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Abstract

We consider an investor who seeks to maximize her expected utility derived from her
terminal wealth relative to the maximum wealth achieved over a fixed time horizon, and
under a portfolio drawdown constraint, in a market with local stochastic volatility (LSV).
The newly proposed investment objective paradigm also allows the investor to set portfo-
lio benchmark targets. In the absence of closed-form formulas for the value function and
optimal portfolio strategy, we obtain approximations for these quantities through the use
of a coefficient expansion technique and nonlinear transformations. We utilize regularity
properties of the risk tolerance function to numerically compute the estimates for our ap-
proximations. In order to achieve similar value functions, we illustrate that, compared to a
constant volatility model, the investor must deploy a quite different portfolio strategy which
depends on the current level of volatility in the stochastic volatility model.
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1 Introduction

1.1 Background and motivation

In the vast and long-dated literature on dynamic portfolio optimization, different types of ter-
minal utility paradigms under various portfolio constraints have been considered to understand
the investor behaviour (see, for instance, Rogers [23] for a detailed exposition). The solutions
to these problems provide optimal investment strategies which aid institutional investors, and
at times help to reveal deep insights about the market observed phenomenons. The classical
problem of continuous-time portfolio optimization dates back to Samuelson [24] and Merton
[20, 19]. In his seminal paper, Merton [20] considered a market where the prices of risky assets
are given by geometric Brownian motions (with constant volatilities), and the objective is to
maximize the expected utility of terminal wealth by investing capital between the risky assets
and a risk-free bank account. For constant relative risk aversion (CRRA) utility functions, the
author showed that the optimal strategy is a “fixed mix” investment in the risky assets and the
bank account.
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Merton’s landmark result provided structural market insight but the restrictive problem set-
ting – investor objective and market dynamics – prevented application of the results to practical
situations. As a result, subsequent research has focused upon relaxing the assumptions made in
[20], incorporating various market constraints and considering more realistic model settings.

Portfolio managers typically use a stop-loss level on the portfolio value to prevent a complete
wipe-out of wealth in the face of falling prices. A very low value of the portfolio is a real concern
which can be avoided by using the drawdown constraint. Under this constraint, the wealth
in the portfolio must always remain above a certain fraction of the current maximum wealth
value achieved. Furthermore, in several instances, portfolio managers commit to return a certain
percentage of the starting wealth to the pooling investors. This situation can also be covered by
imposing a drawdown constraint on the portfolio wealth.

In this article, we propose a new framework to study the dynamic portfolio optimization
under a drawdown portfolio constraint in a stochastic volatility market model. In many em-
pirical studies it has been well established that stochastic volatility is a reasonable asset price
modelling tool to capture the market observed volatility smiles and volatility clustering. Our
principal innovation is to introduce a new terminal investor objective paradigm which allows
for a reduction in the dimensionality of the problem. As our central objective in this work is
to numerically study the impact of stochastic volatility on the value function and optimal port-
folio strategy, the dimensionality reduction serves as a crucial feature to allow for an efficient
implementation of the numerical procedures used to solve the problem and study the effects of
stochastic volatility.

1.2 Literature review

Several authors have considered the optimal portfolio problem under drawdown constraint.
Grossman and Zhou [12] were the first to comprehensively study this problem over infinite
time horizon in a market setting with single risky asset modelled as a geometric Brownian mo-
tion with constant volatility (lognormal model). They investigated to maximize the long term
growth rate of the expected utility of the wealth and used dynamic programming principle to
solve the problem. Cvitanic and Karatzas [8] streamlined the analysis of Grossman and Zhou
[12] and extended the results to the case when there are multiple risky assets whose dynamics
are governed by a lognormal model. By defining an auxiliary process, they were able to show
that the solution of optimization problem with drawdown constraint can be linked to an un-
constrained optimization problem whose solution follows from the work of Karatzas et al. [14].
They further showed that in the case of logarithmic utility function, the results hold even if
the coefficients in the geometric Brownian motion model are random and satisfy some ergodic-
ity conditions. More recently, Cherny and Obłój [6] studied the optimal portfolio problem in
an abstract semimartingale model with a generalized drawdown constraint. They utilized the
properties of Azéma-Yor processes to show that the value function of the constrained problem,
where the investor objective is to maximize the long term growth rate of the expected utility,
has the same value function as an unconstrained problem with a suitably modified utility func-
tion. Moreover, they showed that the optimal wealth process can also be obtained as an explicit
path-wise transformation of the optimal wealth process in the unconstrained problem.

The portfolio optimization problem with drawdown constraint has also been studied in a
continuous-time framework with consumption. Roche [22] studied the problem of maximizing
the expected utility of consumption over an infinite time horizon for a power utility function
under a linear drawdown constraint. This analysis was performed in the setting of a lognormal
model with single asset. Elie and Touzi [10] subsequently generalized the result to a general
class of utility functions in the setting of zero risk-free interest rate and obtained an explicit
representation of the solution. Elie [9] also studied a finite time version of the same problem
and in the absence of an analytical representation, provided a numerical solution to the problem.
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In the financial literature, different problem settings with a drawdown constraint have re-
ceived considerable attention due to their significance. Magdon-Ismail and Atiya [18] considered
the problem of optimal portfolio choice when the drawdown is minimized in the single asset log-
normal model. Chekhlov et al. [4] analyzed the portfolio optimization problem in discrete time
where the investor objective is to maximize the expected return from the portfolio subject to
risk constraints given in terms of drawdowns. They considered a multi-asset lognormal model
and reduced the problem to a linear programming problem which can be solved numerically.
In the insurance literature, drawdown constraint has been incorporated to study problems of
lifetime investments. In [5], Chen et al. considered the optimization problem of minimizing the
probability of a significant drawdown occurring over a lifetime investment, i.e. the probability
that portfolio wealth hits the drawdown barrier before a random time which represents the death
time of a client. A relevant benchmarking problem was studied by Boyle and Tian [2] in which
the investor is concerned with selecting the optimal portfolio investment strategy such that over
a finite time horizon, she obtains a return which beats a certain benchmark with a specified
confidence level in a multi asset market model. This work extends the analysis of Basak and
Shapiro [1] in which the investor is specificallty concerned about a value-at-risk constraint in a
single risky asset model.

1.3 Our contributions

In this article, we consider an investor who at any time is worried about her wealth falling
below a fixed fraction of the running maximum wealth. Furthermore, the investor also wishes to
attain the portfolio value benchmark which she sets at the beginning of her investment period.
Therefore, it is reasonable to consider a bounded terminal utility where the maximum value is
achieved when the portfolio benchmark is attained. For this reason, we propose that the investor
is interested to maximize utility of the ratio of the two quantities at the end of a fixed investment
horizon. At the beginning of an investment period, the investor starts with a certain value of
the initial wealth and fixes an initial value for the maximum wealth such that it satisfies the
drawdown constraint. Note that this value of the maximum wealth also serves as the portfolio
benchmark or target. An investor will liquidate the position in the risky asset if the maximum
wealth target is reached.

We consider the basic setting of a frictionless financial market with a single underlying
asset and a risk-free money market account. We study this problem in a stochastic volatility
environment to demonstrate how uncertainty in the volatility impacts the optimal portfolio
strategy. This problem has no explicit solution and thus, we look for accurate approximations
to the value function and optimal strategy. We use the technique of coefficient expansion to
formulate separate problems for different terms in the expansion of value function. The solutions
to these problems allow us to derive an expansion for the optimal portfolio strategy. Due to the
presence of portfolio constraints, the terms in the value function expansion are not available in
closed-form. We numerically solve for the leading term in the value function expansion and use
the regularity properties of the so-called risk tolerance function to compute the remaining higher
order terms. The numerical estimates for the optimal portfolio strategy are derived similarly.

We show that the leading terms in the expansion of value function and optimal strategy
are related to the solution of our problem in a lognormal model. The optimal strategy in this
case suggests to liquidate the risky position when portfolio wealth approaches its maximum
value. Also, close to the drawdown constraint, the optimal strategy instructs to steadily build
up a position in the risky asset to drive away the portfolio value from the lower barrier. In
the stochastic volatility model chosen for our numerical example, we observe that the stochas-
tic volatility correction term for the value function approximation suggests very small loss or
gain due to the uncertainty in volatility. However, depending on the current level of stochastic
volatility, we observe that the optimal strategy approximation with volatility correction is re-
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markably different than the case with constant volatility. Close to the maximum wealth value,
the corrected optimal strategy approximation suggests to hold onto the risky assets longer than
in the constant volatility case. This clearly illustrates the impact of stochastic volatility on the
optimal investment strategy. However, near the drawdown barrier, the behaviour of corrected
optimal strategy approximation depends on the level of current stochastic volatility in the model
when compared to the optimal strategy in the constant volatility case.

