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Abstract. The dramatic decline in oil prices, from around $110 per barrel in June 2014 to
less than $40 in March 2016, highlights the importance of competition between different energy
sources. Indeed, the sustained price drop has been primarily attributed to OPEC’s strategic decision
not to curb its oil production in the face of increased supply of shale oil in the US, spurred by
the technological innovation of “fracking”. We study how continuous time Cournot competitions,
in which firms producing similar goods compete with one another by setting quantities, can be
analyzed as continuum dynamic mean field games. In this context, we illustrate how the traditional
oil producers may react in counter-intuitive ways in face of competition from alternative energy
sources.

1. Introduction. The recent rapid fall in the price of oil is arguably the biggest
energy story of the past two years. Back in June 2014, the price of Brent crude was
up around $115 per barrel. As of January 23, 2015, it had fallen by more than half,
down to $49 per barrel, and fell into the $30 range in March 2016 (see Figure 1). The

Fig. 1: End of day Commodity Futures Price Quotes for Crude Oil. Source:
www.nasdaq.com

dramatic decline in oil prices illustrates the evolution of the global energy market as
competition between different energy sources expands. Indeed, the sustained price
drop was prompted in large part by OPEC’s decision not to curb its oil production
in the face of increased supply of shale gas and oil in the US, itself arising from
technological advances such as hydraulic fracturing and horizontal drilling, collectively
referred to as fracking.
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The goal of the present paper is to explain how dynamic game theory, in particular
mean field games proposed by Lasry and Lions [17] and Huang et al. [14, 15], can be
used to explain some of the strategic interactions between various energy producers.

How OPEC sets production. The Organization of Petroleum Exporting Countries
(OPEC) is a cartel of oil-producing nations that accounts for about 40% of the world’s
oil production. Comprising of twelve member countries (including key oil nations like
Saudi Arabia, Iran, Iraq, and the UAE), OPEC mandates to “coordinate and unify
the petroleum policies” of its members and to “ensure the stabilization of oil markets
in order to secure an efficient, economic and regular supply of petroleum to consumers,
a steady income to producers, and a fair return on capital for those investing in the
petroleum industry.”1 OPEC typically meets twice a year to set production quotas.
As with most commodities, the price of oil is mainly dictated by supply and demand.
Since the supply of oil was determined in large part by OPEC, the higher they set
their quotas, the lower the oil price.

Oil prices had been high since 2010 through the middle of 2014, bouncing around
$110 per barrel because of escalating oil consumption in countries like China and
political instability in key oil nations like Iraq. Given the high oil prices, many
energy companies (most notably Chevron Corporation, Exxon Mobil Corp and Cono-
coPhillips Co) found it profitable to begin extracting oil from difficult-to-drill places.
In the United States, companies began using techniques like hydraulic fracturing and
horizontal drilling to extract oil from shale formations in North Dakota and Texas.

Plummeting oil price. Hydraulic fracturing, or “fracking”, is the process through
which oil and gas are released from shale deposits deep underground by means of
drilling and injecting pressurized liquid made of water, sand, and chemicals. Ac-
cording to the US Energy Information Administration, there are over 500,000 active
natural gas wells in the US as of 2011, adding significantly to the world oil supply. To
put this in context, the US fracking industry has added nearly 4 million extra barrels
of crude oil per day to the global market since 2008 (compared to global production
of about 75 million barrels per day). This surge in supply, together with a lack of
demand due to sluggish global economic growth, led to a fall in oil price of nearly
50% over the second half of 2014. As oil prices tumbled, most observers expected to
see OPEC, the world’s largest oil cartel, cut back on production to push prices back
up.

OPEC’s war on fracking. This brings us to the OPEC Conference in Vienna on
27 November 2014. Some countries, like Venezuela and Iran, wanted the cartel to cut
back on production in order to boost the price. On the other side of the debate, Saudi
Arabia didn’t want to give up market share and refused to reduce production – in
the hopes that lower oil prices would help impede expansion of the fracking industry.
In the end, despite the oversupply on the world market, OPEC failed to agree on
a response and ended up keeping production unchanged. So the price of oil began
declining even further.

The price of oil has hovered in the $40-55/barrel range for most of the first half
of 2015, but it is estimated that many fracking companies need prices above $60-80
to break even. There is now speculation that many fracking operations may be forced
into closure. The theory is that OPEC is now engaged in a “price war” with the
US frackers. Led by powerful oil nations such as Saudi Arabia, OPEC is seeking to
drive the fracking industry out of business, once again regain its place as the world’s

1Source: http://www.opec.org/opec_web/en/publications/345.htm
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pre-eminent source of oil, and stabilize oil prices well above the present level. This is
the central issue of blockading we want to model using dynamic game theory.

1.1. Competitive oligopolistic view. We take a competitive oligopolistic view
of an idealized global energy market, in which game theory describes the outcome of
competition. Oligopoly models of markets with a small number of competitive play-
ers go back to the classical works of Cournot [5] and Bertrand [2] in the 1800s. The
Cournot and Bertrand models differ on the assumptions about the strategic variables
a firm chooses to compete with its rivals. The Bertrand model assumes that firms
compete on price while the Cournot model assumes that the competition is on output
quantity. The Cournot framework of oligopoly is appropriate for energy production
in which major players determine their output relative to their production costs, as in
the expected scenario that OPEC will cut production in order to increase the market
price of oil.

In the context of nonzero-sum dynamic games between N players, each with
their own resources, the computation of a Nash equilibrium is a challenging problem,
typically involving coupled systems of N nonlinear Hamilton-Jacobi-Bellman (HJB)
partial differential equations (PDEs), with one value function per player. This is
further complicated by the fact that the players’ resources are exhaustible and the
market structure changes over time as players deplete their reserves and exit the
market. Harris et al. [12] study a Cournot version of the problem, and Ledvina and
Sircar [18] study a similar problem in the Bertrand framework.

Meanwhile, mean field games proposed by Lasry and Lions [17] and independently
by Huang et al. [14, 15] allow one to handle certain types of competition in the con-
tinuum limit of an infinity of small players by solving a coupled system of two PDEs.
The interaction here is such that each player only sees and reacts to the statistical
distribution of the states or actions of other players. Optimization against the distri-
bution of other players leads to a backward HJB equation; and in turn their actions
determine the evolution of the state distribution, encoded by a forward Kolmogorov
equation. This continuum approximation allows for analytical and computational
results which are hard to obtain from the N -player system.

Our goal is to extend the basic Cournot mean field game (MFG) model in [4],
and study the competition between the traditional energy producers and alternative
sources. In this setting, the economy is framed as a Cournot competition where the
market model is specified by inverse demand functions, which give prices as a function
of quantities produced. In the context of a global energy market, we model OPEC by a
continuum of oil producers with low costs of production, but each member nation has
a finite reserve. The other side of the economy is represented by an alternative energy
producer (e.g. the fracking industry in the US or renewable production such as from
solar technology) with relatively costly production. However, the alternative energy
producer is distinguished from the traditional oil producers by its relative abundance
of production capacity. Throughout this paper, we make the simplifying assumption
that the alternative energy source is inexhaustible relative to the traditional source.

“The Stone Age did not end for lack of stone, and the Oil Age will end long before
the world runs out of oil.” With recent technological advances such as renewables
and fracking, this intriguing quote of former Saudi oil minister Sheikh Zaki Yamani
may not be far-fetched and the end of the traditional oil age may be upon us. In this
paper, our central innovation is to consider the interaction and competition between
traditional and alternative energy producers. We do so by considering three distinct
time scales representing different idealizations of the global energy market. Table
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1 describes the three time scales under consideration and the main features of each
horizon.

Table 1: Three distinct time scales representing different idealizations of the global
energy market.

Horizon Global Energy Market

Long-term Over a longer horizon, alternative energy sources become more com-
petitive as their production costs decrease further due to technological
advances. While traditional fossil fuels are not necessarily depleted,
renewable energy gains considerable market share due to increasing
(scarcity) costs of fossil fuel extraction. We study how the global
economy transitions from the traditional/exhaustible energy produc-
tion to its renewable counterpart (Section 3).

