
Game Theoretic Models for Energy
Production

Michael Ludkovski and Ronnie Sircar

Abstract We give a selective survey of oligopoly models for energy produc-
tion which capture to varying degrees issues such as exhaustibility of fossil
fuels, development of renewable sources, exploration and new technologies,
and changing costs of production. Our main focus is on dynamic Cournot
competition with exhaustible resources. We trace the resulting theory of com-
petitive equilibria and discuss some of the major emerging strands, including
competition between renewable and exhaustible producers, endogenous mar-
ket phase transitions, stochastic differential games with controlled jumps, and
mean field games.
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1 Introduction

The recent decline in oil prices, from around $100 per barrel in June 2014 to
less than $50 in January 2015 is a dramatic illustration of the evolution of
energy production as a result of competition between different sources. In-
deed, the price drop was prompted in large part by OPEC’s strategic decision
not to decrease its oil output in the face of increased production of shale oil
in the US, itself arising from new technologies that were spurred by invest-
ment in exploration and research in times of higher oil prices. These complex
interactions are in addition to long-running concerns about dwindling fos-
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sil fuel reserves (‘peak oil’), as well as climate change and the transition to
sustainable energy sources.

We survey a (necessarily) selective line of work that builds models suc-
cessively incorporating various of these features starting from a competitive
oligopolistic view of an idealized global energy market, in which game the-
ory describes the outcome of competition. In particular, the oligopoly will be
taken to be in a Cournot framework, in which players choose quantities of
production, and then prices are determined by aggregate supply. This seems
reasonable for energy production in which major players determine their out-
put relative to their production costs, as in the expected scenario that OPEC
will cut production in order to increase the market price of oil. The comple-
mentary framework of Bertrand markets, in which player set prices, is more
typically suitable for consumer goods markets, among other examples.

We begin with static, or one-period games, as an introduction to some of
the effects that can arise, for instance the non-competitiveness of producing
a relatively expensive renewable source, such as wind, against a cheap fossil
fuel in plentiful supply. However, the very nature of the complexities calls for
a dynamic model in which there are (to use a much over-employed cliché)
game changers over time. Changes in the competitive environment may come
from:

• dwindling reserves of oil or coal, ramping up their scarcity value;
• discoveries of new oil reserves (there were over 30 major finds in 2009, for

instance);
• technological innovation such as fracking, which has led to extraction of

shale oil and gas;
• government subsidies for renewable energy sources such as solar and wind

power;
• varying costs of energy production, for instance cheaper solar power due

to falling silicon prices and improved solar cell efficiency.

Many if not all of these phenomena are unpredictable and dramatic, and
motivate the development of stochastic models, particularly with potentially
significant ‘jumps’ (for instance in costs or reserves). Moreover, dealing with
stochastic dynamic (nonzero-sum) games involving many influential interact-
ing energy producers creates computational challenges, and some approxima-
tion methods include numerical discretization, parameter asymptotics, and
continuum (mean field) games.

2 Static Cournot Games

The classic work of Cournot (1838) gives perhaps the earliest example of
a Nash equilibrium for describing the outcome of a game. Cournot was
concerned with competition between producers of an inexhaustible resource
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(mineral water): their effect on sales was such that the more each bottled and
brought to the market, the lower the price for mineral water that they would
receive.

A Cournot market is described by N ≥ 1 profit-maximizing producers (or
players) that compete in a non-cooperative way. In a market with homogenous
goods, the players compete based on production quantity (producing identical
goods). The market is specified by an inverse demand curve P (·), which maps
aggregate production to market price, and as such is a decreasing function.
The players choose their production levels qi. Given total production level
Q = q1 + . . . + qN , the market clearing price is P (Q). A simple illustrative
example is linear inverse demand, P (Q) = η − Q, where η is the saturation
level beyond which prices collapse to zero (and may become negative, meaning
a producer would have to pay to have his good taken away). Such linear
demand can be derived from the behavior of a representative consumer with
a quadratic utility function (see, for instance, Vives (2001)), and allows to
present explicit equilibrium calculations.