1.4 Organization

In Section 2 we introduce the continuous-time model setting and formulate the problem. We de-
rive the Hamilton-Jacobi-Bellman equation for the optimal portfolio problem and under certain
assumptions, give the analytical formula for the optimal portfolio strategy in terms of the value
function. We provide the approximation formulas for the value function and optimal portfolio
strategy in Section 3 and summarize our main results. In Section 4, we discuss the numerical
implementation of our results and provide practical insights with the help of popular numerical
examples considered in the literature. Section 5 concludes the article and suggests directions for
future research. The proofs are included in Appendix A.

2 Problem Formulation

We consider a complete filtered probability space (Ω,F , {Ft}t≥0,P) endowed with a two dimen-
sional Brownian motion W =

(
(W

(1)
t ,W

(2)
t ), 0 ≤ t ≤ T

)
. The filtration generated by W is

denoted as F = {Ft : 0 ≤ t ≤ T}. Here T <∞ is a finite time horizon. We suppose that there is
a risky asset whose dynamics under P is given by the following local stochastic volatility (LSV)
model:

dSt
St

= µ̃(St, Yt)dt+ σ̃(St, Yt)dB
(1)
t ,

dYt = c(Yt)dt+ β(Yt)dB
(2)
t ,

where B(1)
t := W

(1)
t and B(2)

t := ρW
(1)
t +

√
1− ρ2W

(2)
t are standard Brownian motions under

measure P with correlation ρ ∈ [−1, 1] : d〈B(1)
t B

(2)
t 〉 = ρ dt. From Itô’s formula, the log price

process X = logS is described as following:

dXt = b(Xt, Yt)dt+ σ(Xt, Yt)dB
(1)
t ,

where µ(Xt, Yt) := µ̃(eXt , Yt), σ(Xt, Yt) := σ̃(eXt , Yt) and

b(Xt, Yt) := µ(Xt, Yt)−
1

2
σ2(Xt, Yt).

We assume that the model coefficient functions µ, σ, c and β are Borel-measurable and possess
sufficient regularity to ensure that a unique strong solution exists for (X,Y ) which is adapted
to the augmentation of F.

Further, we suppose the existence of a frictionless financial market with the price of a single
risky asset given by S and the risk-free rate of interest given by a scalar constant r > 0. In this
market, we denote the wealth process of an investor by L̄ who invests π̄t units of currency in
risky asset S at time t and the remaining (L̄t−π̄t) units of currency in the risk-free bank account.
Then, the self-financing portfolio, L̄ satisfies the following stochastic differential equation (SDE)

dL̄t = r(L̄t − π̄t)dt+ π̄t
dSt
St

=
(
rL̄t + π̄t(µ(Xt, Yt)− r)

)
dt+ π̄tσ(Xt, Yt) dB

(1)
t .
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The running maximum wealth in time t dollars is given by M̄t := max{L̄ser(t−s); s ≤ t}. In this
work, we propose an investment framework that encourages exiting the market in the face of a
sizeable drawdown, while also targeting a benchmark that is related to the running maximum,
or high watermark of the investment performance. The investor’s risk preferences are given by
a utility function U satisfying:

Assumption 1. The terminal utility function U : (0, 1) → R is smooth. It is also strictly
increasing and strictly concave.

We solve the utility maximization problem with the following drawdown constraint :

L̄t ≥ αM̄t a.s., 0 ≤ t ≤ T, where α ∈ (0, 1) is a fixed drawdown parameter.

2.1 The discounted formulation

We look to formulate the problem in the setting where the wealth process is discounted with
respect to the risk-free rate of interest. This allows us to clearly study the impact of stochastic
volatility on the optimal strategy and value function. For this purpose, we define, Lt := L̄te

−rt

and Mt := M̄te
−rt = max{Ls; s ≤ t}. The discounted wealth process satisfies the following SDE

dLt = πt
(
(µ(Xt, Yt)− r)dt+ σ(Xt, Yt)dB

(1)
t

)
,

where πt := e−rtπ̄t is the risky-asset trading strategy.
The investor’s utility maximization problem under drawdown constraint is expressed by

defining the value function as follows:

V (t, l,m, x, y) = sup
π∈Πα,t,l,m,x,y

E
[
U

(
LT
MT

) ∣∣∣Lt = l,Mt = m,Xt = x, Yt = y

]
, (1)

where the admissible strategies are given by

Πα,t,l,m,x,y :=
{
π : measurable ,F− adapted,Et,l,m,x,y

∫ T

t
π2
sσ

2(Xs, Ys)ds <∞,

s.t. Ls ≥ αMs > 0 a.s., t ≤ s ≤ T
}
.

For an integrable random variable Z on (Ω,F,P), we have employed the short-hand notation
Et,l,m,x,y[Z] to denote the conditional expectation E[Z|Lt = l,Mt = m,Xt = x, Yt = y] where
(l,m, x, y) stands for the initial condition of the state processes (L,M,X, Y ) with l ≤ m. Further,
we define the domain in R+ × R4 as [0, T ]× Õα where

Õα := {(l,m, x, y) : 0 < αm < l < m}.

Here, A denotes the closure of set A. The definition (1) of the value function V is for any 5−tuple
(t, l,m, x, y) ∈ [0, T ]× Õα. Next, we suppose the following:

Assumption 2. The value function given in (1), V ∈ C1,2,1,2,2([0, T ]× Õα).

Then, under Assumption 2, by following the usual dynamic programming principle (see,
for example, Pham [21, Chapter 3 ]), V satisfies the following Hamilton-Jacobi-Bellman (HJB)
equation

(∂t +A)V + sup
π∈R
AπV = 0, (2)
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where (A+Aπ) is the generator of the process (X,Y, L) with

A = b(x, y)
∂

∂x
+ c(y)

∂

∂y
+

1

2
σ2(x, y)

∂2

∂x2
+

1

2
β2(y)

∂2

∂y2
+ σ(x, y)β(y)ρ

∂2

∂x∂y
,

Aπ = π
[
(µ(x, y)− r) ∂

∂l
+ σ2(x, y)

∂2

∂x∂l
+ ρσ(x, y)β(y)

∂2

∂y∂l

]
+

1

2
π2σ2(x, y)

∂2

∂l2
.

In the above, for any O ⊂ R, C1,n([0, T ] × O) denotes the space of real-valued function f on
[0, T ]×O whose partial derivatives ∂f

∂t ,
∂if
∂xi
, 1 ≤ i ≤ n, exist and are continuous on [0, T ]×O.

By inspecting the quadratic expression above in π, it is clear that the unique optimal strategy
exists and is given by π∗ := arg max

π∈R
AπV, i.e.,

π∗ = −
(µ(x, y)− r)Vl + ρβ(y)σ(x, y)Vyl + σ2(x, y)Vxl

σ2(x, y)Vll
, (3)

where the subscripts indicate partial derivatives with respect to the corresponding variables.
The HJB equation becomes

(∂t +A)V + Ñ (V ) = 0, (4)

with the nonlinear term given as

Ñ (V ) = − 1

2Vll

(
λ(x, y)Vl + σ(x, y)Vxl + ρβ(y)Vyl

)2
,

where

λ(x, y) :=
µ(x, y)− r
σ(x, y)

is the Sharpe ratio function. The boundary conditions are

(Terminal condition): V (T, l,m, x, y) = U

(
l

m

)
, (5)

(Neumann condition): Vm(t,m,m, x, y) = 0, (6)
(Dirichlet condition): V (t, αm,m, x, y) = U(α). (7)

The above Dirichlet condition signifies that when the drawdown constraint is hit, the investor
stops trading in the risky asset (πt = 0). In the discounted formulation when the investor stops
trading, it signifies that the wealth process stops varying and the investor accepts the utility
which is given at the drawdown barrier.

