û(Q, z) = EQ[−X]− 1
2z

E

[(
dQ
dP

)2
]

= E[−ZTX −
1
2z
Z2
T ], (42)

where ZT is the terminal value of the Radon-Nikodym derivatives ((dQ/dP)Ft). Therefore the
computation of the optimal risk becomes

sup
λ∈Λ

E[−ZλTX −
1
2z

(ZλT )2]. (43)

As in Ilhan et al. [2009], we notice that this computation can approached through dynamic program-
ming and has an associated Hamilton-Jacobi-Bellman equation as long as X is a European claim in
a Markovian framework. However to use this approach, an additional condition of integrability for
λ is needed. In particular, the specification of

∫ T
0
λ2
tdt < +∞ , a.s is not suitable, and we would like

instead to deal with processes such that E[
∫ T

0
λ2
tdt] < +∞. We define

Γ := {λ adapted,E[
∫ T

0

λ2
tdt] < +∞, E[ET (λ0 ·W (0) + λ ·W (1))] = 1,

E[ET (λ0 ·W (0) + λ ·W (1))2] < +∞}.

The next proposition gives a condition under which optimization over Γ has the same value as
optimizing over Λ.

We define the set of processes Λ+ ⊂ Λ by

Λ+ := {λ adapted,
∫ T

0

λ2
tdt < +∞ , a.s, E[ET (λ0 ·W (0) + λ ·W (1))] = 1,

E[ET (λ0 ·W (0) + λ ·W (1))(2+δ)] < +∞, for some δ > 0}.

and adopt the following assumption:

(H∗) : sup
λ∈Λ

U(X,Qλ, x0) = sup
λ∈Λ+

U(X,Qλ, x0). (44)

In other words, the optimization can be achieved over probability measures whose Radon-Nikodym
derivatives have slightly better integrability than square integrability. The meaning of this hypoth-
esis and validity goes beyond the scope of this short introduction.

We prove the following result:

Proposition 4.1. Suppose (H∗) holds, then

u := sup
λ∈Γ

U(X,Qλ, x0) = sup
λ∈Λ

U(X,Qλ, x0) =: ū. (45)

We refer to the Appendix for the proof. The problem for ū is studied by numerical PDE methods
in Ilhan et al. [2009]. By viewing the dynamic hedging problem in the context of L2 convex risk
measures, it is now possible to reconcile the results of dynamic programming computations with the
abstract theory.
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5 Conclusion

We developed a framework for risk measures that is well-suited to dynamic hedging in a financial
market. It imposes reasonable integrability conditions, namely that the final wealth of trading
strategies be square integrable. L2 convex risk measures are natural within this framework and the
additional axiom of lower semicontinuity drops when the risk measure is real-valued, so they are
close to the original L∞ functional developed in the literature. The integrability assumption on the
financial market made it possible to write simple no arbitrage conditions even when dropping the
more typical assumption that the portfolio’s wealth should be bounded from below. We are able to
characterize the problem of risk minimization in the language of the inf-convolution of convex risk
measures, which is used to write a dual representation for the market adjusted risk measure when
the convex risk measure is real-valued. When the convex risk measure can attain the value +∞,
the lower semicontinuity of the market adjusted risk measure doesn’t seem to be automatic. It is
true however when only hedging portfolios with bounded strategy are considered. In that case, the
strong assumption of closedness of the space of attainable claims is useful to obtain the existence of
an optimal hedge since it enables the weak compactness of the usable strategies. Although this core
property has been completely solved for continuous assets in Delbaen et al. [1997], it is still to be
studied in more general cases.

Appendix

5.1 Proof of Theorem 3.2

First, we remark that the translation invariance property for convex risk measures makes the question
of initial investment for the trading strategies irrelevant. Indeed,

inf
H∈Θ

ρ(X − (x+
∫ T

0

HtdSt)) = x+ inf
H∈Θ

ρ(X −
∫ T

0

HtdSt), (46)

and therefore we will consider only optimization with respect to investment in the financial market
with $0 initial capital. Note now that the optimal hedging problem can be expressed in terms of
inf-convolution of ρ:

inf
H∈Θ

ρ(X −GT (H)) = ρGT (Θ)(X). (47)

We check easily that the main assumptions of Proposition 2.21 are already verified and we only need
to verify that ρ�δGT (Θ) is proper. But since we supposed the assumption (H3) to be satisfied, there
exists Q∗ ∈M2

e,f (P). Therefore,

ρGT (Θ)(X) = inf
H∈Θ

sup
Q∈P2

e

{EQ[−X] + EQ[(H · S)T ]− α(Q)}

≥ sup
Q∈P2

e

inf
H∈Θ
{EQ[−X] + EQ[(H · S)T ]− α(Q)}

= sup
Q∈M2

e,f

{EQ[−X]− α(Q)} ≥ EQ∗ [−X]− α(Q∗) > −∞

where the last equality comes from the fact that if Q is not a martingale measure, then infH∈Θ E[(H · S)T ] = −∞
since Θ is a symmetric cone. Now we note that GT (Θ) is trivially a convex symmetric cone and it
follows by Proposition 2.21,

