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Abstract

We analyze the valuation of American options under the forward performance criterion in-
troduced by Musiela and Zariphopoulou (2008). In this framework, the performance criterion
evolves forward in time without reference to a specific future time horizon, and may depend
on the stochastic market conditions. We examine two applications: the valuation of American
options with stochastic volatility and the modeling of early exercises of American-style employee
stock options (ESOs). We work with the assumption that forward indifference prices have suf-
ficient regularity to be solutions of variational inequalities, and provide a comparative analysis
between the classical and forward indifference valuation approaches. In the case of exponential
forward performance, we derive a duality formula for the forward indifference price. Further-
more, we study the marginal forward performance price, which is related to the classical marginal
utility price introduced by Davis (1997). We prove that, under arbitrary time-monotone forward
performance criteria, the marginal forward indifference price of any claim is always independent
of the investor’s wealth and is represented as the expected discounted payoff under the minimal
martingale measure.

1 Introduction

Utility maximization theory has been central to quantifying rational investment decisions and risk-
averse valuations of assets at least since the work of von Neumann and Morgenstern in the 1940s.
In the Merton (1969) problem of continuous-time portfolio optimization, utility is defined at some
fixed time horizon in the future when investment decisions are assessed in terms of the expected
utility of terminal wealth. For portfolios involving derivatives and associated utility indifference
pricing problems, derivative payoffs or random endowments may be realized at random times,
which requires the specification of utility at other times, not just at a single terminal time. This
consideration is particularly important for investment and valuation problems involving defaultable
securities or American options.

One way to address this issue is to consider the definition of utility at the time of a random
cash flow as analogous to specifying what the investor does with the endowment thereafter. Any
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answer to the latter question necessarily involves details of the market in which he might invest,
and utilities and markets are inextricably linked. Some examples of works based on this idea
include, among others, Oberman and Zariphopoulou (2003), Leung and Sircar (2009a) for utility
indifference pricing of American options, and Leung et al. (2008) and Jaimungal and Sigloch (2010)
for defaultable securities. This approach allows for comparing utilities of wealth at different times.
However, as is common in classical utility indifference pricing, the investor’s risk preferences at
intermediate times and the optimal investment decisions still directly depend on an a priori chosen
investment horizon.

This issue of horizon dependence has been addressed by one of the authors and Musiela through
the construction of the forward performance criterion (see, for example, Musiela and Zariphopoulou
(2008)). In this approach, the investor’s utility is specified at an initial time, and his risk preferences
at subsequent times evolve forward without reference to any specific ultimate time horizon. This
results in a stochastic utility process, called the forward performance process, whose evolution
depends on the random market conditions. In a related study, Henderson and Hobson (2007)
analyzed the optimal timing of asset sale based on the so-called horizon-unbiased utility functions
which have no preferred horizon for the associated dynamic portfolio optimization problem. Hence,
these approaches necessarily connect risk preferences with market models. The risk profile of a
given investor is no longer considered separately from his investment opportunities and the market.
This is entirely natural: the current economic crisis has clearly shown increased risk aversion in
investors as the market has fallen.

In this paper, we develop an indifference valuation methodology based on the forward perfor-
mance criterion. Specifically, we study the valuation of a long position in an American option
in an incomplete diffusion market model. Our main objective is to analyze the optimal trad-
ing and exercise strategies that maximize the option holder’s forward performance coming from
both the dynamic portfolio and the option payoff upon exercise. In Section 2, we formulate the
combined stochastic control and optimal stopping problem faced by the option holder. Then, we
define the holder’s forward indifference price for the American option by comparing the optimal
expected forward performance with and without the derivative (see Definition 2). The analysis of
the indifference price will yield a number of useful mathematical characterizations and financial
interpretations for optimal trading and exercise strategies.