Intermediate Over an intermediate horizon, the production of traditional energy
(fossil fuels e.g. oil) is still the cheapest. However, alternative en-
ergy sources (shale oil or solar power) are gaining market share due
to decreasing production costs. Traditional energy producers may
strategically increase their production rate to compete for market
share with the alternative energy producers. This may be the logic
behind OPEC’s decision not to cut crude oil output. Section 1.3 be-
low illustrates the issue of blockading in the simplest setting of static
games. Competition between exhaustible fossil fuels and renewable
alternatives is studied in a dynamic model in Section 4.

Short-term Over a short time frame, traditional energy sources are not going to
run out. The major determinant of the energy price level is supply
shocks due to exploration successes, itself arising from investment in
research and development. We model the joint strategic decision of
(costly) exploration effort and production rate in this context (Section
5).

1.2. Market Structure and Participants. Typically we are interested in com-
petition between traditional oil producers and an alternative energy producer. In this
setting there is a continuum of traditional oil producers labelled by “position” x and
density m(x). We denote the quantity of the traditional (resp. alternative) producers
by q(x) (resp. q̂), and the average production of the traditional producers by Q:

Q =

∫
q(x)m(x) dx.

The (Cournot) market structure is defined by a decreasing inverse demand function P .
The price p = P (q+ ǫQ+ δq̂) received by an oil producer is decreasing in his own

production quantity q, the average quantity Q produced by the other players, and the
quantity q̂ of the alternative energy producer. Here ǫ, δ ≥ 0 are interaction parameters
that measure the impact of the other players. Similarly, the price p̂ = P (q̂ + δQ) re-
ceived by the alternative energy producer is decreasing in his own production quantity
q̂ as well as the average production quantity Q of the oil producers.

Often we will take P to be linear and ǫ and δ to be equal to one to make various
formulas easier to read and for illustration. We note that Q is the average production
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so the impact of the other players on the representative player’s price is different from
the impact of his own price q even when ǫ = 1.

1.3. Static MFG and blockading. To illustrate the effect of blockading in the
simplest setting, we consider a static (one-period) competition between traditional oil
producers and an alternative energy producer. We consider linear inverse demand
function P (ξ) = 1 − ξ. The producer at position x has cost of production c(x). In
addition, there is an alternative energy producer with cost c0.

In a Nash equilibrium (q∗(x), q̂∗) for the “∞ + 1” players, each one maximizes
profit as a best response to the other players’ equilibrium strategies:

sup
q≥0

q(1− q −Q− q̂∗ − c(x)), sup
q̂≥0

q̂(1− q̂ −Q− c0),

where now Q =
∫
q∗m. If there is an interior maximum (i.e. each player having

positive equilibrium production), then we have

(1.1) q∗(x) =
1

2
(1−Q− q̂∗ − c(x)) , q̂∗ =

1

2
(1−Q− c0).

Integrating q∗ against m and solving for Q using the above expression for q̂∗ yields

Q =
1

3
(1− q̂∗ − 〈c〉) =

1

5
(1 + c0 − 2〈c〉) , where 〈c〉 =

∫

R+

c(x)m(x) dx.

Consequently, from (1.1) we derive

q̂∗ =
1

5
(2− 3c0 + 〈c〉) , q∗(x) =

1

5

(
1−

5

2
c(x) + c0 +

1

2
〈c〉

)
.

Blockading of the alternative producer occurs when q̂∗ ≤ 0, or equivalently when
c0 ≥ (2 + 〈c〉) /3 in terms of production costs. The interpretation is that the alterna-
tive energy producer is blockaded when his cost c0 is too high compared to the average
production cost 〈c〉 of the traditional producers. In this case the alternative producer
produces nothing q̂∗ = 0, and the traditional producers take over the market

Q =
1

3
(1− 〈c〉) , which leads to q∗(x) =

1

3

(
1−

3

2
c(x) +

1

2
〈c〉

)
.

In this case, we say that the alternative energy producer is blockaded from production.
Figure 2 shows that as c0 decreases (representing increased competitiveness of the
costly alternative energy source), the traditional low-cost producer may strategically
choose not the reduce production in an attempt to keep the alternative producer
blockaded. In our context, this may be OPEC holding back on cuts in production to
drive shale oil producers out of the market and into bankruptcy.

We study in Section 4 a dynamic version of this game incorporating exhaustibility
of the traditional fuel.

1.4. Related Literature. Our paper is related to two different strands of lit-
erature: the literature of dynamic oligopoly with exhaustibility, and the literature on
the use of mean field games in economic applications.
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(a) Types of game equilibrium in
(〈c〉, c0) space

(b) Average production quantity Q

Fig. 2: Static Cournot duopoly with linear demand P (ξ) = 1 − ξ. When c0 is large
relative to fixed 〈c〉, the alternative energy producer is blockaded from production,
and the traditional oil producers take over the entire market.

Dynamic Oligopoly. The study of static oligopoly models of markets with a small
number of competitive players goes back to the classical works of Cournot [5] and
Bertrand [2] in the 1800s. More recently, energy markets have been modeled through
dynamic games. Harris et al. [12] characterize a dynamic Cournot game in an oligopoly
market by systems of nonlinear Hamilton-Jacobi PDEs. Ledvina and Sircar [18] study
the corresponding Bertrand game in which firms compete with one another by setting
prices. We refer to Dockner [8] for an introduction to the applications of dynamic
games in economics and management science.

Hotelling [13] introduced one of the first models for the management of an ex-
haustible resource. In a monopoly setting, Hotelling solved a calculus-of-variations
problem and showed that the marginal value of reserves grows at the discount rate
along the optimal extraction path, which is now referred to as Hotelling’s rule. The
competition between a single exhaustible producer and N−1 renewable producers has
been considered by Ledvina and Sircar [19]. This simplified setup provides insights
into the effect of blockading: how low must oil reserves go before it becomes profitable
for the renewable producers to enter the market. It also leads to a modified piecewise
version of Hotelling’s rule.

Other aspects of the exhaustibility issue are renewability and exploration. For
example, while fossil fuels are ultimately exhaustible, they are also replenishable by
(costly) exploration efforts. The optimal planning of exploration effort has been con-
sidered by Pindyck [25] and many others in the monopoly context, and Ludkovski
and Sircar [21] in a dynamic duopoly. Dynamic Cournot games when the demand
function is stochastic are studied in Ludkovski and Yang [24]. For a recent survey of
game theoretic models for energy production, we refer to Ludkovski and Sircar [22].

Mean Field Games. Second, there is also a literature on the use of mean field
games to economic applications. Since the seminal papers by Lasry and Lions [17]
and Huang et al. [14, 15], this approximation technique has attracted considerable
interest recently as the corresponding N -player dynamic games are almost always
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intractable using PDE methods. In the context of energy production, Guéant et
al. [10, 11] have considered a mean field version of a Cournot game with a quadratic
cost function; while Chan and Sircar [4] apply asymptotic and numerical methods to
study how substitutability affects the market equilibrium in Bertrand and Cournot
mean field games.

There are many other applications of mean field games in economics, and we list
only a few. Lucas and Moll [20] study knowledge growth in an economy with many
agents of different productivity levels. In particular, what they call a “balanced growth
path” resembles our sustainable economy in Section 5. Carmona et al. [3] present a
mean field game model for analyzing systemic risk. Mean field games analysis has been
adopted to study the optimal execution problem in algorithmic trading by Jaimungal
and Nourian [16]. For a comprehensive study of the uniqueness and existence of
equilibrium strategies of a general class of mean field games, including the linear-
quadratic framework, we refer to Bensoussan et al. [1]. We explain the differences
between the type of problem considered in the bulk of this literature and our type of
problem in Section 2.1, and what is known about existence and uniqueness for this
kind of system in Appendix A.

1.5. Organization and Results. We study the interaction between the tradi-
tional and alternative energy producers from three perspectives: competition, transi-
tion, and exploration.

In Section 2, we revisit the basic framework for dynamic Cournot mean field
games with exhaustible resources and extend the results of [4] to include nonlinear
demand functions. Section 3 considers an economy in which the exhaustible producers
can transition to an alternative energy source (e.g. solar or hydroelectric power) when
they run out of reserves. This essentially introduces a Neumann boundary condition to
the PDE problem. We provide explicit leading-order correction to the value function
in the regime of small exhaustibility.