ρGT (Θ)(X) = sup
Q∈P2

a∩GT (Θ)
⊥
{EQ[−X]− α(Q)}. (48)

If Q ∈ P2
a ∩ GT (Θ)

⊥
, then EQ[f ] = 0 for all f ∈ GT (Θ), which is by Theorem 3.1 equivalent to

Q ∈M2
a(P). Therefore

ρGT (Θ)(X) = sup
Q∈M2

a

{EQ[−X]− α(Q)} (49)
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and we go from M2
a to M2

e,f , which is non-empty by (H3), by denseness.

5.2 Proof of Theorems 3.3 and 3.4

The investor is only allowed the set ΘK of K-constrained strategies where K is a convex compact
subset of R. We recall that since (H2) holds, it can be proved that GT (ΘK) is weakly compact. The
result that ρGT (ΘK) is an L2 convex risk measure follows directly from Proposition 2.22 since GT (ΘK)
is a closed convex bounded set. Since an admissible strategy H∗ ∈ ΘK is said to be K-optimal if

ρ(G− (H∗ · S)T ) = inf
H∈ΘK

ρ(G− (H · S)T ), (50)

the existence of an optimal hedge is equivalent to the existence of a minimizer Y ∗ ∈ GT (ΘK) for

inf
Y ∈GT (ΘK)

ρ(G− Y ). (51)

Since ρ is an L2 convex risk measure, it is in particular convex and lower semicontinuous and is
therefore also weakly lower semicontinuous. Since GT (ΘK) is weakly compact and since a lower
semicontinuous function attains its minimum on a compact, infY ∈GT (ΘK) ρ(G − Y ) is attained by
some Y ∗ = (H∗ · S)T ∈ GT (ΘK).

5.3 Proof of Proposition 4.1

The inequality u ≤ ū is obvious. By assumption, for any ε > 0, there exists λ ∈ Λ+ such that
U(X,Qλ, x0) ≥ ū − ε. By definition of the stochastic integral, there exists a localizing sequence
of stopping times (τn) such that E

∫ T
0

(λτnt )2dt < +∞,
∫ T

0
(λτnt )2dt

P→
∫ T

0
λ2
tdt and

∫ T
0
λτnt dW

(1)
t

P→∫ T
0
λtdW

(1)
t where λτnt = λt1(t ≤ τn). Since x 7→ exp(x) is continuous, we also have

ET (λ0 ·W (0) + λτnt ·W (1)) P→ ET (λ0 ·W (0) + λ ·W (1)).

We want to show that λτn is in Γ and that the limit in the previous expression can be taken in the
L2 sense as well.

We remark that since 〈W (0),W (1)〉 = 0, we can decompose the Doleans exponential: Et(λ0 ·
W (0) + λ ·W (0)) = Et(λ0 ·W (0))Et(λ ·W (1)). But by the hypothesis on the coefficient and using
Novikov’s condition, ET (λ0 ·W (0)) defines a probability measure Q0 under which W (0)−

∫ .
0
λ0
tdt and

W (1) are Brownian motions. We can write E[ET (λ0 ·W (0) + λ ·W (1))] = E0[ET (λ ·W (1))] = 1 which
proves that

(
Et(λ ·W (1))

)
0≤t≤T is a Q0-martingale (it was a local martingale since W (1) is a Q0

Brownian motion), so by optimal stopping theorem for τn ≤ T ,

E[ET (λ0 ·W (0) + λτnt ·W (1))] = E0[ET (λτn ·W (1))] = E0[Eτn(λ ·W (1))] = 1.

We prove an auxiliary result: (Et(λ · W (1)))t≤T is a uniformly integrable P martingale (and not
merely a P local martingale). We prove first that (Et(λ ·W (1)))t≤T is of class (D), i.e. that

{Eτ (λ ·W (1)), τ ≤ T, stopping time} is uniformly integrable.