The players produce at per-unit (constant) cost of production si ≥ 0,
which in general will be different, reflecting the costs of producing from het-
erogeneous energy sources. The profit of player i is the quantity he produces
multiplied by price minus cost:

π(qi, Q−i, si) =

{
qi (P (Q−i + qi)− si) if qi > 0,

0 if qi = 0,
(1)

where Q−i =
∑
j 6=i qj is total production by the players other than i. The

last line of (1) allows for the possibility that P (0+) = +∞, but if a player
does not produce anything, then he makes zero profit.

2.1 Nash Equilibrium

Definition 1. A Nash equilibrium is a vector q∗ = (q∗1 , q
∗
2 , . . . , q

∗
N ) ∈ [0,∞)N

such that, for all i,

π(q∗i , Q
∗
−i, si) = max

qi∈[0,∞)
π(qi, Q

∗
−i, si), (2)

where Q∗−i =
∑
j 6=i q

∗
j . That is, each player’s equilibrium production q∗i max-

imizes his own profit π(·, Q∗−i, si) when the other N − 1 players produce their
equilibrium quantities. If, in addition, q∗i > 0 for all i, then q∗ is an interior
Nash equilibrium.

Under suitable conditions on the price function P and the cost vector s =
(s1, s2, · · · , sN ), a Nash equilibrium exists and is unique. An important issue
arising from this is that it may be too costly for some players to participate.
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We refer to (Vives, 2001, Chapter 4) for a discussion and references on general
existence results for static Cournot games.

Assumption 1. The price function P is twice continuously differentiable,
with P ′ < 0 everywhere on (0,∞); and there exists η ∈ (0,∞) such that
P (η) = 0.

We order the firms by their costs and assume the latter are strictly less
than the choke price P (0+):

0 ≤ s1 ≤ s2 ≤ . . . ≤ sN < P (0+). (3)

When some firms have equal costs, the ordering is arbitrary and does not
affect the result that follows. The behavior of P is best characterized in
terms of the relative prudence of P , namely

ρ(Q) = − QP ′′(Q)

P ′(Q)
. (4)

We also define
ρ = sup

Q∈(0,∞)

ρ(Q). (5)

The following is taken from Harris et al (2010).

Theorem 1. Suppose that ρ < 2. Then there is a unique Nash equilibrium
which can be constructed as follows. Let Q̄∗ = max {Q∗n | 1 ≤ n ≤ N}, where
Q∗n is the unique non-negative solution to the scalar equation

QP ′(Q) + nP (Q) =

n∑
j=1

sj .

The unique Nash equilibrium production quantities are given by

q∗i (s) = max

{
P
(
Q̄∗
)
− si

−P ′
(
Q̄∗
) , 0

}
, 1 ≤ i ≤ N,

and the corresponding profits are

Gi(s) = q∗i (s)(P (Q̄∗)− si), 1 ≤ i ≤ N.

In particular, q∗i and Gi are Lipschitz continuous, and the number of active
players (that is, players with q∗i > 0), in the unique equilibrium is m =
min

{
n | Q∗n = Q̄∗

}
.

Moreover, in the case of a price function with a constant prudence, ρ(Q) ≡
ρ
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P (Q) =


η

1− ρ

(
1−

(
Q

η

)1−ρ
)

ρ 6= 1

η(log η − logQ) ρ = 1,

(6)

one can weaken the requirement ρ̄ < 2 to simply ρ < N + 1.

The cost profile s is the main parameter of a Cournot game and the respec-
tive sensitivity analysis is crucial, especially in dynamic models. Intuitively,
we expect that if player-i costs si decrease, her production and profits will
rise, and the production and profits of the other players will fall. However, the
precise impact depends on the properties of the price function Q 7→ P (Q);
for example there are well known examples where higher costs increase pro-
duction for all players (Vives, 2001). Analysis of the precise dependence of
equilibria on s, including explicit formulas for the sensitivity of q∗i to s under
constant prudence price functions of (6), is given in Harris et al (2010).