Remark 1. In the constant volatility case, the value function V = V (t, l,m) does not depend
on x and y, and the solution of the HJB equation (2) with the boundary conditions (5)–(7)
can be obtained in the viscosity sense as introduced by Crandall et al. [7] (also, see Pham
[21, Chapter 4] for a concise treatment). However, a similar viscosity solution analysis in the
presence of stochastic volatility is not available in the literature. We do not pursue this direction
as our aim is to provide numerical estimates for the value function and optimal strategy under
stochastic volatility. In addition, the numerical analysis via finite difference schemes of the
viscosity solution in stochastic volatility case will not be possible due to the high dimensionality
of the problem. Thus, we suppose that Assumption 2 is valid, that is, the existence of a classical
solution with sufficient regularity which allows us to apply the coefficient expansion method. A
similar assumption has been made in the recent literature on portfolio optimization problems
under stochastic parameters, for example, in Fouque et. al. [11], Liu and Muhle-Karbe [15] and
Lorig and Sircar [16].
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2.2 Dimensionality reduction

The nonlinear PDE in (4) with boundary conditions (5), (6) and (7) is difficult to solve nu-
merically because the domain Õα is a wedge in (L,M) space requiring a non-rectangular finite-
difference grid. However, we notice that given the structure of our problem, we could perform a
change of variable which reduces the dimensionality of the problem. We introduce

ξ =
l

m
, and define Q(t, ξ, x, y) := V (t, l,m, x, y),

which results in a new nonlinear PDE for Q ∈ C1,2,2,2
(
[0, T ]× [α, 1]× R2

)
:

(∂t +A)Q+N (Q) = 0, on [0, T )× (α, 1)× R2, (8)

where

N (Q) = − 1

2Qξξ

(
λ(x, y)Qξ + σ(x, y)Qxξ + ρβ(y)Qyξ

)2
,

and the terminal and boundary conditions are

Q(T, ξ, x, y) = U (ξ) , Qξ(t, 1, x, y) = 0, Q(t, α, x, y) = U(α). (9)

Apart from providing a reduction in dimensionality, the above change of variable also transforms
the space domain of the problem from a high-dimensional wedge to a semi-rectangular domain
which typically helps to get more accurate numerical estimates for the solution.

3 Value Function and Optimal Strategy Approximation

Even under the lognormal model for the asset price, no closed form solution is available for the
nonlinear PDE (8) and one needs to rely on accurate numerical approximations. In this paper,
we propose to find an approximation for the value function as

Q = Q(0) +Q(1) +Q(2) + . . . , (10)

as well as an approximation for the optimal investment strategy

π∗ = π0 + π1 + π2 + . . . , (11)

by using the coefficient expansion technique. This approach has been developed for the linear
European option pricing problem in a general LSV model setting by Lorig et al. [17], and for
the classical (unconstrained) Merton problem by Lorig and Sircar [16].

3.1 Coefficient polynomial expansions

The main idea of the coefficient expansion technique is to first fix a point (x̄, ȳ) ∈ R2 and then
for any function χ(x, y), which is locally analytic around (x̄, ȳ), define the following family of
functions indexed by a ∈ [0, 1] :

χa(x, y) :=
∞∑
n=0

anχn(x, y)

where

χn(x, y) :=
n∑
k=0

χn−k,k(x− x̄)n−k(y − ȳ)k, χn−k,k :=
1

(n− k)!k!

∂n−k

∂xn−k
∂k

∂yk
χ(x, y)

∣∣∣
x=x̄,y=ȳ

.
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Note that for n = 0, χ0 := χ0,0 = χ(x̄, ȳ) is a constant. We can observe that χa
∣∣∣
a=1

is the
Taylor series expansion of χ about the point (x̄, ȳ). Here, a is seen as a perturbation parameter
which is used to identify the successive terms in the approximation.

To apply this technique in PDE (8), we first replace each of the coefficient functions

χ ∈ {b, c, σ2, β2, σβ, λ, σ, β}

with their respective series expansion for some a ∈ (0, 1) and (x̄, ȳ) ∈ R2. Next, to obtain
approximations as in (10) and (11), we define a series expansion of value function as Q = Qa =∑∞

n=0 a
nQ(n), linear operator A = Aa =

∑∞
n=0 a

nAn and replace the nonlinear operator N (Q)
by N a(Qa) which involves series expansions for the coefficient functions and the value function.
Then from (8), we consider the PDE problem

(∂t +Aa)Qa +N a(Qa) = 0, on [0, T )× (α, 1)× R2, (12)

with the boundary conditions

Qa(T, ξ, x, y) = U (ξ) , Qaξ (t, 1, x, y) = 0, Qa(t, α, x, y) = U(α). (13)

Now, to obtain the successive terms of approximation in expansions (10) and (11), we compare
the corresponding degree terms in the polynomial of perturbation parameter a in (12) and the
boundary conditions (13). The approximations are then obtained by setting a = 1 and choosing
a particular value of (x̄, ȳ) as different choices provide different approximations.

3.2 Zeroth and first order approximation

The first term in approximation (10) is obtained by collecting the zeroth order terms w.r.t. a
in the expansion of (12). We get

(∂t +A0)Q(0) − 1

2Q
(0)
ξξ

(
λ0Q

(0)
ξ + ρβ0Q

(0)
yξ

)2
= 0,

with

A0 := b0
∂

∂x
+ c0

∂

∂y
+

1

2
σ2

0

∂2

∂x2
+

1

2
β2

0

∂2

∂y2
+ ρσ0β0

∂2

∂x∂y
, (14)

and the corresponding order boundary conditions are

Q(0)(T, ξ, x, y) = U(ξ), Q
(0)
ξ (t, 1, x, y) = 0, Q(0)(t, α, x, y) = U(α).

As the linear operator A0 has only constant coefficients and the boundary conditions do not
depend on (x, y), the solution Q(0)(t, ξ, x, y) is independent of (x, y). Therefore, in this case we
get:

Definition 1. The leading order term Q(0) = Q(0)(t, ξ) satisfies the following nonlinear PDE

Q
(0)
t −

1

2
λ2

0

(
Q

(0)
ξ

)2
Q

(0)
ξξ

= 0, on [0, T )× (α, 1), (15)

with the boundary conditions

Q(0)(T, ξ) = U(ξ), Q(0)(t, α) = U(α), Q
(0)
ξ (t, 1) = 0. (16)
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Remark 2. Due to the presence of boundary conditions, an explicit formula for Q(0) is inac-
cessible, even for a power utility function. In Elie [9], the author performed a classical viscosity
solution analysis by suitably adapting the ideas proposed in Zariphopoulou [25] to obtain a
viscosity solution for an HJB equation which closely resembles the PDE in (15) with boundary
conditions (16). By formulating our utility maximization problem in the setting of a lognormal
model with constant Sharpe ratio λ0 (as shown later in the proof of Lemma 1), we can repeat
the arguments of Elie [9] to obtain a viscosity solution for the nonlinear PDE which is similar to
(15), i.e. the PDE in (t, l,m) space without the dimensionality reduction. Unlike in [9], where
asymptotic elasticity of U has to be smaller than 1−α for the existence of the viscosity solution,
we do not require such an assumption as the utility always remains bounded in our setting. To
finally obtain the viscosity solution for PDE in (15), we use the dimensionality reduction as
defined in Section 2.2 and verify that the conditions required for its existence and uniqueness
remain satisfied.

However, to use our approach for numerical approximations, we need classical regular solu-
tions to PDE (15) and for this reason we make the following assumption throughout:

Assumption 3. The PDE problem (15)-(16) has a unique classical solution Q(0) ∈ C1,5
b ([0, T )×

[α, 1]), that is Q(0) has at least five derivatives in ξ which are continuous and bounded up to the
boundaries at ξ = α, 1.

In the unconstrained case, with no drawdown restrictions, the PDE (15) is simply the con-
stant Sharpe ratio Merton value function PDE on the half-space ξ > 0, where ξ would denote the
wealth level. As is well-known, given a smooth and strictly concave utility function satisfying the
usual conditions (U ′(0+) = ∞ and U ′(∞) = 0), smoothness of the value function follows from
Legendre transform to a linear parabolic PDE. In our restricted drawdown problem we assume
regularity of the solution when restricted to a finite domain. Our value function approximation,
summarized in Section 3.2.2, and our optimal portfolio approximation in Section 3.3, are given
in terms of (up to 5th order) partial derivatives of Q(0).