We will prove that there exists a constant C such that E[Eτ (λ ·W (1))1+δ/2] ≤ C for any stopping
time τ ≤ T for some positive δ. By assumption, there exists δ > 0 such that E[ET (λ0 ·W (0) + λ ·
W (1))(2+δ)] < +∞. Now we write

E[Eτ (λ ·W (1))1+δ/2]2 = E[(Eτ (λ0 ·W (0)))−(1+δ/2)Eτ (λ0 ·W (0))1+δ/2Eτ (λ ·W (1))1+δ/2]2

≤ E[(Eτ (λ0 ·W (0)))−(2+δ)]E[
(
Eτ (λ0 ·W (0))Eτ (λ ·W (1))

)2+δ

]

≤ E[(Eτ (λ0 ·W (0)))−(2+δ)]E[
(
Eτ (λ0 ·W (0) + λ ·W (1))

)2+δ

]

≤ E[(ET (λ0 ·W (0)))−(2+δ)]E[
(
ET (λ0 ·W (0))ET (λ ·W (1))

)2+δ

] ≤ C ′.C
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where we used that (E.(λ0 ·W (0)))−(2+δ)) and (E.(λ0 ·W (0) + λ ·W (1)))2+δ) are submartingales as
the image of martingales by convex functions (on R+) and the optional sampling theorem where the
existence of C ′ is given by Lemma 5.1. Now it is well known that a local martingale of class (D) is
a uniformly integrable martingale. We proved that under (H∗), both E.(λ0 ·W (0)) and E.(λ ·W (1))
are continuous uniformly integrable P martingales.
Fix p = 2+δ

2+δ/2 and note that we can pick δ such that p ∈ (1, 2). Define q such that p−1 + q−1 = 1.
We apply Holder’s inequality:

E[ET (λ0 ·W (0) + λτn ·W (1))2+δ/2] = E[ET (λ0 ·W (0))2+δ/2Eτn(λ ·W (1))2+δ/2]

= E
[(
Eτn(λ0 ·W (0))−(2+δ/2)ET (λ0 ·W (0))2+δ/2

)(
Eτn(λ0 ·W (0))2+δ/2Eτn(λ ·W (1))2+δ/2

)]
= E

[(
Eτn(λ0 ·W (0))−(2+δ/2)ET (λ0 ·W (0))2+δ/2

)(
Eτn(λ0 ·W (0) + λ ·W (1))

)2+δ/2
]

≤ A1/q
n B1/p

n

where

An := E
[(
Eτn(λ0 ·W (0))−q(2+δ/2)ET (λ0 ·W (0))q(2+δ/2)

)]
and

Bn := E
[(
Eτn(λ0 ·W (0) + λ ·W (1))

)p(2+δ/2)
]

= E
[(
Eτn(λ0 ·W (0) + λ ·W (1))

)2+δ
]
.

We show that these two terms are uniformly bounded in n.

We start with (Bn): since E.(λ0 ·W (0) + λ ·W (1)) is a martingale, E.(λ0 ·W (0) + λ ·W (1))2+δ is
a submartingale and by optional sampling theorem on τn ≤ T ,

Bn ≤ E
[(
ET (λ0 ·W (0) + λ ·W (1))

)2+δ
]
< +∞

by hypothesis. For (An), we can use for example Cauchy-Schwartz inequality so that

A2
n ≤ E

[
Eτn(λ0 ·W (0))−2q(2+δ/2)

]
E
[
ET (λ0 ·W (0))2q(2+δ/2)

]
≤ E

[
ET (λ0 ·W (0))−2q(2+δ/2)

]
· C < +∞

where we used again a submartingale inequality (x 7→ x−2q(2+δ/2) is convex on R+ for our q) and
Lemma 5.1 twice.
In other word, this proved that ET (λ0 · W (0) + λτn · W (1)) is bounded in L2+δ/2 and therefore
ET (λ0 ·W (0) + λτn ·W (1))2 is uniformly integrable. But since we had before that ET (λ0 ·W (0) +
λτn ·W (1)) converged to ET (λ0 ·W (0) + λ ·W (1)) in probability, both results combined prove that
ET (λ0 ·W (0) + λτn ·W (1)) converges to ET (λ0 ·W (0) + λ ·W (1)) in L2 as well.
We can finally proceed to our conclusion, since U(X, ·, x0) is continuous for the L2 norm, we can
find a λn ∈ Γ such that U(X,Qλn , x0) ≥ ū− 2ε which proves that u ≥ u and therefore the equality
holds.

Lemma 5.1. Suppose that z is an adapted bounded process in the previous Brownian motion filtra-
tion. Then,

E[exp((z ·W )T )] <∞. (52)

In particular, the Doleans exponential ET (z ·W ) has finite moments at any power.
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Proof. Since there exists C such that |z| ≤ C, then 〈z · W 〉T =
∫ T

0
z2
t dt ≤ C2T and therefore

E[exp(〈z ·W 〉T )] < +∞ and by Novikov’s condition, ET (z ·W ) is a martingale. In particular,

E[exp((z ·W )T )] = E[ET (z ·W ) exp(
1
2

∫ T

0

z2
t dt)] ≤ E[ET (z ·W )] exp(1/2C2T ) < +∞.

Take any power p ∈ R,

E[ET (z ·W )p] = E[exp ((pz ·W )T ) exp(−p
2

∫ T

0

z2
t dt)] ≤ E[exp(pz ·W )T ]

and we use the previous result with the bounded process (pzt).
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