Section 4 investigates the competitive interaction between the exhaustible oil
producers with an alternative energy producer, who has marginal cost of production
c > 0, but inexhaustible supplies. We shall see the blockading of the renewable
producer when his production cost c is high enough and when the exhaustible resource
is still abundant. Section 5 deals with exploration and exhaustibility. Incorporating
the stochastic effect of resource exploration into the dynamic Cournot framework, we
study the equilibrium production rate and exploration effort in a sustainable economy.
This corresponds to a steady-state solution to the MFG PDE problem. We conclude
in Section 6. Appendix A discusses an existence and uniqueness theorem for a classical
solution to the type of MFG system considered here.

2. Dynamic Cournot model. The basic mean field game model in [4] will serve
as a baseline for our analysis of competition between the traditional energy producers
and the alternative sources. While the exposition there focuses on a Bertrand (price-
setting) model, it is shown in their Appendix B that in the continuum mean field
setting, the dynamic Cournot and Bertrand games are identical. Since our focus
in this paper is the global energy market in which the Cournot framework is more
appropriate, we elaborate on and extend the dynamic Cournot mean field game model
to nonlinear demand functions in this section. To introduce notation and ideas, we
concentrate in this section only on the exhaustible oil producers without competition
from the alternative producers, which are introduced in Section 3.
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2.1. Dynamic continuum mean field games. In the dynamic problem, firms
produce energy by depleting their reserves of a fossil fuel, and different producers have
different levels of initial reserves. When they exhaust their reserves, they no longer
participate and the market shrinks. There is an infinity of players labelled by their
reserves x > 0, with initial density of reserves M(x). They choose production rates
qt which deplete the remaining reserve Xt; moreover the reserve level may be subject
to random fluctuations (e.g. due to noisy seismic estimation of the oil or gas well).
The reserve level Xt follows the dynamics

dXt = −qt dt+ σ dWt,

as long as Xt > 0, and Xt is absorbed at zero. Here W is a standard Brownian
motion, and σ ≥ 0 is a constant.

A firm that starts with reserve x > 0 at time t ≥ 0 sets quantities to maximize the
lifetime profit discounted at constant rate r > 0 over Markov controls qt = q(t,Xt),
with the corresponding price pt = p(t,Xt) given by the inverse demand to be specified
below. Hence the value function of the firm is defined by

(2.1) v(t, x) = sup
q

E

{∫ ∞

t

e−r(s−t)psqs1{Xs>0} ds

∣∣∣∣Xt = x

}
, x > 0.

The game runs till some exhaustion time T (which may be infinite) when all producers
have exhausted their reserves, and T has to be determined endogenously as part of
the problem.

The price received by the player depends on his own production quantity qt as
well as the mean production rate Q(t), according to

(2.2) pt = P (qt + εQ(t)), Q(t) =

∫

R+

q(t, x)m(t, x) dx,

where m(t, x) denotes the density of producers’ reserves at time t > 0, and P is a
decreasing inverse demand function. We note that the price received by a represen-
tative producer depends on the other players through their mean production rate Q,
and so the interaction is of mean field type. The parameter ε measures the degree
of interaction or product substitutability, in the sense that the price received by an
individual firm decreases as the other firms increase production of their goods.

In [4], the inverse demand function is taken to be linear: P (Q) = 1−Q. In this
section, we extend their results to nonlinear inverse demand function P of power type:

(2.3) P (Q) =





η
1−ρ

(
1−

(
Q
η

)1−ρ
)
, ρ 6= 1,

η (log η − logQ) , ρ = 1.

The parameter ρ is known as the relative prudence. Notice that we recover the special
case of linear demand by setting ρ = 0 and η = 1. Following [18], we focus on the
case where ρ < 1 in which the choke price P (0+) = η/(1− ρ) is finite. This family of
pricing function is shown in [12] to be particularly tractable for the computation of
Nash equilibrium in the static Cournot game. It is further analyzed in [23].

2.2. Dynamic programming and the HJB equation. The HJB equation
associated to (2.1) is

(2.4) ∂tv +
1

2
σ2∂2

xxv − rv +max
q≥0

q (P (q + εQ(t))− ∂xv) = 0, x > 0,
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where the inverse demand P is given by (2.3). Notice that the embedded optimiza-
tion can be interpreted as a static profit maximization problem for a producer with
(shadow) cost ∂xv facing competitors’ productionQ(t). The optimal production quan-
tity q∗ is given (implicitly) by the first order condition

(2.5) P ′(q∗+εQ(t))q∗+P (q∗+εQ(t))−∂xv(t, x) = 0, Q(t) =

∫

R+

q∗(t, x)m(t, x) dx.

When a player runs out of reserves, he no longer produces or makes income, and so we
have the boundary condition v(t, 0) = 0. At the exhaustion time T , v(T, x) = 0, but
as mentioned before, the terminal time T when all oil runs out has to be determined
endogenously.

Given the rate of depletion q∗(t, x), we can determine the ‘population dynamics’
of the producers by the forward Kolmogorov equation

(2.6) ∂tm−
1

2
σ2∂2

xxm− ∂x (q
∗m) = 0,

with m(0, x) = M(x). The system (2.4) and (2.6) is an example what Lasry and
Lions [17] have called a mean field game. The backward evolution equation (2.4)
represents the firms’ decisions based on anticipating how the game unfolds in the
future; and the forward evolution equation (2.6) represents where they actually end
up, based on their strategic decision and initial distribution. The forward/backward
system of PDEs is coupled through the dependence of Q in the HJB equation (2.4)
on m, and the dependence of q∗ in the forward Kolmogorov equation (2.6) on ∂xv.

Remark 2.1. After solving for the internal maximization provblem in the HJB
equation (2.4), the system (2.4) and (2.6) is of the form

∂tv +
1

2
σ2∂2

xxv − rv +H(t, ∂xv, [h(∂xv)m]) = 0,(2.7)

∂tm−
1

2
σ2∂2

xxm− ∂xG (t, ∂xv, [h(∂xv)m]) = 0,

for some functions H, G and h. Here, H and G depend on h(∂xv)m nonlocally,
specifically [h(∂xv)m] =

∫
h(∂xv)mdx.

The vast majority of the MFG literature studies mean field game models of the
form

∂tv +
1

2
σ2∂2

xxv − rv +H(t, x, ∂xv) = V [m],

∂tm−
1

2
σ2∂2

xxm− ∂x (G(t, x, ∂xv)) = 0,

(2.8)

where V [m] is a monotone operator. But in the systems (2.7) arising in this paper,
the coupling between ∂xv and m is non-local.

The models leading to systems of the form (2.8) have interaction through the
states, namely

∫
xm, whereas for Cournot oligopoly models, interaction is through the

controls, that is
∫
qm, which leads to equations of the form (2.7). However, motivated

by our previous paper [4], the recent preprint of Graber & Bensoussan [9] addresses
existence and uniqueness of a classical solution to systems of the type (2.7), specifically
when the inverse demand function P , and hence h, is linear. We discuss in Appendix
A how their theorem can be applied to validate the numerical work in the model we
consider in Section 4.
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2.3. Small competition asymptotics. Solving this coupled system of equa-
tions is highly non-trivial. In this section, we focus on the deterministic setting σ = 0.
The main goal is to determine the principal effect of competitiveness on the market
equilibrium.

From the inverse demand function (2.2), we see that ε parameterizes the degree of
interaction among firms; the limit ε = 0 corresponds to independent markets, where
each firm has a monopoly in his own market. In the small competition regime, one
can formally look for an approximation to the PDE system of the form

v(t, x) = v0(t, x) + εv1(t, x) + ε2v2(t, x) + · · · ,

m(t, x) = m0(t, x) + εm1(t, x) + ε2m2(t, x) + · · · .

Solving for the value function v and the density m perturbatively leads to approxi-
mations to q∗ and Q in (2.5):

q∗(t, x) = q0(t, x) + εq1(t, x) + · · · , Q(t) = Q0(t) + εQ1(t) + · · · .