In order to find the first order correction term, we introduce the following risk tolerance
function

R(t, ξ) :=

−Q(0)
ξ

Q
(0)
ξξ

 (t, ξ). (17)

This function has been well studied in the unconstrained case by Källblad and Zariphopoulou
[13] and has been recently used to study the classical Merton problem in a stochastic volatility
environment by Fouque et al. [11]. It satisfies an autonomous PDE of fast-diffusion type:

Proposition 1. The risk tolerance function R(t, ξ) satisfies the nonlinear PDE

Rt +
1

2
λ2

0R2Rξξ = 0, on [0, T )× (α, 1), (18)

with the boundary conditions

R(T, ξ) = − U
′(ξ)

U ′′(ξ)
, R(t, α) = 0, R(t, 1) = 0. (19)

The proof is given in Appendix A.1.
As we show later in Section 3.3, Proposition 1 is also crucial to compute the leading order

terms in the approximation of optimal strategy π∗. Next, we define the differential operators

Dk := Rk ∂
k

∂ξk
, k = 1, 2, . . . , (20)
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which allows us to write equation (15) as(
∂t +

λ2
0

2
D2 + λ2

0D1

)
Q(0) = 0. (21)

To obtain first order correction term to the value function, we collect the first order terms w.r.t.
a in expansion (12). As Q(0) does not depend on y, the linear term contributes(

∂

∂t
+A0

)
Q(1),

and the nonlinear term contributes

λ2
0D1Q

(1) +
1

2
λ2

0D2Q
(1) + λ0λ1D1Q

(0) + β0λ0ρD1
∂

∂y
Q(1) + σ0λ0D1

∂

∂x
Q(1).

Definition 2. The first order correction term Q(1) satisfies the following PDE(
∂

∂t
+A0 + B0

)
Q(1) + S1 = 0, on [0, T )× (α, 1)× R2, (22)

with linear operator B0 given as

B0 := λ2
0D1 +

1

2
λ2

0D2 + β0λ0ρD1
∂

∂y
+ σ0λ0D1

∂

∂x
,

and the source term

S1 =
(1

2
λ2
)

1
(x, y)D1Q

(0)(t, ξ).

The terminal and boundary conditions (13) for Qa are already satisfied by Q(0), and so we have

Q(1)(T, ξ, x, y) = 0, Q
(1)
ξ (t, 1, x, y) = 0, Q(1)(t, α, x, y) = 0. (23)

3.2.1 Explicit expression for the first order correction term

We now employ a transformation that enables us to find an explicit expression for Q(1) in terms
of the partial derivatives of Q(0). For this purpose, we first note that Q(0)

ξ is a monotone function
from the following result on the zeroth order term.

Lemma 1. Q(0)(t, ξ) is a non-decreasing and concave function in ξ variable.

The proof is given in Appendix A.2. This result allows us to define a change of variable.

Definition 3. On [0, T ]× [α, 1], define,

z(t, ξ) := − logQ
(0)
ξ (t, ξ) +

1

2
λ2

0(T − t),

ψ(t) := − logQ
(0)
ξ (t, α) +

1

2
λ2

0(T − t), ϕ(t) := − logQ
(0)
ξ (t, 1) +

1

2
λ2

0(T − t),

and let
q(0)(t, z(t, ξ)) := Q(0)(t, ξ).

It is clear from the boundary condition (16) that we have ϕ(t) =∞ for all 0 ≤ t < T. Then,
we obtain the following PDE problem for q(0)(t, z):

10



Proposition 2. q(0)(t, z) satisfies the following linear PDE( ∂
∂t

+
1

2
λ2

0

∂

∂z2

)
q(0) = 0, on [0, T )× (ψ(t),∞),

with the terminal and boundary conditions

q(0)(T, z) = U
((
U ′
)−1(

e−z
))
, lim

z→∞
q(0)
z (t, z) = 0, q(0)(t, ψ(t)) = U

((
U ′
)−1(

e−ψ(t)+
λ20
2

(T−t))).
The proof is given in Appendix A.3.

Lemma 2. Denote q
(
t, z(t, ξ), x, y

)
:= Q̂(t, ξ, x, y). Then, on [0, T )× (ψ(t),∞)× R2, we have(

∂

∂t
+A0 + B0

)
Q̂ =

(
∂

∂t
+A0 + C0

)
q,

where

C0 =
1

2
λ2

0

∂2

∂z2
+ ρβ0λ0

∂2

∂y∂z
+ σ0λ0

∂2

∂x∂z
. (24)

The above result follows from the calculations performed in the proof of Proposition 2 (also
see [16, Lemma 3.3]).

Next, we set Q̂ = Q(0) and q = q(0) in Lemma 2. Further we know that q(0) does not
depend on (x, y) and A0 and the last two terms in C0 have derivatives w.r.t. (x, y). Then, we
get the constant coefficient heat equation as in Proposition 2 by applying the operator C0. On
[0, T )× (ψ(t),∞), we have (

∂

∂t
+A0 + C0

)
q(0) = 0.

Finally, we define q(1) from Q(1) as

q(1)(t, z(t, ξ), x, y) := Q(1)(t, ξ, x, y). (25)

Proposition 3. The alternative representation q(1)(t, z, x, y) of the first order correction term
satisfies (

∂

∂t
+A0 + C0

)
q(1) + S1 = 0, on [0, T )× (ψ(t),∞)× R2, (26)

where

S1(t, z, x, y) =
(1

2
λ2
)

1
(x, y)q(0)

z (t, z, x, y). (27)

The boundary conditions are

q(1)(T, z, x, y) = 0, lim
z→∞

q(1)
z (t, z, x, y) = 0, q(1)(t, ψ(t), x, y) = 0. (28)

The above result follows from Definition 2. The solution to (26) with boundary conditions
(28) is given in terms of derivatives of q(0) in the following proposition.

11



Proposition 4. The solution of the PDE in (26) with boundary conditions (28) is given by

q(1)(t, z, x, y) = (T − t)λ0A(t, x, y)q(0)
z (t, z) +

1

2
(T − t)2λ0Bq

(0)
zz (t, z), (29)

where

A(t, x, y) = λ1,0

[
(x− x̄) +

1

2
(T − t)b0

]
+ λ0,1

[
(y − ȳ) +

1

2
(T − t)c0

]
,

B = λ1,0σ0λ0 + λ0,1ρβ0λ0.

In the original variables, Q(1), the solution of (22) with terminal and boundary conditions (23),
is given by

Q(1)(t, ξ, x, y) = (T − t)λ0A(t, x, y)D1Q
(0) +

1

2
(T − t)2λ0B (D3 − 2D1)Q(0). (30)

The proof is given in Appendix A.4.

3.2.2 Summary of the first order value function approximation results

The coefficient polynomial approximation to the value function Q, solution to the PDE problem
(8)-(9), is then defined by setting a = 1: Q ≈ Q(0) +Q(1), where

• Zeroth order term: Q(0)(t, ξ) is estimated by numerically solving (15) with the boundary
conditions (16).

• First order term: Q(1)(t, ξ, x, y) is obtained from Proposition 4 and is given by (30).

3.3 Optimal strategy approximation

Once we have the estimates for Q(0) and Q(1) in expansion (10) of the value function Qa, we
can find the first order approximation of the optimal strategy π∗ from the formula in (3). In
terms of Qa(t, ξ, x, y), the optimal strategy is given as

π∗,a(t, l,m, x, y) = −m

[
(µa(x)− r)Qaξ
(σa(x, y))2Qaξξ

+
ρβ(y)Qayξ
σa(x, y)Qaξξ

+
Qaxξ
Qaξξ

]
, with ξ =

l

m
.

To express the approximation for π∗ in terms of R, Q(0) and their spatial derivatives, we first
replace Qa by Q(0) + aQ(1) in the above formula, use the results in (30) and following Lemma
3 and then set a = 1.

Lemma 3. From the definition (17) of R, we have the following identities:

(i) (D1 +D2)D1Q
(0) = RRξξD1Q

(0),

(ii) (−2D1 +D3)Q(0) = D1D1Q
(0),

(iii)
(
D1 +D2

)
D1D1Q

(0) = R
(
Rξξ(3Rξ − 2) +RRξξξ

)
D1Q

(0).

Proof. We show the following using elementary manipulations. From (17) and (20), recall that

R = −
Q

(0)
ξ

Q
(0)
ξξ

, Dk = Rk ∂
k

∂ξk
, k = 1, 2, . . . .

12



(i) We have,

D1D1Q
(0) = D1(RQ(0)

ξ ) = RRξQ
(0)
ξ +R2Q

(0)
ξξ = (Rξ − 1)D1Q

(0), and

D2D1Q
(0) = RRξξD1Q

(0) − (Rξ − 1)D1Q
(0).

The above result and the distributive property of Dk operator completes the proof.
(ii) We have,

D3Q
(0) = R3∂ξ

(
−
Q

(0)
ξ

R

)
= R3

(
−
Q

(0)
ξξ

R
+
Q

(0)
ξ Rξ
R2

)
= (Rξ + 1)D1Q

(0).