2.2 Blockading

The non-negativity constraint on production endogenizes the market struc-
ture in terms of the cost profile s. Oligopolies with symmetric production
costs generate a trivial market structure, namely either all firms active or all
firms inactive. In contrast, in models where firms are asymmetric, some firms
may be inactive in equilibrium. Moreover, in dynamic models asymmetric
costs induce different entry times into the market. This aspect is especially
pertinent to energy markets, where producers using different fuels and tech-
nologies have widely different costs of production: for example, oil and coal
sources are much cheaper than renewables, such as solar or wind.

To illustrate this effect, consider a very simple case of Theorem 1, namely
a duopoly N = 2 with linear demand P (Q) = 1−Q (i.e., η = 1, ρ = 0). When
there is one player with marginal cost of production s1 ∈ [0, 1), he chooses
his optimal quantity q1 ≥ 0 to maximize his monopoly profit function

Π1 = q1(1− q1)− s1q1.

The optimal quantity and profit are given by

q∗1(s1) =
1

2
(1− s1), G1(s1) =

1

4
(1− s1)2.

When there are two players with costs (s1, s2) ∈ [0, 1]2 and non-negative
production quantities (q1, q2), the aggregate quantity is Q = q1 +q2 and each
player’s profit function is

Πi = qi(1− qi − qj)− siqi, i = 1, 2; j 6= i.
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In a Nash equilibrium (q∗1 , q
∗
2) ∈ [0, 1]2 for the duopoly, each player maximizes

profit as a best response to the other player’s equilibrium strategy:

Gi(s1, s2) = max
qi≥0

qi(1− qi − q∗j )− siqi, i = 1, 2; j 6= i.

For costs s1, s2 <
1
2 , it is easy to see that both players have positive equilib-

rium productions

q∗i (s1, s2) =
1

3
(1− 2si + sj), Gi(s1, s2) =

1

9
(1− 2si + sj)

2, (7)

where i = 1, 2; j 6= i. However, if player j’s cost is too high relative to player
i’s, specifically sj >

1
2 (1+si), then he is blockaded from production, meaning

his equilibrium quantity is zero. In this case, player i has a monopoly and
the Nash equilibrium is given by

q∗i =
1

2
(1− si), q∗j = 0, Gi =

1

4
(1− s1)2, G∗j = 0.

See Figure 1 for the resulting monopoly wedges.
A current example may be OPEC holding back on cuts in production to

drive shale oil producers out of the market and into bankruptcy, which an
Op-Ed in The New York Times on 27 January, 2015 described thus: “the
plunge in oil prices offers a sobering reminder of the power of markets over
policy”.
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Fig. 1 Type of Game Equilibrium in a Cournot Duopoly with Linear Demand P (Q) =

1−Q.

A full characterization of the static N -player game for a wide class of gen-
eral inverse-demand functions is given in (Harris et al, 2010, Section 2), and
for Bertrand games in (Ledvina and Sircar, 2011, Section 2); a comparison
between Cournot and Bertrand in terms of the number of blockaded players
is in Ledvina and Sircar (2012).
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3 Exhaustible Resources & Dynamic Games

When a resource, for instance a fossil fuel, is in finite supply, the energy
oligopolies are necessarily changing over time due to the increasing scarcity
value of the exhaustible resource.

3.1 Monopoly & Hotelling’s Rule

The seminal work of Hotelling (1931) introduced a mathematical model for
management of an exhaustible resource stock. Hotelling considered a single
producer (a monopolist), and set up a continuous-time calculus of variations
problem for maximizing total discounted value of the resource between now
and exhaustion point. A crucial insight of Hotelling is the fact that along the
optimum path the marginal value of reserves must grow at the risk-free rate,
precisely offsetting the time value of money. This spawned a large body of
economic literature based on optimizing social planning in the context of re-
source management or on Ramsey-type growth models that aim to optimize
investment across several economic sectors. The link to exhaustible resources
has become especially relevant in the past decade in connection with sustain-
able production in the face of climate change. For example development of
clean energy backstops to guard against exhaustibility of conventional fossil
fuels is addressed in Tsur and Zemel (2003); Lafforgue (2008); Grimaud et al
(2011) among others.