2.3.1. Monopoly value function and production rate. The monopoly value
function v0 is determined by setting ε = 0 in the HJB equation (2.4), and after
performing the maximization, we have:

(2.9) ∂tv0 − rv0 + C

(
η

1− ρ
− ∂xv0

)β

= 0, v0(t, 0) = 0,

where C = β−βη−
ρ

1−ρ and β =
2− ρ

1− ρ
, and we recall that we only consider the cases

where ρ < 1. The solution to (2.9) is given in the following proposition, which can be
verified by direct substitution.

Proposition 2.2. The leading order (monopoly) value function is time-independent
v0(t, x) = v0(x), and it is implicitly given by

(2.10)
βC

r

(
1− ρ

η

)1−β

B

(
1− ρ

η

( r

C

)1/β
v
1/β
0 ;β, 0

)
= x,

where the incomplete beta function B(z; a, b) is defined by

B(z; a, b) =

∫ z

0

ta−1(1− t)b−1 dt.

In particular, we recover the case of linear inverse demand studied in [4] if we set
ρ = 0 since in this case β = 2, B(z; 2, 0) = −z − log(1 − z), and so v0 can be written
in terms of the Lambert-W function.

Production trajectory and Hotelling’s rule. In the monopoly case, the optimal
production quantity q0 for each individual firm is given by setting ε = 0 in (2.5):

(2.11) P ′(q0)q0 + P (q0)− v′0 = 0.

It follows from (2.11) that

(2.12) q0(x) =

(
P (0)− v′0(x)

βηρ

) 1
1−ρ

.
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It is easy to show that v0(x) is an increasing concave function, with v0(0) = 0 and
v0(∞) = η2(2 − ρ)−β/r. Therefore, v′0(x) is a decreasing function, with v′0(0) =
P (0) = η

1−ρ and v′0(∞) = 0. Consequently, q0(x) is an increasing function of x, with

q0(0) = 0 and q0(∞) = η(2− ρ)−
1

1−ρ . Therefore, players produce at a finite rate, and
as they run out of reserves, they decrease their production rate to zero at x = 0.

Let x0(t;x) denote the optimal monopoly production trajectory starting from x:

x′
0(t) = −q0(x0(t)), x0(0) = x, and define S(t) = v′0(x0(t)),

so S(t) is the shadow cost along the optimal production trajectory x0(t).
Proposition 2.3. The classical Hotelling’s rule holds also for the continuum

mean field monopoly, i.e. the shadow cost grows at the discount rate r along the
optimal production trajectory: S ′(t) = rS(t). It follows that the market price P(t) =
P (q0(x0(t))) satisfies the following linear ODE:

(2.13) P ′(t) = r

(
P(t)−

η

2− ρ

)
.

Proof. First we write the monopoly ODE (2.9) as rv0 = q0(P (q0)− v′0), where q0
satisfies the first order condition (2.11). Then differentiating the ODE with respect
to x, and using (2.11), we obtain rv′0 = −q0v

′′
0 . Now we compute the growth rate of

the shadow cost S(t) along the optimal production trajectory:

S ′(t) =
d

dt
v′0(x0(t)) = −v′′0 (x0(t)) q0 (x0(t)) = rS(t).

By direct calculation, the market price is a linear function of v′0: P (q0(x)) =
η+v′

0(x)
2−ρ .

It follows easily that P also satisfies a linear ODE, which is given by (2.13).

2.3.2. Monopoly exhaustion times. We define the hitting time τ : R+ → R+

to be the time to exhaustion in the deterministic monopoly market starting at initial
reserve x:

(2.14) τ(x) = inf{t ≥ 0 | x0(t;x) = 0}.

Even though there does not seem to be an explicit expression for the reserve trajectory,
the exhaustion time τ(x) can be given explicitly in the following proposition.

Proposition 2.4. The exhaustion time τ(x) is given explicitly by

(2.15) τ(x) =
1

r
log

(
P (0)

v′0(x)

)
.

Moreover, the exhaustion time τ can be inverted in closed-form to give

(2.16) τ−1(t) =
βC

r
P (0)β−1B

(
1− e−rt;β, 0

)
.

Proof. From the definition (2.14) of τ(x), and using that v′0 is a monotonic
function with v′0(0) = P (0), we write

τ(x) = inf{t ≥ 0 | v′0(x0(t)) = P (0)} = inf{t ≥ 0 | v′0(x)e
rt = P (0)},
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where we have used Hotelling’s rule given in Proposition 2.3. The expression (2.15)
follows. From the HJB equation (2.9), we derive

v0(x) =
C

r
P (0)β

(
1− e−rτ(x)

)β
.

Plugging this into the expression (2.10), and identifying x = τ−1(t) lead to (2.16).
In the special case of linear inverse demand (where ρ = 0 and η = 1), we

have τ(x) = −r−1 log [−W(θ(x))], where W is the Lambert-W function, and θ(x) =
−e−2rx−1, which recovers the one found in [4].

When the initial density M(x) has compact support [0, xmax], all oil reserves are
exhausted at finite time T = τ(xmax); otherwise T = ∞.

2.3.3. Monopoly density function. In the deterministic monopoly setting,
the forward Kolmogorov equation (2.6) reads

(2.17) ∂tm0 − ∂x[q0m0] = 0, m0(t, x) = M(x).

Proposition 2.5. The monopoly density is given by

(2.18) m0(t, x) =
q0
(
τ−1 (t+ τ(x))

)

q0(x)
M
(
τ−1 (t+ τ(x))

)
=

d

dx
F (τ−1(t+ τ(x))),

where F denotes the cumulative distribution function (CDF) of the initial density M .
Moreover, the proportion η0 : R+ → [0, 1] of remaining firms is given by

η0(t) =

∫

R+

m0(t, x) dx = 1− F (τ−1(t)).

Proof. The explicit solution to (2.17) follows from the method of characteristics;
while the second expression for m0 in (2.18) follows from straightforward manipula-
tion. The computation of η0 follows similarly to [4, Proposition 6].

2.3.4. First order asymptotics. Let G be the supremum in the PDE (2.4):
G(ε) = maxq≥0 q (P (q + εQ)− ∂xv). The first order condition is given in (2.5), and
so, to first order in ε, we have G ≈ G(0) + εG′(0), where

G′(0) = (P (q0)− v′0)q1 + q0(q1 +Q0)P
′(q0)− q0∂xv1 = q0 (Q0P

′(q0)− ∂xv1) .

This leads to the equation satisfied by the first order correction v1:

∂tv1 − rv1 − q0∂xv1 = −q0P
′(q0)Q0, v1(t, 0) = 0.

Proposition 2.6. The first-order correction to the value function v1 is given by

v1(t, x) = −
η

2− ρ

∫ τ(x)

0

(
e−rs − e−rτ(x)

)
Q0(t+ s) ds.

Proof. The proof follows similarly to [4, Proposition 8].
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Clearly v1 < 0, so that competition reduces the value function from the monopoly
limit v0, as is expected. The first order correction q1 to the optimal production
quantity is

(2.19) q1 =
∂xv1 −Q0 (P

′(q0) + q0P
′′(q0))

2P ′(q0) + q0P ′′(q0)
=

∂xv1 − (1− ρ)Q0P
′(q0)

(2− ρ)P ′(q0)
.

The first-order correction to density m1 satisfies the following equation

∂tm1 − ∂x [q0m1 + q1m0] = 0, m1(0, x) = 0.

Proposition 2.7. The first-order correction to density m1 is given by

m1(t, x) =

∫ t

0

q0 (x0(s− t;x))

q0(x)
g (s, x0(s− t;x)) ds,

where the inhomogeneous term is given by g = ∂xq1m0 + q1∂xm0.
Proof. The proof follows similarly to [4, Proposition 9].
The following proposition demonstrates that the principal effect of competitive

interaction is that firms slow down production and increase the exhaustion time.
Proposition 2.8. For concave pricing functions P (i.e. ρ < 0), the first order

correction q1 to the equilibrium production rate is negative.
Proof. From the expression (2.19) for q1, it suffices to show that

∂xv1 − (1− ρ)Q0P
′(q0) ≥ 0.

Indeed, defining F = βq0 [∂xv1 − (1− ρ)Q0P
′(q0)], a straightforward calculation leads

to

F (t, x) = −rv′0(x)

∫ τ(x)

0

Q0(t+ s) ds+ (1− ρ)Q0(t) (P (0)− v′0(x)) .