This gives,

−2D1Q
(0) +D3Q

(0) = −2D1Q
(0) + (Rξ + 1)D1Q

(0) = (Rξ − 1)D1Q
(0).

The final conclusion follows from (i).
(iii) Using the previous calculations, we get

D1

(
(Rξ − 1)D1Q

(0)
)

= R2RξξQ
(0)
ξ + (Rξ − 1)D1D1Q

(0) = RRξξD1Q
(0) + (Rξ − 1)2D1Q

(0),

D2

(
(Rξ − 1)D1Q

(0)
)

= RD1

(
RRξξQ

(0)
ξ + (Rξ − 1)2Q

(0)
ξ

)
= R

(
RRξξξ +Rξξ(Rξ − 1)

)
D1Q

(0) +RD1

(
(Rξ − 1)2Q

(0)
ξ

)
= R

(
RRξξξ + 3Rξξ(Rξ − 1)

)
D1Q

(0) − (Rξ − 1)2D1Q
(0).

The sum of above two results concludes the proof.

Thus, we obtain the optimal strategy approximation as

π∗ ≈ m
[

(µ(x, y)− r)
(σ(x, y))2

R+ (T − t)λ0A(t, x, y)
(µ(x, y)− r)

(σ(x, y))2
R2Rξξ

+
1

2
(T − t)2λ0B

(µ(x, y)− r)
(σ(x, y))2

R2
(
Rξξ(3Rξ − 2) +RRξξξ

)
(31)

+ (T − t)λ0

(λ0,1ρβ(y)

σ(x, y)
+ λ1,0

)
R(Rξ − 1)

]
.

3.4 Higher order terms and accuracy of the approximation

To obtain higher order terms in the value function approximation (10), we first write the PDEs
associated with Q(n)(t, ξ, x, y) as follows:(

∂

∂t
+A0 + B0

)
Q(n) + Sn = 0, on [0, T )× (α, 1)× R2,

with the terminal and boundary conditions

Q(n)(T, ξ, x, y) = 0, Q
(n)
ξ (t, 1, x, y) = 0, Q(n)(t, α, x, y) = 0.

The source term Sn depends only on Q(k) (k ≤ n− 1) and its derivatives. This follows from the
analysis of Section 4 in [16]. Furthermore, following the calculations in [16], if we define q(n)

from Q(n) as
q(n)(t, z, x, y) = Q(n)(t, ξ, x, y),

13



by using Definition 3, we get constant coefficient equation for q(n):(
∂

∂t
+A0 + C0

)
q(n) + Sn = 0, on [0, T )× (ψ(t),∞)× R2, (32)

with the terminal and boundary conditions

q(n)(T, z, x, y) = 0, lim
z→∞

q(n)
z (t, z, x, y) = 0, q(n)(t, ψ(t), x, y) = 0. (33)

In Proposition 4, we obtained an explicit expression for the transformed first-order function q(1)

in terms of a differential operator acting on q(0). However, for the higher order terms q(n) (n ≥ 2),
this may not be possible as the source term Sn(t, z, x, y) calculated from Sn(t, ξ, x, y) is composed
of products and quotients of derivatives of q(k)(t, z, x, y) (k ≤ n − 1). As shown in Lemma 4.1
[16], we need q(0) to have a specific form which allows to obtain higher order terms q(n) as a
differential operator Ln acting on q(0), where Ln has coefficients that are polynomials in (x, y)
and independent of z. Since, in our setting, we do not have a closed form formula for q(0), it is not
possible to derive such expressions for higher order terms q(n) (n ≥ 2). Instead, the contribution
of the higher order terms can be evaluated by first imposing further smoothness condition on the
zeroth order term Q(0) and then numerically solving the PDEs of the type (32) with boundary
conditions (33).

Therefore, in the absence of formulas for higher order terms Q(n), n ≥ 2, it is difficult to
compare the accuracy of the first order approximation with respect to higher order approxima-
tions. But intuitively it is clear that it performs better than the zeroth order approximation
which is also made clear through a numerical comparison in Section 4.

4 Examples and Numerical Implementation

In this section, we consider the stochastic volatility model as in Chacko and Viceira [3] with
their calibrated set of parameters and provide a detailed discussion of the application of our
results obtained in Section 3. Even in the case of constant parameters, as we do not have
explicit expressions to test the numerical accuracy, we demonstrate the superior performance
of the first order optimal strategy approximation with respect to the zeroth order term in the
approximation. We discuss the effect of stochastic volatility on the value function and optimal
strategy for the case of power utility function and a mixture of two power utility functions, as
introduced in [11]. The latter allows for relative aversion that declines with wealth, while for
the former it is constant across wealth levels. Under the considered stochastic volatility model
[3, Section 1], the coefficients (µ, σ, c, β) of Section 2 are independent of x and are given as

µ(y) = µ, σ(y) =
1
√
y
, c(y) = κ(θ − y), β(y) = δ

√
y.

The market calibrated values of the constants involved are:

µ− r κ θ δ ρ

0.0811 0.3374 27.9345 0.6503 0.5241

Also, we set α = 0.4 and T = 1.0. We first need to compute the estimates for zeroth order term
Q(0) whose partial differential equation is degenerate. Hence, we choose explicit finite difference
scheme to obtain its numerical estimates. We approximate the domain [0, T ] × [α, 1] with a
uniform mesh of time step ∆t and space step ∆ξ. By setting N∆t = T and J∆ξ = (1− α), the
discretization grid is given as

M =
{

(tn, ξj) : n = 0, 1, . . . , N, j = 0, 1, . . . , J
}
, tn = T − n∆t, ξj = α+ j∆ξ,
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where ∆t is of the order (∆ξ)2 (monotonicity condition) to ensure convergence of the scheme.
Let Q̃nj denote the numerical approximation of Q(0)(tn, ξj). Then the discretized equation for
Q(0) in the interior is written as

Q̃n+1
j = Q̃nj −

1

8
λ2

0∆t
(Q̃nj+1 − Q̃nj−1)2

(Q̃nj+1 − 2Q̃nj + Q̃nj−1)
. (34)

We start with the guess Q̃0
j = U(ξj), for all j = 0, 1, . . . , J , and the boundary conditions are

Q̃n+1
J = Q̃n+1

J−1, and, Q̃
n+1
0 = U(ξ0).

In Figure 1(a) and 2(a), we plot the numerical solution for the leading order expansion term
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Figure 1: Numerical solutions to (a) zeroth order value function Q(0) (b) relative utility correction
Q(1)/Q(0). Utility function used U(ξ) = ξ1−γ

1−γ , γ = 3.0

Q(0) obtained from (34). We can see that the zeroth order term is concave and non-decreasing as
expected from Lemma 1. To find the first order correction term (30), we use the risk-tolerance
function R from Proposition 1 and Lemma 3 in the formula instead of using the derivatives of
Q(0) to avoid high order numerical differentiation. We note that to obtain Q(1), we need to set
the value for reference level ȳ. We choose to set ȳ = y, which gives us a particular correction
term. We get

Q(1) =
(1

2
λ2
)

0,1
(T − t)2c0RQ(0)

ξ +
(1

2
λ2
)

0,1
(T − t)2λ0ρβ0

(
−2RQ(0)

ξ +R3∂3
ξQ

(0)
)

=
1

2
(µ− r)2(T − t)2

[
κ(θ − y)RQ(0)

ξ + ρδ(µ− r)y
(
−2RQ(0)

ξ +R3∂3
ξQ

(0)
)]
.

We use the regularity properties of R and Q(0) to compute the above expression. We obtain
estimates of R by numerically solving (18) with boundary conditions (19) via explicit finite
difference scheme. We define the discretization grid as in (34) and let R̃nj denote the numerical
approximation of R(tn, ξj). The discretized equation in the interior is written as

R̃n+1
j = R̃nj +

1

2
λ2

0∆t(R̃nj )2
(R̃nj+1 − 2R̃nj + R̃nj−1)

(∆ξ)2
,

and the boundary conditions as R̃n+1
J = 0, and R̃n+1

0 = 0. As we solve the scheme backward in
time, we start with the guess R̃0

j = − U ′(ξj)
U ′′(ξj)

, for all j = 0, 1, . . . , J. To ensure convergence, we
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Figure 2: Numerical solutions to (a) zeroth order value function Q(0) (b) relative utility correction
Q(1)/Q(0). Utility function used U(ξ) = ξ1−γ1

1−γ1 + ξ1−γ2

1−γ2 , γ1 = 3.0, γ2 = 1.5.

choose (∆ξ,∆t) such that the monotonicity condition holds

∆t

(∆ξ)2
‖R‖2∞ ≤

1

2
.