Consider a single oil producer who has reserves x(t) at time t, with the
dynamics

dx

dt
= −q(x(t))1I{x(t)>0}, (8)

where q(x(t)) is his production (or extraction) rate. When his reserves run
out, he no longer participates in the market. The producer extracts to max-
imize lifetime discounted profit, and his value function v is defined by

v(x) = sup
q

∫ τx

0

e−rtq(x(t))P (q(x(t)) dt.

Here the maximization is over control strategies q ≥ 0, r > 0 is the discount
rate, P is the inverse demand (or price) function satisfying Assumption 1,
and τx is the exhaustion time

τx = inf{t > 0 | x(t) = 0}.

Moreover x here stands for the initial resource level: x(0) = x, and we have
assumed zero extraction costs.
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By standard dynamic programming arguments, v(x) solves the Hamilton-
Jacobi (ordinary) differential equation

rv = sup
q≥0

qP (q)− qv′, x > 0, (9)

where v′ = dv/dx, and the boundary condition describing exhaustibility is
v(0) = 0. Denote by G(s) the solution to the static monopoly problem with
cost s:

G(s) = max
q≥0

q (P (q)− s) ,

and the corresponding optimizer q∗(s), where the parameter again refers to
the production costs. Then the ODE (9) is simply rv = G(v′), so that v′ plays
the role of a shadow cost, or scarcity value in the dynamic exhaustible re-
sources monopoly problem, and the optimal extraction policy is q∗(v′(x(t))).

The first-order condition defining q∗ is

P (q∗) + q∗P ′(q∗) = s, ⇒ G(s) = −(q∗)2P ′(q∗). (10)

Then, differentiating the ODE (9) with respect to x, we have

rv′ = −q∗′(v′) · v′′
(
2q∗(v′) · P ′ (q∗(v′)) + (q∗(v′))2 · P ′′ (q∗(v′))

)
,

and differentiating the equation (10) for q∗(s) with respect to s gives

q∗′ (2P ′(q∗) + q∗P ′′(q∗)) = 1.

Therefore, we have rv′ = −q∗(v′)v′′, which evaluated along the optimal tra-
jectory defined by dx

dt = −q∗(v′(x(t))) (up until the exhaustion time τx) leads
to

rv′(x(t)) = −q∗(v′(x(t))v′′(x(t)) =
dx

dt
v′′(x(t)) =

d

dt
v′(x(t)).

This is known as Hotelling’s rule (for a monopolist with exhaustible re-
sources):

d

dt
v′(x(t)) = rv′(x(t)), (11)

or v′(x(t)) = v′(x(0))ert.

3.2 Multiple Players with Exhaustible Resources

Incorporating other players into a genuine game framework elevates the sin-
gle player control/ODE problem to the setting of nonzero-sum differential
games and partial differential equations (PDEs). Here existence and regu-
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larity theory is scarce (outside of the case of linear-quadratic (LQ) games).
General dynamic programming equations are studied in Başar and Olsder
(1999), and some applications are presented in Dockner et al (2000). The so-
lution approach generally goes through the feedback strategy representation,
which allows to express optimal policies in terms of local properties of the
game-value functions. For stationary models, one can utilize Euler-Lagrange
methods, while in non-stationary or stochastic contexts, more involved anal-
ysis is necessary using Hamilton-Jacobi-Bellman-Isaacs tools. For a nonzero-
sum dynamic game between N players, each with their own resources, the
computation of a solution generally requires dealing with coupled systems
of N fully nonlinear PDEs, with one value function per player. This quickly
becomes very challenging as N grows and explains the focus on the duopoly
N = 2 case.

To illustrate the complexity in the duopoly case, we let xi(t) be the reserves
of each player at time t, which are depleted at their extraction rates qi:

dxi
dt

= −qi(x(t)), i = 1, 2 where x(t) = (x1(t), x2(t)).