One can readily check that F (t, 0) = 0 and ∂xF (t, x) ≥ 0 for concave P , and so from
(2.19), q1 ≤ 0.

3. Transition to renewable resources. In this section, we consider a model
in which the exhaustible producers can switch to a more expensive alternative energy
source (e.g. solar or hydroelectric power) when they run out of reserves. This model
corresponds to the long horizon in Table 1. This yields a continuum mean field version
of the continuous-time Cournot model of Harris et al. [12]. In the context of energy
production, resources, such as oil or natural gas, have finite supply, and exhaustibility
enters as boundary conditions for the PDEs. As we shall see, this essentially intro-
duces a Neumann boundary condition to the PDE problem. We suppose there is an
alternative, but costly, technology (for example solar power), and study the system
using asymptotic approximation. In the regime of small costs for the alternative,
the first order correction to the value function satisfies a partial integro-differential
equation which is explicitly solvable.

3.1. Deterministic model setup. The energy market is modeled by a Cournot
game which is specified by the inverse demand: P (q,Q) = 1 − q −Q, where Q is the
mean energy production (from both traditional and alternative sources). A firm with
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reserves x > 0 at time t ≥ 0 sets quantities to maximize lifetime discounted profits.
Its value function is given by

(3.1) v(t, x) = sup
q

∫ ∞

t

e−r(s−t)psqs1{Xs>0} ds, Xt = x,

subject to the deterministic dynamics dXt = −qt dt.
The HJB equation associated to (3.1) reads

∂tv − rv +max
q≥0

q (1− q −Q− ∂xv) = 0.

Plugging in the optimal strategy (in feedback form)

(3.2) q∗(t, x) =
1

2
(1−Q(t)− ∂xv(t, x)) ,

the HJB equation becomes

(3.3) ∂tv − rv +
1

4
(1−Q(t)− ∂xv(t, x))

2
= 0.

On hitting the boundary x = 0, the player switches to an alternative inexhaustible
source at marginal cost of production c. Playing against the mean production Q, his
equilibrium strategy is q∗(t, 0) = 1

2 (1 − Q − c). Assuming continuity of the equilib-
rium production rates qt up to the boundary x = 0 leads to the Neumann boundary
condition ∂xv(t, 0) = c. The interpretation is that, on running out of the exhaustible
resource, the shadow cost ∂xv(t, x) of the player turns into the real cost c.

The mean production Q(t) comes from two sources: the exhaustible and inex-
haustible parts. We assume that no player produces from the more expensive source
as long as the cheaper one is available. Thus we can write

(3.4) Q(t) =
1

2
(1−Q(t)− c) (1− η(t)) +

∫

R+

q∗(t, x)m(t, x) dx,

where η is the proportion of players using the cheap energy source:

(3.5) η(t) =

∫

R+

m(t, x) dx,

and so (1−η) is the fraction of firms who have exhausted their traditional fuel reserves
and are now producing from the alternative inexhaustible source at marginal cost c.
Solving for Q in (3.4), and using (3.2), we obtain

(3.6) Q =
1

3

(
1− c(1− η)−

∫

R+

m∂xv dx

)
.

The forward Kolmogorov equation for m is

(3.7) ∂tm−
1

2
∂x ((1−Q− ∂xv)m) = 0,

with m(0, x) = M(x).

3.2. Small cost expansion.
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Inexhaustible limit. In the limit where c = 0, the firms are indifferent to using
oil or alternative energy sources, and so costless energy is effectively inexhaustible.
Consequently, the value function v0 is a constant. From (3.6) with c = 0 and ∂xv0 = 0,
we derive a constant mean production Q0 = 1/3, which from the HJB equation (3.3)
gives v0(t, x) = (9r)−1, also satisfying the boundary condition ∂xv0(t, 0) = 0. From
(3.7), the density m is transported at constant speed m0(t, x) = M (x+ t/3).

We are interested in the case when c is small but non-zero. To this end we formally
look for an expansion in the small c regime:

v(t, x) = v0(t, x) + cv1(t, x) +O(c2),

m(t, x) = m0(t, x) + cm1(t, x) +O(c2).
(3.8)

Of course, we have just found that v0 is independent of t and x and is given by (9r)−1.
First order correction: value function. Plugging the formal expansion (3.8) into

the HJB equation (3.3) we get

∂tv1 − rv1 −
1

3
(Q1 + ∂xv1) = 0,

with ∂xv1(t, 0) = 1. Here Q1 is the first order correction to the mean production,
given by

Q1 = −
1

3

(
1− η0 +

∫

R+

m0∂xv1 dx

)
.

Therefore, we obtain the partial integro-differential equation (PIDE) for v1

(3.9) ∂tv1 − rv1 −
1

3
∂xv1 +

1

9

(
1−

∫

R+

m0(1− ∂xv1) dx

)
= 0, ∂xv1(t, 0) = 1.

By considering an additively separable solution of the form v1(t, x) = f(x)+ g(t), the
solution to the above PIDE can be readily computed:

(3.10) v1(t, x) = −
1

3r
e−3rx −

∫ t

0

I(s)er(t−s) ds,

where I(t) =
1

9

(
1−

∫ ∞

0

M(x+ t/3)
(
1− e−3rx

)
dx

)
. That v1 is additively separa-

ble simplifies the expression for Q1 considerably:

(3.11) Q1(t) = −
1

3

(
1− η0 +

∫

R+

m0∂xv1 dx

)
= −3I(t).

In particular, we see that Q1 is always negative. The economic interpretation is
that increasing the costs of inexhaustible energy source slows down production of the
exhaustible one. From (3.2), we can compute the equilibrium production rate:

q∗(t, x) =
1

3
−

c

2

(
Q1(t) + e−3rx

)
+O(c2).

First order correction: density. The first order correction to density m1 satisfies

(3.12) ∂tm1 −
1

3
∂xm1 +

1

2
∂x ((Q1 + ∂xv1)m0) = 0, m1(0, x) = 0.

Having already solved for v1, we can write down the solution analytically

(3.13) m1(t, x) =

∫ t

0

h

(
s, x+

t− s

3

)
ds, h(t, x) = −

1

2
∂x ((Q1 + ∂xv1)m0) .
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3.3. Numerical illustration. We illustrate the effect of exhaustibility using a
numerical example. Suppose the initial distribution of reserves is given by an expo-
nential distribution with parameter λ (i.e. M(x) = λe−λx). Then we can compute
the value function correction

v1(t, x) = −
1

9

(
ert − 1

)(1

r
−

3e−λt/3

λ+ 3r

)
−

e−3rx

3r
,

and the density correction

m1(t, x) =
1

2
λe−λ(x+t/3)

(
r
(
3− 3e−λt/3

)

λ+ 3r
+

(λ + 3r) (1− e−rt) e−3rx

r
−

λt

3

)
.

The leading order correction to the mean production rate is

Q1(t) = −
1

3

(
1−

3re−λt/3

λ+ 3r

)
.

Observe that the correction to the mean quantity Q1 is always negative, in other
words, exhaustibility shows down production, as shown in Figure 3.
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(b) Proportion of exhaustible firms

Fig. 3: Effects of exhaustibility when the exhaustible producers can transition to
production of renewable resources, parameters used for numerical simulation are λ = 1
and r = 0.2.

3.4. Variable production costs. We illustrate that the technique of asymp-
totic expansion can be applied to the variable production cost model in [6]. In their
setting, instead of an abrupt transition to the alternative technology, a firm’s marginal
production cost ĉ(x) gradually increases up to c as the traditional energy reserve runs
out x → 0. For illustrative purpose, we will take the variable production costs to be
ĉ(x) = ce−γx. The interpretation is that the exhaustible producer has non-zero cost of
extraction; in particular, as reserves begin to run out, costs for exhaustible producers
often increase (deeper drilling, more expensive extraction technology required), and
the exhaustible producer may choose to invest in R&D (research and development,
including exploration) which adds to the marginal production costs.