It can be seen that the above relationship between ∆t and ∆ξ will also allow the numerical
scheme for Q(0) to converge. In our market calibrated stochastic volatility model, we first set
y = θ and plot the relative utility correction in Figure 1(b) and Figure 2(b). We observe that
the change in the value function due to the introduction of stochastic volatility is negligible.

Next, we calculate the approximation to optimal strategy whose different terms are given
from (31) as

π0

m
= (µ− r)yR, (35)

π1

m
=

(µ− r)3y2

2
(T − t)2

[
κ(θ − y)

(
R2Q

(0)
ξξ

)
+ ρδ

(
R2Rξξ(3Rξ − 2) +R3Rξξξ

)]
+ (µ− r)2(T − t)ρδyR

(
Rξ − 1

)
.

We suppose that the initial value of maximum wealth is unity, i.e. we set m = 1.0 and plot
the numerical solution to leading order term π0 and to the first order approximation π0 + π1 in
Figure 3(a) and 3(b). It is interesting to note that to achieve similar value functions without
and with the stochastic volatility correction, i.e. Q(0) and Q(0) +Q(1), we clearly need to employ
two very different investment policies, namely π0 and π0 + π1.

In Figure 3(a) and 3(b), we note that as the current wealth approaches to the maximum
wealth value, the optimal strategy is to gradually liquidate the position in the risky asset. In
the presence of stochastic volatility, the optimal strategy approximation π0 +π1 suggests to hold
the risky position longer than without the stochastic volatility correction as in π0. The corrected
strategy also suggests to sharply liquidate the position in the risky asset to safeguard from the
downside risk of stochastic volatility. On the other hand, when the current wealth moves away
from the drawdown barrier, the optimal strategy approximation π0 + π1 suggests to build up a
position in the risky asset at about the same trading rate to that in the case of constant volatility
approximation π0.

From the above results, we deduce that even in the presence of stochastic volatility, the
investor does not lose much value in her portfolio. However, to achieve similar value functions,
the investor has to deploy a remarkably different strategy corrected for stochastic volatility
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Figure 3: Numerical solutions to the optimal strategy approximation in the case y = θ for utility function
(a) U(ξ) = ξ1−γ

1−γ , γ = 3.0 (b) U(ξ) = ξ1−γ1

1−γ1 + ξ1−γ2

1−γ2 , γ1 = 3.0, γ2 = 1.5.

π0 + π1 when compared to the constant volatility strategy π0. The larger position in the risky
asset when moving away from the drawdown barrier suggests leveraging the possible upside due
to stochastic volatility while holding on to the risky asset longer than in the constant volatility
case when close to the optimal level suggests caution towards a possible downside risk.

In the above results, we have set the level of stochastic volatility factor y to be the same as
the long term value θ. As it is clear that the level of stochastic volatility plays a crucial role in the
correction terms, we studied the effects when y moves in either direction away from its long term
value θ. We observed that even in the other cases, the relative utility correction remains small.
However, the optimal strategy in these cases exhibit remarkably different behaviours due to the
particular form of the correction term in (35). When the current level of volatility is higher
than the long-term average y = 1.05 × θ, in Figure 4(a) the optimal strategy approximation
suggests to invest more in the risky asset compared to the strategy without stochastic volatility
correction. Also, as the portfolio wealth moves away the drawdown barrier, the corrected optimal
strategy suggests to build up the position in risky asset at a much higher rate than suggested
by π0. Whereas, in the case when the current level of volatility is lower than the long-term
average y = 0.95× θ, in Figure 4(b) the optimal strategy approximation suggests to invest less
in the risky asset compared to the strategy without stochastic volatility correction. Still close
to the maximum wealth value, the corrected strategy suggests to hold more risky asset than the
constant volatility strategy suggests.

Once we have derived the zeroth and first order approximations for the optimal strategy,
we also demonstrate how these results can be used to guide an investment strategy in practice.
Recall that we work in the model setting as discussed at the beginning of this section. We
suppose that the portfolio rebalancing happens at Nint intermediate times over the investment
horizon T. We utilize the zeroth and first order approximation of the optimal trading strategy
to guide an investment strategy in the following way:

1. Choose initial value of starting wealth l and maximum wealth m such that for drawdown
parameter 0 < α < 1, it satisfies 0 < αm < l < m.
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Figure 4: Numerical solutions to the optimal strategy approximation for (a) y = 1.05×θ (b) y = 0.95×θ.
The utility function used is U(ξ) = ξ1−γ

1−γ , γ = 3.0

2. Create discretized sample paths (Ŷ , L̂(0), L̂(1)) using the Euler scheme as

Ŷi∆̂t := Ŷ(i−1)∆̂t + κ
(
θ − Ŷ(i−1)∆̂t

)
∆̂t+ δ

√
∆̂t
(
max(0, Ŷ(i−1)∆̂t)

) 1
2 Z

(2)
i , Ŷ0 = θ,

L̂
(0)

i∆̂t
:= L̂

(0)

(i−1)∆̂t
+ π0

(
(i− 1)∆̂t

)(
(µ− r)∆̂t+ (Ŷ(i−1)∆̂t)

− 1
2

√
∆̂tZ

(1)
i

)
, L̂

(0)
0 := l,

L̂
(1)

i∆̂t
:= L̂

(1)

(i−1)∆̂t
+
(
π0 + π1

)(
(i− 1)∆̂t

)(
(µ− r)∆̂t+ (Ŷ(i−1)∆̂t)

− 1
2

√
∆̂tZ

(1)
i

)
L̂

(1)
0 := l.

where Nint∆̂t := T and (Z
(1)
i ,Z

(2)
i )i=1,2,...,N is a sequence of normal random numbers with

correlation ρ. The values for π0(i∆̂t) and π1(i∆̂t) are calculated by plugging the value of
Ŷi∆̂t and the ratio ξ(i∆̂t) := L̂

(j)

i∆̂t
/m, j = 0, 1, in the formulas (35).

Based on 105 sample paths, for l = 0.5, m = 1.0 and for different values of Nint, we plot the
normalized histograms for terminal wealth values L̂(0)

T and L̂
(1)
T which are approximations of

wealth process {Lt, 0 ≤ t ≤ T} using the optimal strategy approximations π0 and π0 + π1,
respectively. As higher terminal wealth leads to a higher utility value for the investor, from the
results in Figure 5(a)-5(d), we can easily deduce the superior performance of the first order
optimal strategy approximation, π0 + π1, over the zeroth order approximation π0.

5 Conclusion

We studied the impact of stochastic Sharpe ratio in a dynamic portfolio optimization problem
under a drawdown constraint. We proposed a new investor objective framework which allows for
portfolio benchmarking and a dimensionality-reducing transformation of the problem. This new
setting allowed us to employ coefficient expansion technique to solve for different terms in the
approximation of the value function and optimal strategy. With the help of a nonlinear trans-
formation we derived the value function expansion terms which can be numerically calculated
and used those expansion terms to approximate the optimal portfolio strategy. In a popular
stochastic volatility model with market calibrated parameters, we illustrated the remarkable
differences between the optimal strategies with and without stochastic volatility correction.

The current problem requires further investigation in the direction of a multi-asset market
model. We studied the portfolio optimization problem under drawdown constraint in a stochastic
volatility model which provides a sensible guide towards informed investment decisions. However,
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Figure 5: Normalized histograms and plots of the tail for the values of L̂(0)
T and L̂

(1)
T with (a)-(b)

Nint = 64 (c)-(d) Nint = 128.

in order to completely capture the market conditions, we plan to tackle the same problem in a
multi-asset model setting and study the effect of stochastic volatility on investment strategies.

A Proofs

A.1 Proof of Proposition 1

Proof. We observe that PDE (21) can also be written as Q(0)
t = 1

2λ
2
0D2Q

(0). Differentiating this
w.r.t. ξ, we get

∂tξQ
(0) = λ2

0

(
1

2
R2Q

(0)
ξξξ +RRξQ

(0)
ξξ

)
.

Further, from the definition of R, we get RQ(0)
ξξ = −Q(0)

ξ which after differentiating w.r.t. ξ gives

R2Q
(0)
ξξξ = −RQ(0)

ξξ

(
1 +Rξ

)
.