With assumed zero extraction costs and the same discount rate r > 0, each
player maximizes lifetime discounted profit in (best) response to the extrac-
tion policy of the other. A Nash (or Markov perfect) equilibrium (q∗1 , q

∗
2), if

it exists, describes the value functions

vi(x) = sup
qi≥0

∫ τxi

0

e−rtqi(x(t))P
(
qi(x(t)) + q∗j (x(t))

)
dt, i = 1, 2; j 6= i,

(12)
where τxi

= inf{t > 0 | xi(t) = 0} are the exhaustion times starting at
xi = xi(0). The state-space approach in (12) restricts attention to policies
specified in closed-loop feedback form qi(x), linking to the single-agent con-
trol frameworks and removing technical challenges related to equilibrium exis-
tence. Moreover, it naturally generalizes to the stochastic extensions discussed
below. Dynamic programming arguments lead to the following equations for
the value functions in x1, x2 > 0:

rvi = sup
qi≥0

{
qiP (qi + q∗j )− qi

∂vi
∂xi

}
− q∗j

∂vi
∂xj

, j 6= i,

which, using the notation introduced in (1), we can write as

rvi = sup
qi≥0

π

(
qi, Q

∗
−i,

∂vi
∂xi

)
− q∗j

∂vi
∂xj

.

This identifies the infinitesimal problem in the dynamic programming equa-
tion as the static Nash equilibrium problem with scarcity costs si = ∂vi

∂xi
.

The interaction of exhaustibility and blockading allows to endogenize market
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structure. As players deplete their reserves, their marginal costs may rise suf-
ficiently to make further production uneconomical and causing them to drop
out of competition.

Using the notation of Theorem 1 for the solution of the static game, we
can write the dynamic game PDEs as

rvi = Gi(Dv)− q∗j (Dv)
∂vi
∂xj

, i = 1, 2; j 6= i, Dv =

(
∂vi
∂xi

,
∂vj
∂xj

)
.

For the linear pricing function example, the functions Gi and q∗i were given in
(7). In a model of only exhaustible resources, when player i runs out, player j
has a monopoly until he also exhausts, which lead to boundary conditions on
xi = 0 and at (0, 0) respectively. A more nuanced (and optimistic) view of fu-
ture energy production allows that when an oil producer exits, he is replaced
by an inexhaustible producer (such as from solar) with infinite (or sustain-
able) supply. This type of model is analyzed by asymptotic and numerical
methods in Harris et al (2010).

Alternatively, one can consider models with a single exhaustible producer,
and hence a single state variable, along with N − 1 renewable producers that
do not need to worry about reserves. This maintains game effects but mini-
mizes mathematical complexity (see Harris et al (2010); Ledvina and Sircar
(2012)), and allows to study the effect of blockading: how low must oil reserves
go before it becomes profitable to start producing from more expensive but
sustainable sources? As (levelized) costs of setting up and maintaining en-
ergy production from different sources are different, the entry points for solar
and wind, for instance, may likewise be very different. This generates phase
transitions in the dynamic game characterized by the (endogenously deter-
mined) number of active producers n(t). The respective blockading points
can be computed explicitly for the linear price function model, see Ledvina
and Sircar (2012) where it is also shown that a modified, piecewise, version
of Hotelling’s rule holds in the presence of competition. Namely, there exist
blockading times τ b1 ≤ τ b2 ≤ . . . , such that for t ∈ [τ bn−1, τ

b
n) there are n

energy producers (one exhaustible oil producer and n− 1 active renewables),
and the marginal value function for the oil producer along the equilibrium
extraction path grows according to

d

dt
v′(x(t)) =

(
1

2
+

1

2n

)
rv′(x(t)), t ∈ [τ bn−1, τ

b
n). (13)

The above relationship recovers the classical Hotelling rule when n = 1 (oil
monopoly) and blunts the sharp price increases associated with ‘peak oil’
(the growth rate of v′ declines as oil runs out and renewables enter).
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4 Renewability & Exploration

Exhaustibility is manifested through consideration of the resource reserves
which must remain non-negative. Exhaustible resource stocks can be divided
into three types: non-renewable, renewable, and replenishable. Non-renewable
resources are only available one time, and once used-up are gone forever.
Thus, the level of remaining reserves x(t) is non-increasing. The extreme case
of x(t) = 0 represents complete exhaustion and requires a boundary condition
to specify the resulting utility for the producers. A common example are fossil
fuels in a global physical context. Once fossil fuels are removed, one can
imagine that production is permanently suspended vi(0) = 0; alternatively
one could switch to a more expensive (green) backstop, as described above.