Model setup. With non-zero production cost ĉ(x), the value function of a repre-
sentative firm is

(3.14) v(t, x) = sup
q

∫ ∞

t

e−r(s−t)(ps − ĉ(Xs))qs1{Xs>0} ds, Xt = x,
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subject to the dynamics dXt = −qt dt. The associated HJB equation is

(3.15) ∂tv − rv +max
q≥0

q (1− q −Q− ∂xv − ĉ(x)) = 0,

with ∂xv(t, 0) = 0. The forward Kolmogorov equation for m is

(3.16) ∂tm−
1

2
∂x ((1−Q− ∂xv − ĉ(x))m) = 0,

with m(0, x) = M(x), where the mean production Q(t) comes from both the ex-
haustible and inexhaustible producers:

(3.17) Q =
1

3

(
1− c(1− η)−

∫

R+

m(∂xv + ĉ(x)) dx

)
.

Small exhaustibility expansion. We formally look for an asymptotic expansion
(3.8) in the small c regime. The inexhaustible limit c = 0 in the present model admits
a solution of a constant mean production Q0 = 1/3 with v0(t, x) = (9r)−1. The
density m0 is transported at constant speed m0(t, x) = M (x+ t/3). The leading-
order corrections to the value function and density in the expansion (3.8) are given
by the following proposition.

Proposition 3.1. The leading-order correction to the value function v1 is addi-
tively separable:

v1(t, x) = f(x) + g(t), where(3.18)

f(x) =
3re−γx + γe3rx

9r2 + 3γr
, g(t) =

1

3

∫ t

0

Q1(s)e
r(t−s) ds,(3.19)

Q1(t) = −
1

3

(
1−

∫

R+

M(x+ t/3)
(
1− e−γx − f ′(x)

)
dx

)
.(3.20)

Moreover, the leading-order correction to the density m1 is given explicitly by
(3.21)

m1(t, x) =

∫ t

0

h

(
s, x+

t− s

3

)
ds, h(t, x) = −

1

2
∂x
((
Q1(t) + f ′(x) + e−γx

)
m0

)
.

Proof. Plugging the formal expansion (3.8) into the HJB equation (3.15) we get

∂tv1 − rv1 −
1

3

(
Q1 + ∂xv1 + e−γx

)
= 0,

with ∂xv1(t, 0) = 0. Here Q1 = −
1

3

(
1− η0 +

∫

R+

m0(∂xv1 + e−γx) dx

)
is the first

order correction to the mean production. Therefore, we obtain the PIDE for v1:

∂tv1−rv1−
1

3
∂xv1+

1

9

(
1−

∫

R+

m0(1− ∂xv1 − e−γx) dx

)
=

1

3
e−γx, ∂xv1(t, 0) = 0.

By considering the additively separable solution of the form (3.18), the solution to
the above PIDE can be readily computed to give (3.19) and (3.20).

As for the density, the first order correction m1 satisfies

∂tm1 −
1

3
∂xm1 +

1

2
∂x
((
Q1 + ∂xv1 + e−γx

)
m0

)
= 0, m1(0, x) = 0.

Using the method of characteristics, we obtain the solution (3.21) analytically.
Notice in particular that as the transition rate γ goes to infinity, the total pro-

duction rate Q1 in this case reduces to (3.11) as 1− e−γx − f ′(x) →
γ→∞

1− e−3rx.
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Numerical illustration. We illustrate the effect of exhaustibility using a numerical
example, where we assume that the initial reserves have an exponential density with
parameter λ. Figure 4 shows the effect of the transition rate γ on the mean production
rate Q ≈ Q0 + cQ1. Notice that a smoother transition (i.e. decreasing γ) leads to
higher production rate.

Fig. 4: Effect of the transition rate γ on the mean production rate Q ≈ Q0 + cQ1.
Parameters used are r = 0.2, λ = 1, c = 0.2.

4. Competition with a renewable Producer. In this section we consider the
competition between the traditional oil producers with an alternative energy producer.
This model corresponds to the intermediate time horizon in Table 1. The economy
consists of a continuum of firms depleting a non-renewable energy source with zero
marginal cost, and an alternative producer with inexhaustible reserves, but higher
cost of production c > 0. This corresponds to sustainable production from “green”
sources (e.g. solar power, or to leading order approximation, the fracking industry
in the US). The two classes of producers compete against each other through the
Cournot game equilibrium.

For the exhaustible producers, the remaining reserves (Xt) follow the dynamics

dXt = −qt dt+ σ dWt,

as long as Xt > 0, where W is a standard Brownian motion and qt = q(t,Xt) is his
rate of production at time t. Each exhaustible producer has oil resources which he
extracts at zero costs, and which is subject to random fluctuation (e.g. due to noisy
seismic estimates of oil reserves). When he runs out, he cannot produce anymore
and we have q(t, 0) = 0. The renewable player produces from an alternative source
which is expensive but abundant: his marginal cost of production is c > 0. His rate
of production is denoted by q̂(t).

The Cournot market is specified by linear inverse demand functions. The in-
verse demand faced by an exhaustible producer producing at rate q unit is given by
P (q, q̂, Q) = 1− q− δq̂ − εQ, where Q is the mean production rate of the exhaustible
producers, and q̂ is the production rate of the renewable producer. The inverse de-
mand faced by the renewable producer is similarly given by P̂ (q̂, Q) = 1−q̂−δQ. Here
ε is the interaction parameter between exhaustible producers, and δ is the interaction
parameter between exhaustible producers and the renewable producer.
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The value functions for the traditional and alternative producers are their dis-
counted lifetime profit, respectively given by:

v(t, x) = sup
q≥0

E

{∫ ∞

t

e−r(s−t)qsps1{Xs>0} dt

∣∣∣∣Xt = x

}
,

g(t) = sup
q̂≥0

∫ ∞

t

e−r(s−t)q̂s(p̂s − c)1{η(s)>0} ds+

∫ ∞

t

e−r(s−t) 1

4
(1− c)21{η(s)=0} ds,

(4.1)

where η is the fraction of exhaustible producers with reserves remaining, given by
(3.5). The second term in the definition of g expresses that the renewable producer
has a monopoly when all the exhaustible producers are out of reserves.

We also stress that q̂ must be non-negative: for large enough c, we will see that
the renewable player is blockaded in that his cost of producer is so high and his
competitors’ reserves of the cheaper resource are so plentiful, that his equilibrium
strategy is not to produce anything until the exhaustible producers have run down
their reserves some more. When c = 1, the renewable player never participates in the
game, and the above model reduces to the standard Cournot mean field game studied
in Section 2.

Dynamic programming and HJB equations. The HJB equations associated to
(4.1) read

∂tv +
1

2
σ2∂2

xxv + sup
q

[q (1− q − εQ(t)− δq̂(t)− ∂xv)] = rv,

g′(t) + sup
q̂

[q̂ (1− q̂ − δQ(t)− c)] = rg.
(4.2)

From the optimal feedback control q∗(t,Xt) of the exhaustible producer, the density
m of reserves Xt follows the forward Kolmogorov equation

(4.3) ∂tm−
1

2
σ2∂2

xxm− ∂x (q
∗m) = 0,

with m(0, x) = M(x). The total production by exhaustible producer is given by

(4.4) Q(t) =

∫

R+

q∗(t, x)m(t, x) dx.

(a) If the renewable producer is not blockaded, the feedback production rates are

q∗nb(t, x) =
1

4

(
2− δ − (2ε− δ2)Q(t) + δc− 2∂xv

)
, q̂∗(t) =

1

2
(1− δQ(t)− c) ,

and the HJB equations become

∂tv +
1

2
σ2∂2

xxv +
1

16

(
2− δ − (2ε− δ2)Q(t) + δc− 2∂xv

)2
= rv,

g′(t) +
1

4
(1− δQ(t)− c)

2
= rg.

(b) If the renewable producer is blockaded, we have q̂∗ = 0 and

q∗b (t, x) =
1

2
(1− εQ(t)− ∂xv) .

In this case the HJB equation becomes

∂tv +
1

2
σ2∂2

xxv +
1

4
(1− εQ(t)− ∂xv)

2
= rv, g′(t) = rg.
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Forward Kolmogorov equation. Combining the two cases, we can write the forward
Kolmogorov equation of the reserves density as

(4.5) 0 = ∂tm−
1

2
σ2∂2

xxm− ∂x [m (1Bq
∗
b (t, x) + 1

c
Bq

∗
nb(t, x))] ,

where 1B is the blockading indicator function.