This provides us

∂tξQ
(0) = −λ

2
0

2
Q

(0)
ξ

(
−1 +Rξ

)
. (36)

Differentiating (17) w.r.t. t gives

Rt = −
Q

(0)
tξ

Q
(0)
ξξ

+
Q

(0)
ξ(

Q
(0)
ξξ

)2Q(0)
tξξ. (37)
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Differentiating (36) w.r.t. ξ, we get

Q
(0)
tξξ = −λ

2
0

2
Q

(0)
ξξ

(
−1 +Rξ

)
− λ2

0

2
Q

(0)
ξ Rξξ.

Plugging back the above result and (36) into (37) gives the PDE for R. The terminal condition
at t = T is straightforward from the terminal condition for Q(0). At the boundary, ξ = α,Q(0) =

U(α) and due to the continuity of Q(0) across the boundary, it gives that Q(0)
t = 0. Then, due

to the continuity of derivatives w.r.t. space variables across the boundary, from (15) we get at
ξ = α,

(Q
(0)
ξ )2

Q
(0)
ξξ

= RQ(0)
ξ = 0.

As Q(0)
ξ

∣∣
ξ=α
6= 0, it gives that R

∣∣
ξ=α

= 0.

It can be shown (as done in the proof of Lemma 1 in Section A.2) that the optimal strategy
corresponding to the value function in constant parameter lognormal model with Sharpe ratio
λ0, after the dimensionality reduction, is given by π0 := constant × R. It is clear that as the
portfolio wealth approaches to its maximum value, i.e. at ξ = 1, the optimal strategy suggests
to unwind the risky position, i.e. π0|ξ=1 = 0. This gives us the right boundary condition for R
as R

∣∣
ξ=1

= 0.

A.2 Proof of Lemma 1

Proof. Let us consider a market with a risky asset whose dynamics is given by the following
lognormal model:

dSt
St

= µ0dt+ σ0dB
(1)
t .

With this risky asset in the market, we once again formulate our portfolio optimization problem
(see Section 2.1) by defining the following value function

V(t, l,m) = sup
π∈Πα,t,l,m

E
[
U
( LT
MT

)∣∣∣Lt = l,Mt = m
]
, t ≥ 0,m > l > αm > 0,

where the admissible strategies are given by

Πα,t,l,m :=
{
π : measurable, F(1) − adapted,Et,l,m

∫ T

t
π2
sds <∞ s.t. Ls ≥ αMs > 0 a.s., t ≤ s ≤ T

}
,

and F(1) = {Ft : 0 ≤ t ≤ T} is the augmentation of the filtration generated by B(1). We define
the constant Sharpe ratio as λ0 := (µ0−r)

σ0
and the space domain as Oα := {(l,m) : m > l >

αm > 0} ⊂ R2. Then, by proceeding as in Section 2.1, we assume that V ∈ C1,2,1([0, T ]× Oα),
to obtain the following nonlinear PDE

∂tV −
1

2
λ2

0

(Vl)2

Vll
= 0, on [0, T )× Oα,

with terminal and boundary conditions as

V(T, l,m) = U(l/m), Vm(t,m,m) = 0, V(t, αm,m) = U(α).

Similar to Section 2.2, we perform a change of variable ξ := l/m. Then, it is clear that the
leading order term in expansion (10) is Q(0)(t, ξ) = V(t, l,m).
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To first show that Q(0)(t, ·) is a non-decreasing function, we recall that in the lognormal
model, for a portfolio strategy π, the discounted wealth process is given as

Ll,πt = l +

∫ t

0
πsσ0

(
λ0ds+ dB(1)

s

)
,

where l is the starting wealth value. Let (Ll,π)∗ denote the maximum of wealth process Ll,π over
the time period [0, T ]. Now, we consider l, l′ for a fixed value of m such that (t, l,m), (t, l′,m) ∈
[0, T )× Oα. Then, for l ≤ l′, we choose π ∈ Πα,t,l,m such that we have

Ll,π ≥ α(m ∨ (Ll,π)∗)

= α

(
m ∨

(
l +
(∫ t

0
πsσ0(λ0ds+ dB(1)

s )
)∗))

.

Here, we note that Πα,t,l,m is a non-empty set from the result of Cvitanic and Karatzas [8,
Appendix A]. Add (l′ − l) to both sides of the inequality above to write

Ll
′,π ≥

((
αm+ (l′ − l)

)
∨
(
αl′ + α

(∫ t

0
πsσ0(λ0ds+ dB(1)

s )
)∗

+ (1− α)(l′ − l)
))

≥ α

(
m ∨

(
l′ +

(∫ t

0
πsσ0(λ0ds+ dB(1)

s )
)∗))

= α(m ∨ (Ll
′,π)∗),

which gives that Πα,t,l,m ⊂ Πα,t,l′,m. Thus, we get V(t, l,m) ≤ V(t, l′,m). For ξ := l
m and

ξ′ := l′

m , this gives us
Q(0)(t, ξ) ≤ Q(0)(t, ξ′).

Next, it follows from the arguments presented in Lemma 3.2 Elie [9] that V(t, l,m) is non-
increasing in variable m. Thus, for fixed l and m ≤ m′ such that (t, l,m), (t, l,m′) ∈ [0, T )×Oα,
we have V(t, l,m′) ≤ V(t, l,m). Once again by defining ξ′ := l

m′ and ξ := l
m , we get

V(t, l,m′) ≤ V(t, l,m) =⇒ Q(0)(t, ξ′) ≤ Q(0)(t, ξ).

Therefore, we have shown that Q(0)(t, ·) is non-decreasing.
In order to show the concavity of value function Q(0)(t, ·), we take motivation from the

arguments presented in Lemma 3.2 Elie [9]. First, we fix η ∈ [0, 1] and choose α ≤ ξ1, ξ2 ≤ 1.
Our aim is to show that V(t, l,m) is concave in its second argument, i.e.

ηV(t, l1,m) + (1− η)V(t, l2,m) ≤ V(t, ηl1 + (1− η)l2,m), (38)

where for a fixed value of m, we set l1 = mξ1 and l2 = mξ2. Now, suppose (38) is true. Then
by reversing the change of variables, we get in (38)

ηQ(0)(t, ξ1) + (1− η)Q(0)(t, ξ2) ≤ Q(0)(t, ηξ1 + (1− η)ξ2)

which gives us the concavity of Q(0)(t, ·). It remains to show that (38) is indeed true.
We define process L(1) as the wealth process with starting wealth l1 and portfolio strategy

π1 ∈ Πα,t,l1,m. Similarly, we define the process L(2) with starting wealth l2 and portfolio strategy
π2 ∈ Πα,t,l2,m. Then, we have by definition

ηL(1) + (1− η)L(2) ≥ ηα(m ∨ (L(1))∗) + (1− η)α(m ∨ (L(2))∗)

≥ α
(
m ∨

(
ηL(1) + (1− β)L(2)

)∗)
.
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This gives us that ηπ1 + (1 − η)π2 ∈ Πα,t,ηl1+(1−η)l2,m. From the concavity property of utility
function U , it follows

ηEt

[
U

(
L

(1)
T

(m ∨ (L(1))∗T )

)]
+ (1− η)Et

[
U

(
L

(1)
T

(m ∨ (L(1))∗T )

)]

≤ Et

[
U

(
ηL

(1)
T

(m ∨ (L(1))∗T )
+

(1− η)L
(2)
T

(m ∨ (L(2))∗T )

)]
.

Next, we intend to show that

ηL
(1)
T

(m ∨ (L(1))∗T )
+

(1− η)L
(2)
T

(m ∨ (L(2))∗T )
≤

ηL
(1)
T + (1− η)L

(2)
T

(m ∨ (ηL(1) + (1− η)L(2))∗T )
. (39)

Consider the following possible scenarios where we compare the respective terms with m and
find the maximum

(L(1))∗T (L(2))∗T (ηL(1) + (1− η)L(2))∗T
Case 1 m m m
Case 2 m (L(2))∗T m
Case 3 (L(1))∗T m m
Case 4 (L(1))∗T (L(2))∗T –

It is clear that the inequality in (39) holds for Case 1–3 and we only need to consider
Case 4. We know from the optimality condition that for strategies π1 and π2 which attain the
maximum, the position in the risky asset becomes zero thereafter as the maximum possible
utility is achieved. It follows that for such strategies, we have

L
(1)
T = (L(1))∗T , L

(2)
T = (L(2))∗T .

Then, we get

ηL
(1)
T + (1− η)L

(2)
T

(m ∨ (ηL(1) + (1− η)L(2))∗T )
=

η(L(1))∗T + (1− η)(L(2))∗T
(m ∨ (ηL(1) + (1− η)L(2))∗T )

≥ 1,

due to

η(L(1))∗T + (1− η)(L(2))∗T ≥ m, η(L(1))∗T + (1− η)(L(2))∗T ≥ (ηL(1) + (1− η)L(2))∗T ).