Renewable resources, like fisheries or forests, can grow back on their own
if left unexploited. A common setup is a logistic growth model with a finite
capacity, such that dx

dt = F (x(t)), an ordinary differential equation (see e.g.,
Benchekroun et al (2009)). With renewable resources the main concern is
over-exploitation: if production is too high, stocks can be damaged in the
long-term (or completely exhausted). However, sustainable extraction is pos-
sible all on its own, and only requires enforceable discipline. Mathematically,
sustainability/renewability leads to a stationary model where a local-in-time
equilibrium between production and extraction generates a global solution
(as a long-term steady state); in contrast non-renewable game equilibria are
inherently time-dependent and in particular strongly affected by the “ter-
minal condition” of running out of reserves. While steady-state models are
not suited for most energy sources, they are common for describing pollution
stock dynamics.

Replenishable resources capture the middle ground— reserves can grow,
but this requires separate effort/costs. This is meant to represent costly search
for, say, new mines or oil fields and matches the industrial exploration-and-
production (E&P) cycle. Indeed, with economic incentives the reserve base
is not fixed and can be increased. For example, while oil is exhaustible, it is
also replenishable since there is a difference between total abstract reserves
on Earth, and what is actually commercially “proven” and drives produc-
tion decisions. Under replenishable reserves, both the upward and downward
dynamics in x(t) are controlled. Mathematically, exploration is modeled via
a separate control at (which may be coupled to production level qt). Under
exploration, the boundary case x(t) = 0 requires separate consideration in
terms of whether players can “resurrect” themselves. Assuming that future
discoveries can finance present exploration (Pindyck, 1978; Ludkovski and
Sircar, 2011) leads to an implicit boundary condition for vi(0).

In a pure resource model, each player has their own, independent, reserves
xi(t), which she has complete control over. In such models, players interact
solely through the price mechanism; reserves then add a separate individual
marginal cost of production, introducing a new source of asymmetry between
the players. Alternatively, especially for renewable resources, one may add
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further game effects by tying together reserves. This can be done by postu-
lating a single, common reserve stock x(t) (akin to the classical tragedy of the
commons (Benchekroun, 2003)), or by considering individual reserves levels
that have coupled dynamics. For example Colombo and Labrecciosa (2013)
used

dxi
dt

= δxi(t)1{X(t)<X̄/2} + δ(X̄i − xi(t))1{X(t)>X̄/2},

where X(t) =
∑
i xi(t) is the total resource stock, and δ is the resource

growth rate. Thus, up to the aggregate sustainable level X̄/2, resource stocks
grow exponentially; beyond X̄/2 growth rates lessen linearly, turning negative
above the individual carrying capacity X̄i.

Turning our attention to the shocks affecting reserves, the classical formu-
lation provides the deterministic dynamics

dxi
dt

= −qi(t) + F (Xi(t), ai(t)),

where the first term represents lower reserves due to extraction, and the sec-
ond term represents reserves growth (thanks to either exogenous or endoge-
nous factors). Thus, the future level of reserves is completely determined by
the players’ strategies and can be extrapolated to any future date t. While
mathematically convenient, this is not very realistic, since practical forecasts
of future stocks clearly involve a lot of uncertainty (consider for example
forecasting of fishery stocks in 2020, or the fossil fuel exhaustion point some-
where in the next few hundred years). This uncertainty permeates even cen-
tral planner growth models, so is not solely a feature of uncertainty about
future equilibria.

4.1 Shocks to Reserves

Taking a stochastic tack, some models have therefore incorporated stochastic
dynamics for reserves, now denoted by a stochastic process Xi(t):

dXi(t) = −qi(t) dt+ σidW
i
t , (14)

arguing that reserve levels are uncertain and subject to ongoing up/down
revisions described by the Brownian motions W i. Within a Bertrand compe-
tition, Ledvina and Sircar (2011) justified similar Brownian shocks through
small fluctuations in the respective demand levels.