4.1. Numerical solutions. To study the full MFG equation system (4.2) and
(4.5), we need to solve a coupled system of forward/backward PDE system with a
free boundary. We propose an iterative algorithm to calculate the MFG solution and
optimal production rate. Starting with an initial guess Q0 for the total production,
we follow for n = 1, 2, . . .

Step 1. Given the mean production Qn−1 from the previous iteration, solve the
optimal control problem by numerically solving the HJB equations:
(a) The optimal strategy of the renewable producer is simply

q̂n(t) =
1

2

(
1− δQn−1(t)− c

)+
.

The renewable producer is “blockaded” whenever 1− δQ(t)− c < 0.
(b) The exhaustible producer solves the optimal control problem

∂tv
n +

1

2
σ2∂2

xxv
n +

1

4

(
1− εQn−1(t)− ∂xv

n
)2

1B

+
1

16

(
2− δ − (2ε− δ2)Qn−1(t) + δc− 2∂xv

n
)2

1
c
B = rvn.

The feedback production strategy of the exhaustible producer is

qn(t, x) =
1

2

(
1− εQn−1(t)− ∂xv

n
)
1B+

1

4

(
2− δ − (2ε− δ2)Qn−1(t) + δc− 2∂xv

n
)
1
c
B.

Step 2. Given the optimal production strategy qn, we can solve the forward Kol-
mogorov equation

∂tm
n −

1

2
σ2∂2

xxm
n − ∂x [m

nqn] = 0.

and determine the nth-iteration mean production Qn(t) =

∫

R+

qn(t, x)mn(t, x) dx.

As observed in [4], it is computationally convenient to consider the tail distribution
function

(4.6) η(t, x) =

∫ ∞

x

m(t, y) dy.

The forward Kolmogorov equation in terms of η reads

∂tη(t, x)−
1

2
σ2∂2

xxη(t, x)− q(t, x)∂xη(t, x) = 0,

with initial condition (4.6) evaluated at t = 0, which allows us to handle point masses
in the initial distribution M .

4.2. Results and discussion. We take the deterministic setting σ = 0 and
choose ε = δ = 1 for the following numerical illustrations.
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Initialization and convergence of algorithm. The initial guess of the mean pro-
duction Q0 is taken to be the explicit result (2.10) derived in the context of monopoly
Cournot competition (without the renewable producer). We observe that our itera-
tive algorithm converges rapidly, typically within 10 iterations. From the left panel
of Figure 5, we notice that the exhaustible producers slow down production in the
presence of a renewable competitor.

Blockading of renewable producer. If the constant marginal cost of production c
is high enough, the renewable producer can be blockaded and produces nothing. The
idea is that when the marginal cost of production is high, and when the exhaustible
resource is plentiful, it may be advantageous for the renewable producer to hold
back production and wait until the exhaustible players diminish their reserves. We
see numerical evidence that blockading occurs when the marginal cost of production
c = 0.9.

2 4 6 8 10
t

0.05

0.10

0.15

0.20

Q

(a) Exhaustible producers

2 4 6 8 10
t

0.01

0.02

0.03

0.04

0.05

q�

(b) Renewable producer

Fig. 5: Production rates for the exhaustible (left) and renewable (right) producers.
Notice the renewable producer is blockaded until about t = 1.5. The parameter are
ε = δ = 1, r = 0.2,M ∼ Beta(2, 4) and c = 0.9.

4.3. Strategic blockading entry of renewable resources. We now return
to OPEC’s strategic decision not to curb its oil production in face of increased supply
of shale gas and oil in the US. In Figure 6, we consider the mean production rate Q of
the exhaustible producers when they are rivaled with an alternative source of different
marginal costs c. The left panel shows the production profile Q(t) over time; while the
right panel plots the short term production Q(0) as a function of the renewable energy
cost c. When c = 1, we know that the alternative energy producer does not participate
and the traditional energy producers have the entire market to themselves. However,
we see that as c decreases from 1, the exhaustible producers may strategically increase
their mean production in the short run (and hence driving energy price down) to keep
the renewable energy out of the market. Therefore, our model is capable of providing
a dynamical explanation to OPEC’s decision to maintain oil production in order to
compete for market share with the fracking industry in the US.

5. Resource Discovery. In this section, we study the stochastic effect of re-
source exploration in dynamic Cournot mean field game models of exhaustible re-
sources. This model corresponds to the short horizon in Table 1. The exhaustible
producers may invest in exploration, with effort level indicated by at ≥ 0 and cost
C(at). The production capacity Xt decreases at a (controlled) production rate qt ≥ 0,
and increases through jumps thanks to discrete new discoveries. Exploration successes
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(a) Aggregate production profile
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Fig. 6: Left panel: the mean production rate Q for 5 different values of production
costs c = 0, 0.2, 0.4, 0.6, 0.8. Right panel: initial production rate of the exhaustible
producers. Notice the strategic blockading of entry for large c. Other parameters are
as in Figure 5.

are represented by a point process Nt with (controlled) intensity λat, where λ is given
model parameter. Suppose that each discovery leads to an increase in reserves by a
fixed amount δ > 0, then we have the following dynamics:

dXt = −qt dt+ δ dNt.

Similar models with resource exploration have been considered by Deshmukh and
Pliska [7] for monopolies and Ludkovski and Sircar [21] for duopolies.

The cost of exploration is captured by a positive, non-decreasing function C(·).
We will further assume that C is strictly convex to guarantee that optimal effort levels
are finite. The economic interpretation is based on a spatial model of the deposits
of non-renewable resources (e.g. fossil fuels in different geographical regions). In the
simplest case of a Poisson random measure with constant rate λ, exploration of a
region A yields amount ν(A) ∼ Poisson(λ|A|). In this model, the exploration effort
a mimics the speed at which one sweeps through areas searching for deposits. The
convex cost C comes from diseconomies of scale at higher sweeping speeds.

The objective function is now the discounted lifetime revenue minus exploration
cost:

(5.1) v(t, x) = sup
q,a

E

{∫ ∞

t

e−r(s−t)
{
qsps1{Xs>0} − C(as)

}
ds

∣∣∣∣Xt = x

}
.

With inverse demand 1 − (q + εQ), the HJB equation corresponding to the value
function is

(5.2) ∂tv + sup
q≥0

{q (1− q − εQ− ∂xv)}+ sup
a≥0

{aλ∆v − C(a)} − rv = 0,

where the delay term ∆v(t, x) = v(t, x+ δ)− v(t, x) and the mean production is given
by (4.4). The optimal production rate and effort level are given by

a∗(t, x) = (C′)
−1

(λ∆v(t, x)) , q∗(t, x) =
1

2
(1− εQ(t)− ∂xv(t, x)) .
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Given the optimal controls, the population dynamics m(t, x) is governed by the for-
ward Kolmogorov equation:
(5.3)
∂tm(t, x)− ∂x (q

∗(t, x)m(t, x)) − λ {a∗(t, x− δ)m(t, x− δ)− a∗(t, x)m(t, x)} = 0.

Note that the introduction of random jumps leads to a system of non-local PDEs.

5.1. Sustainable economy. Motivated by what Lucas and Moll [20] call a “bal-
anced growth path”, we look for stationary solution to the above mean field game
equation system. The interpretation is a sustainable energy market in which resource
extraction is balanced by the exploration successes. The stationary equations are

rv(x) = sup
q≥0

{q (1− q − εQ− v′(x))}+ sup
a≥0

{aλ∆v − C(a)} ,

0 = −
d

dx
(q∗(x)m(x)) − λ {a∗(x− δ)m(x − δ)− a∗(x)m(x)} ,

a∗(x) = (C′)
−1

(λ∆v(x)) , q∗(x) =
1

2
(1− εQ− v′(x)) , Q =

∫

R+

q∗(x)m(x) dx.

(5.4)

5.2. Computational algorithm. Following [21], we take power costs

C(a) =
1

β
aβ + κa, β > 1, κ > 0.

Since C′(0) = κ, a strictly positive κ guarantees a finite saturation point xsat < ∞
such that a∗(x) = 0 for x > xsat, and (Xt) does become arbitrarily large infinitely

often. In this case, the optimal effort is given by a∗(x) = (λ∆v(x) − κ)
γ−1
+ , where

γ = β/(β − 1). The HJB equation can be written as

rv(x) =
1

4
(1− εQ− v′(x))

2
+

1

γ
(λ∆v(x) − κ)

γ
+ .