Thus, we have shown that (39) is indeed true. This gives us

ηEt

[
U

(
L

(1)
T

(m ∨ (L(1))∗T )

)]
+ (1− η)Et

[
U

(
L

(1)
T

(m ∨ (L(1))∗T )

)]

≤ Et

[
U

(
ηL

(1)
T + (1− η)L

(2)
T

(m ∨ (ηL(1) + (1− η)L(2))∗T )

)]
≤ V(t, ηl1 + (1− η)l2,m).

As, π1, π2 are arbitrary, we have have shown (38). This concludes the proof for concavity of
Q(0)(t, ·).
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A.3 Proof of Proposition 2

Proof. In the definition, q(0)(t, z(t, ξ)) = Q(0)(t, ξ), we differentiate w.r.t. t on both sides to write

∂tQ
(0) = ∂tq

(0) + q(0)
z

∂z

∂t

= ∂tq
(0) −

(Q(0)
tξ

Q
(0)
ξ

+
λ2

0

2

)
q(0)
z .

It is also straightforward to check from definition (20) of differential operators
(
Dk
)
k=1,2,...

that

D1Q
(0) = q(0)

z , D2Q
(0) = q(0)

zz −Rξq(0)
z . (40)

From the calculations performed in Proposition 1, we have

∂tξQ
(0) =

λ2
0

2
RQ(0)

ξξ

(
−1 +Rξ

)
= −λ

2
0

2
Q

(0)
ξ

(
−1 +Rξ

)
.

Finally, we collect all the expressions for ∂tQ(0),D1Q
(0) and D2Q

(0) in terms of q(0) to write(
∂t + λ2

0D1 +
λ2

0

2
D2

)
Q(0)

= ∂tq
(0) −

(
−λ

2
0

2

(
−1 +Rξ

)
+
λ2

0

2

)
q(0)
z + λ2

0q
(0)
z +

λ2
0

2

(
q(0)
zz −Rξq(0)

z

)
=
( ∂
∂t

+
1

2
λ2

0

∂

∂z2

)
q(0)

which gives us the desired PDE.
For the terminal boundary condition for q(0), it follows from the definition of z(t, ξ) and

terminal condition (16) that

q(0)(T, z) = U
((
U ′
)−1(

e−z
))
, ψ(T ) < z <∞.

The left boundary condition in (16) can also be easily transformed. Next, for the right boundary
condition in (16), we first note that

q(0)
z × ∂ξz = Q

(0)
ξ .

Now, as Q(0)
ξ = 0, for ξ = 1, it holds only if in the above relation we have

lim
z→∞

q(0)
z (t, z) = 0.

This completes the proof.

A.4 Proof of Proposition 4

We first consider the PDE problem with a terminal condition

Hq + S = 0, q(T, z, x, y) = 0, (41)
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where H is a constant coefficient linear operator

H :=
∂

∂t
+A0 + C0.

We suppose that the source term S is of the following special form

S(t, z, x, y) =
∑
k,l,n

(T − t)n(x− x̄)k(y − ȳ)lv(t, z, x, y) (42)

where the sum has a finite number of terms, and v is a solution of the homogeneous equation
Hv = 0.

Further, define the commutator of operators H and (x − x̄)I (I is the identity operator),
LX = [H, (x− x̄)I] as

LXv := H((x− x̄)v)− (x− x̄)Hv,

which from the definition of A0 (14) and C0 (24) gives

LX = b0I + σ2
0

∂

∂x
+ ρσ0β0

∂

∂y
+ σ0λ0

∂

∂z
. (43)

Similarly, define LY = [H, (y − ȳ)I], which gives

LY = c0I + β2
0

∂

∂y
+ ρσ0β0

∂

∂x
+ ρβ0λ0

∂

∂z
. (44)

Using LX and LY , we also define

MX(s) := (x− x̄)I + (s− t)LX , MY (s) := (y − ȳ)I + (s− t)LY .

Using these definitions, we first give the following result related to the homogeneous solution v,
from [16, Lemma 3.4]. Here, we provide the proof for the sake of completeness.

Lemma 4. For integers k, l, we have,

HMk
X(s)Ml

Y (s)v = 0.

Proof. We proceed by induction. We first calculate

HMX(s)v = H(x− x̄)v +H(s− t)LXv
= LXv + (x− x̄)Hv − LXv + (s− t)HLXv
= LXHv = 0,

where we have used the definition of the commutator LX , the fact that LX and H commute as
they are constant coefficient operators and that Hv = 0. Thus, we can then iterate over integer
k to show HMX(M(k−1)

X v) = 0 (as HMX(s)v = 0). Similarly, we can show that HMl
Y v = 0

for integer l. Finally, we have H(Mk
X(s) Ml

Y (s)v) = 0.

Lemma 5. The solution q of equation (41) with zero terminal condition is

q(t, z, x, y) =
∑
k,l,n

∫ T

t
(T − s)nMk

X(s)Ml
Y (s)v(t, z, x, y) ds. (45)
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Proof. This can be shown by using the form of source term (42) and Lemma 4. Let us suppose
that the source term consists of a monomial and is given as S(t, z, x, y) = (T − t)n(x− x̄)k(y −
ȳ)lv(t, z, x, y). In this case, from our claim, the solution should be given as

q(t, z, x, y) =

∫ T

t
(T − s)nMk

X(s)Ml
Y (s)v(t, z, x, y)ds.

We verify by computing

Hq = −(T − t)nMk
X(t)Ml

Y (t)v(t, z, x, y) +

∫ T

t
(T − s)nH

(
Mk

X(s)Ml
Y (s)v(t, z, x, y)

)
ds

= −(T − t)n(x− x̄)k(y − ȳ)lv(t, z, x, y)

= −S.

It is also easy to see that for the form of solution proposed in (45), the terminal condition at T
is satisfied. The result follows from linearity of the PDE problem.

Finally, we give the proof of Proposition 4.

Proof. We first observe that, since q(0) solves Hq(0) = 0, then q(0)
z also solves the homogeneous

equation, as the operator H has constant coefficients. We set v = q
(0)
z . From (27), the source

term is

S(t, z, x, y) =
((1

2
λ2
)

1,0
(x− x̄) +

(1

2
λ2
)

0,1
(y − ȳ)

)
v,

and so from Lemma 5, we obtain the solution

q(1)(t, z, x, y) =
[(1

2
λ2
)

1,0

(
(T − t)(x− x̄) +

1

2
(T − t)2LX

)
+
(1

2
λ2
)

0,1

(
(T − t)(y − ȳ) +

1

2
(T − t)2LY

)]
q(0)
z (t, z). (46)

From the expansion for λ(y), we get(1

2
λ2
)

1,0
= λ0λ1,0,

(1

2
λ2
)

0,1
= λ0λ0,1.

Putting back the expression of LX and LY from (43) and (44) into (46), we get the expression
in (29). The terminal condition at t = T is clearly satisfied.

It remains to check the boundary conditions for q(1). We show that the boundary conditions
for Q(1), corresponding to the original variables (t, ξ), are satisfied. Using (25) and (40), we
obtain (30). Now, due to the zero boundary condition at ξ = α for the risk-tolerance function
R, we get from (30) that Q(1)(t, α, x, y) = 0, which means that the left boundary condition in
(23) is satisfied. Consequently, the left boundary condition in (28) is satisfied for q(1).

Next, we calculate

Q
(1)
ξ (t, ξ, x, y) = (T − t)λ0A(t, x, y)

(
RξQ

(0)
ξ +RQ(0)

ξξ

)
+

1

2
(T − t)2λ0B

(
−2
[
RξQ

(0)
ξ +RQ(0)

ξξ

]
+ 3R2∂3

ξQ
(0) +R3∂4

ξQ
(0)
)
. (47)

From Assumption 3 on the boundedness of ∂kξQ
(0)(t, 1) for k ≤ 5, we have

lim
ξ→1
Rk∂(k+1)

ξ Q(0) = 0, k = 1, 2, 3.
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Then, we can use the boundary condition of Q(0)
ξ and R at ξ = 1 to conclude from (47) that

Q
(1)
ξ (t, ξ, x, y)

∣∣∣
ξ=1

= 0,

which means that the right boundary condition in (23) is satisfied. This implies that the right
boundary condition in (28) is satisfied for q(1).
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