Stochastic shocks become especially pertinent for replenishable stocks,
where the attendant exploration efforts yield intrinsically stochastic out-
comes. Thus, starting with the seminal work of Kamien and Schwartz (1978),
there has bee a long literature on stochastic exploration. In particular, dis-
crete upward jumps in reserves, modeled as a Poisson process, have been
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advocated, leading to dXi(t) = −qi(t) dt + δdN i
t where δ are (random) in-

crements and N i is a controlled point process. A common setup is to specify
controlled intensity of N i, i.e., λit = G(ai(t)) where λi is the hazard rate of
arrivals of N i. This leads to HJB-I system of equations for the game value
functions, see Ludkovski and Sircar (2011).

4.2 More Stochasticity

Beyond the aforementioned stochastic shocks to reserves, one can imagine
other factors that generate random environment for the Cournot producers.
This is especially so over the medium- and long-run contexts that are of-
ten used to motivate the models. Clearly on a longer scale essentially every
aspect of the market, including demand, costs, reserves, etc., is subject to
unpredictable changes.

To capture macroeconomic cycles, Ludkovski and Yang (2014) considered
stochastic demand, so that Pt = P (Dt, qt) has exogenous shocks from the
stochastic factor Dt. For example, taking Dt to be a 2-state independent
Markov chain allows to maintain tractability, while representing the low-
and high-demand regimes that can be associated with commodity booms
and recessions. In combination with non-renewable resources, stochastic de-
mand generates the phenomenon of strategic mothballing, whereby producers
may temporarily shut-down production during low demand periods. Another
regime-switching model with exhaustibility but a single agent is in Dasgupta
and Stiglitz (1981).

From a different angle, Dasarathy and Sircar (2014) considered non-
constant production costs to mimic the non-stationary economics of extract-
ing more and more difficult to access reserves. Indeed, as well-documented
empirically, extraction costs of say crude oil steadily rise as conventional,
cheap sources are depleted and replaced by non-conventional oil sands, deep
off-shore and shale fields: see Figure 2.

Accordingly, Dasarathy and Sircar (2014) take costs si(x) to depend on
reserves, such that si(x) increases as x decreases for exhaustible players, and
decreases as x decreases for renewable players (due to government subsidies
as conventional energy sources are depleted). The resulting dynamic game
can force the exhaustible player to leave early, i.e. Xt never reaches zero.

4.3 Other Types of Strategic Interactions

Beyond production/exploration, the literature has also considered other
player controls. One major idea from industrial organization (IO) concerns
Research and Development (R&D) which generates additional benefits (such
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Fig. 2 Estimated oil extraction costs from varying sources. Source: IEA (2012).

as lower production costs or first-mover advantages) to the innovator. In
the context of R&D, efforts to innovate may lead to spillovers (Cellini and
Lambertini, 2009; Dawid et al, 2013), introducing a different source of cou-
pling between players. Spillovers are well-documented empirically and tend
to lower R&D investments and therefore reduce productivity growth. Game-
theoretically, spillovers can be viewed as either raising the innovation rate
of competitors in a static set-up, or removing first-mover advantages after
innovation success. A notable reference is Fölster and Trofimov (1997) who
consider an oligopoly where each of the N firms maximizes R&D effort. The
random first innovator is determined stochastically and temporarily collects
extra profits. Cellini and Lambertini (2009) studied a deterministic R&D
game with spillovers.