The boundary condition v(0) is determined by optimizing the level of exploration
effort a while the producer is stuck at x = 0 waiting for his first exploration success,
which his waiting time exponentially distributed with mean (λa)−1. This leads to

(5.5) v(0) = sup
a≥0

E

[
e−rτv(δ)−

∫ τ

0

e−rtC(a) dt

]
= sup

a≥0

aλv(δ)− C(a)

λa+ r
.

Numerically solving for the value function v is challenging due to the implicit
boundary condition and the presence of a “forward” delay term on the semi-infinite
domain R+. We resolve this difficulty by using an iterative scheme. Starting with
an initial guess of the value function v0 and mean production rate Q0, for n ≥ 1 we
numerically solve the following inductively.

Value function. We replace the forward delay term by the its counterpart from
the previous iteration:

(5.6) rvn(x) =
1

4
(1− εQn−1 − v′n(x))

2
+

1

γ
(λ (vn−1(x + δ)− vn(x)) − κ)

γ
+ ,

with boundary condition

vn(0) = sup
a≥0

aλvn−1(δ)− C(a)

λa+ r
.
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Observe that (5.6) is a standard first-order nonlinear ordinary differential equation
with “source” term vn−1(·+δ) and can be solved using standard tools, such as Runge-
Kutta methods.

Density. Given the value function vn we can determine the optimal production
rate q∗n(x) and optimal exploration level a∗n(x):

a∗n(x) = (λ∆vn(x)− κ)γ−1
+ , q∗n(x) =

1

2
(1− εQn−1 − v′n(x)) .

The stationary solution to the forward Kolmogorov equation (5.3) is determined by

0 = −
d

dx
(q∗n(x)mn(x)) − λ {a∗n(x− δ)mn−1(x− δ)− a∗n(x)mn(x)} .

We obtain the stationary solution by solving the time-dependent problem (5.3) and
take the large time limit. By using the finite volume method we ensure that the
density integrates to one. Now we integrate mn over the optimal feedback production

rate q∗n to update the mean production Qn =

∫

R+

q∗n(x)mn(x) dx.

5.3. Numerical illustration. Figure 7 illustrates the numerical solution for
the sustainable economy (5.4). We observe in Figure 7a that while the production
rate q∗ is monotone increasing in x, the exploration level a∗ is monotone decreasing.
Figures 7b, 7c and 7d show the sample path for the evolution of the game solution over
time. The system state is described by (Xt) in the top right panel which drives the
feedback controls q∗(Xt) and a∗(Xt) in the bottom panels. One can readily observe
that higher reserves lower exploration rates and increase production. The recurrent
behavior of (Xt) is apparent, as the resource is repeatedly exhausted until a new
discovery replenishes reserves and allows to restart production.

6. Conclusion. In this paper, we apply the Cournot mean field game model to
the global energy market. We focus on the interaction between traditional oil produc-
ers and alternative sources (e.g. solar, hydroelectric power, or fracking). Specifically,
we investigate the issue from three perspectives: competition, transition, and explo-
ration. This leads to three extensions of the basic Cournot MFG model.
Transition As the traditional oil producers run out of reserves, they can transition

to energy production with alternative sources. This essentially introduce a
Neumann boundary condition to our PDE problem. In the regime of small
exhaustibility, we find explicit correction to the value function and optimal
production rate by solving a partial integro-differential equation.

Competition We find that if the alternative energy source has a high enough cost
of production, the traditional energy producers may strategically increase
production rate (and hence lowering the energy price ever further) to keep
the alternative energy producer blockaded. This explains OPEC’s strategic
decision not to reduce production quotas in the face of falling oil prices due
in large part to the US fracking boom.

Exploration We have studied the impact of exploration and discovery in Cournot
models of exhaustible resources. We characterize a sustainable energy market
as a stationary solution to the forward Kolmogorov equation. We find that
higher reserves lower exploration rates and increase production.

Appendix A. Existence and Uniqueness. We demonstrate existence and
uniqueness of the PDE system (4.2) and (4.3) in the case δ = 0 thanks to the remark-
able results by Graber and Bensoussan [9], which were motivated by our prior paper
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(a) Reserves trajectory (b) Production rates

(c) Exploration effort (d) Instantaneous profit

Fig. 7: Trajectory of the game solution over time. Top panel: reserves (Xt) of a
representative player; middle panel: production rate q∗(Xt); bottom panel: explo-
ration rate a∗(Xt). The parameters are δ = 1, λ = 1, r = 0.1, C(a) = 0.1a+ a2/2 and
ε = 0.25.

[4] on mean field games of Bertrand-type. We first state their thorem, and then show
how the Bertrand problem can be transformed to the Cournot system that we study
in Section 4.

Theorem A.1 (Graber and Bensoussan). Assuming the following on the data:
1. uT (x) and m0(x) are functions in C2+γ([0, L]) for some γ > 0;
2. uT and m0 satisfy compatible boundary conditions: uT (0) = u′

T (L) = 0 and
m0(0) = m0(L) = m′

0(L) = 0;

3. m0 ≥ 0 and
∫ L

0 m0(x) dx = 1, i.e. m0 is a probability density;
4. uT ≥ 0 and u′

T ≥ 0, i.e. uT is non-negative and non-decreasing.
Then there exists a classical solution to the system

∂tu+
1

2
σ2∂xxu− ru +H(t, ∂xu, [ϕ∂xu]) = 0, 0 < t < T, 0 < x < L,

∂tϕ−
1

2
σ2∂xxϕ− ∂x (G(t, ∂xu, [ϕ∂xu])ϕ) = 0, 0 < t < T, 0 < x < L,

(A.1)

subject to boundary conditions

ϕ(0, x) = ϕ0(x), u(T, x) = uT (x), 0 ≤ x ≤ L,

u(t, 0) = ϕ(t, 0) = 0, ∂xu(t, L) = 0, 0 ≤ t ≤ T,

1

2
σ2∂xϕ(t, L) +G(t, ∂xu(t, L), [ϕ∂xu])ϕ(t, L) = 0, 0 ≤ t ≤ T,

(A.2)
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where

H(t, ∂xu, [ϕ∂xu]) =
1

4
(a(η(t)) + c(η(t))p̄(t)− ∂xu)

2
,

G(t, ∂xu, [ϕ∂xu]) =
1

2
(a(η(t)) + c(η(t))p̄(t)− ∂xu) ,

a(η) =
1

1 + εη
, c(η) =

εη

1 + εη
,

p̄(t) =
1

2− c(η(t))

(
a(η(t)) +

1

η(t)

∫ L

0

∂xu(t, x)ϕ(t, x) dx

)
,

η(t) =

∫ L

0

ϕ(t, x) dx, 0 ≤ η(t) ≤ 1.

(A.3)

Moreover, there exists ε0 > 0 sufficiently small such that for any ε ≤ ε0, the above
PDE system has at most one classical solution.

Equivalence of the two PDE problems. If we define

Q̂(t) =
1

2 + εη(t)

(
η(t)−

∫
∂xu(t, x)ϕ(t, x) dx

)
,

then it follows that (1 + εη(t))Q̂(t) = η(t)(1 − p̄(t)) and hence

a(η(t)) + c(η(t))p̄(t) = 1− εQ̂(t).

Then equations (A.1) can be written as

0 = ∂tu+
1

2
σ2∂xxu− ru+

1

4

(
1− εQ̂(t)− ∂xu

)2
,

0 = ∂tϕ−
1

2
σ2∂xxϕ−

1

2
∂x

(
(1− εQ̂(t)− ∂xu)ϕ

)
,

(A.4)

and these are precisely the MFG equations (4.2) and (4.3), with the identifications
(u, ϕ) 7→ (v,m), and in the case δ = 0 (no competition from the alternative producer,
so the g equation in (4.2) is not needed). As the boundary conditions are the same
as when we truncate the domain for the numerical solution in Section 4.1, Theorem
A.1 applies, providing existence and uniqueness of a classical solution to the MFG
equation system in Section 4, and validates the numerical findings.
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