Another link is to the theory of real options, by modeling the strategic op-
portunities available to producers as one-shot events to be optimally timed.
For example, a classical setting concerns producers competing to initiate
a new project (such as development of a renewable energy backstop to an
exhaustible resource, see Hung and Quyen (1993)) that carries first-mover
advantage and leads to a so-called preemption game. Such timing games par-
tition the global model into distinct phases, providing a different mechanism
to endogenize market structure. They can be seen as intermediate ground
between a static and differential game.
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5 Mean Field Games

In dynamic oligopoly problems with a finite number of players, the HJB
system of PDEs does not admit an explicit solution, except possibly in the
monopoly case. As a result, one needs numerical means for computing the
value functions, as well as the equilibrium strategies, which of course quickly
becomes infeasible as the number of players goes beyond three. Moreover,
even in the two-player case, these equations are hard to handle. To overcome
this problem, one may study the market dynamics when the number of firms
tends to infinity by using the concept of a mean field game (MFG). MFGs
were proposed by Lasry and Lions (2006, 2007) and independently by Huang
et al (2006) to handle certain types of competition in the continuum limit of
an infinity of small players.

The interaction is modeled by assuming that each player only sees and
reacts to the statistical distribution of the states of other players. Opti-
mization against the distribution of other players leads to a backward (in
time) Hamilton-Jacobi-Bellman (HJB) equation; and in turn their actions
determine the evolution of the state distribution, encoded by a forward Kol-
mogorov equation. We refer to the survey article by Guéant et al (2011) and
the recent monograph of Bensoussan et al (2013) for further background. In
our context, the mean-field interaction is captured by making the market
price be a function of equilibrium global supply, which in turn is affected by
the distribution of reserves mt(·), which is a measure on R+. Thus, inverse
demand curve translates into a functional relationship between reserve distri-
bution mt(·) and resulting price Pt, according to D(t, Pt) =

∫
R+
q∗t (x)mt(dx).

Numerical resolution of MFG equations is an active area of research; simulta-
neously dealing with the forward-backward system of PDEs typically requires
a fixed-point iteration scheme. At the same time, removing the awkward de-
pendence on the number of players simplifies the equations and provides a
unified theory in terms of measure-valued processes.

The analysis of the relationship between Markov perfect equilibria in finite-
N Cournot games and the MFG limit was carried in Chan and Sircar (2014)
considering the general situation of differentiated goods and asymmetric play-
ers. Chan and Sircar (2014) also show that in the continuum MFG limit, the
linear Bertrand and Cournot models are equivalent, removing the usual dis-
tinction observed with a finite number of players.

In a related work, Guéant et al (2010) analyzed a MFG formulation of oil
oligopoly for both the deterministic case (reserves endogenously determined
by production rates) and the stochastic case (reserves include Brownian noise,
generating a parabolic forward Kolmogorov equation for mt). Guéant et al
(2010) proposed an iterative numerical scheme and presented some numer-
ical examples for both linear and constant elasticity of substitution (CES)
demand curves. One particular focus was on the marginal cost of exhaustibil-
ity (Hotelling rent) and also on substitution effects in a 2-energy model. See
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also Bauso et al (2012) who treated a robust version of above which adds
another first-order quadratic term to the MFG equations.

6 Summary of Game Models for Exhaustible Resources

In the table below g refers to a green producer, so that 1 + g is a duopoly
with one exhaustible and one renewable player, see Section 3.2. Infinity of
players corresponds to mean-field models. Demand refers to the shape of the
price function P (Q).

# Players Type Demand Randomness Replenish

Hotelling (1931) 1 – linear Determ. No

Dasgupta and Stiglitz (1981) N Cournot constant single-shock No

Deshmukh and Pliska (1983) 1 – regimes Poisson Yes
Benchekroun (2008) N Cournot linear Determ. Yes

Benchekroun et al (2009) N Cournot linear Determ. Yes

Harris et al (2010) 1+g Cournot linear Brownian No
Ludkovski and Sircar (2011) 1+g Cournot linear Poisson Yes

Ledvina and Sircar (2012) 1+N Bertrand linear Determ. No

Ludkovski and Yang (2014) 1+g Cournot linear Poisson Yes
Colombo and Labrecciosa (2013) N Cournot linear Determ. Yes

Dasarathy and Sircar (2014) 1+N Cournot linear Poisson Yes
Guéant et al (2010) ∞ Cournot CES Determ. No

Chan and Sircar (2014) ∞ Bertrand linear Brownian No
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