In Section 3, we discuss the exponential forward indifference valuation of an American option in a
stochastic volatility model. Using the analytical properties of the exponential forward performance,
we show that the forward indifference price is wealth-independent. By applying a transformation
to the associated HJB variational inequality, we state the variational inequality that the forward
indifference price, if it has sufficient regularity, satisfies. Due to the nonlinearity of these VIs,
the questions of existence, uniqueness, smoothness are open challenging issues, which we do not
address herein. In the case with exponential forward performance, we derive a duality formula for
the forward indifference price. This is useful for the comparative analysis between the forward and
classical exponential indifference prices. For instance, we show that the forward indifference price
representation involves a relative entropy minimization (up to a stopping time) with respect to
the minimal martingale measure (MMM), as opposed to the minimal entropy martingale measure
(MEMM) that arises in the classical exponential utility indifference price (see, among others, Rouge
and El Karoui (2000); Delbaen et al. (2002) for European claims, and Leung and Sircar (2009b)
for American claims). We also present this contrasting difference in the asymptotic results of
indifference prices.

Another application studied in this paper is the modeling of early exercises of employee stock
options (ESOs), which are American-style call options written on the firm’s stock granted to the
employee as a form of compensation. In Section 4, we assume a forward performance criterion for
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the employee and investigate the impact of various factors, such as wealth and risk tolerance, on
the employee’s exercise timing. In particular, we find that the employee tends to exercise the ESO
earlier when his wealth approaches zero.

Lastly, in Section 5, we introduce an alternative valuation mechanism for American options
based on the marginal forward performance. In the classical utility framework, as introduced by
Davis (1997), the marginal utility price represents the per-unit price that a risk-averse investor is
willing to pay for an infinitesimal position in a contingent claim. In general, the marginal utility
price is closely linked to both the investor’s utility function and the market setup, and it only
becomes wealth independent under very special circumstances (see Kramkov and Sirbu (2006)
for details). We adapt the classical definition to our forward performance framework and give a
definition of the marginal forward indifference price. We show that, in contrast to the classical
marginal utility price, the marginal forward indifference price under time monotone criteria turns
out to be independent of both the holder’s wealth and the forward performance criterion, and is
equivalent to pricing linearly under the minimal martingale measure. Section 6 concludes the paper
and discusses extensions for future research.

2 Forward Investment Performance Measurement and Indiffer-

ence Valuation

We fix a filtered probability space (Ω,F , P), with a filtration (Ft)t≥0 that satisfies the usual condi-
tions of right continuity and completeness. In addition, all stochastic processes considered in this
paper are continuous-path processes. The financial market consists of two liquidly traded assets,
namely, a riskless money market account and a stock. The money market account has the price
process B that satisfies

dBt = rtBt dt, (1)

with B0 = 1, where (rt)t≥0 is a non-negative Ft-adapted interest rate process. We shall use B as
the numeraire throughout.

The discounted stock price S is modeled as a continuous Itô process satisfying

dSt = Stσt (λt dt + dWt) , (2)

with S0 > 0, where (Wt)t≥0 is an Ft-adapted standard Brownian motion. The Sharpe ratio (λt)t≥0

is a bounded Ft-adapted process, and the volatility coefficient (σt)t≥0 is strictly positive bounded
Ft-adapted process. Moreover, we assume that a strong solution exists for the SDE (2).

Starting with initial endowment x ∈ R, the investor dynamically rebalances his portfolio alloca-
tions between the stock and the money market account. Under the self-financing trading condition,
the discounted wealth satisfies

dXπ
t = πtσt(λt dt + dWt), (3)

where (πt)t≥0 represents the discounted cash amount invested in stock. The set of admissible
strategies Z consists of all self-financing Ft-adapted processes (πt)t≥0 such that IE{

∫ s

0 σ2
t π

2
t dt} < ∞

for each s > 0. For 0 ≤ t ≤ s, we denote by Zt,s the set of admissible strategies over the period
[t, s].

In the standard Merton portfolio optimization problem, risk preferences are modeled by a deter-
ministic utility function Û(·) defined at some fixed terminal time T . Starting with Ft-measurable
wealth Xt at time t ≤ T , the Merton value process is given by

Mt(Xt) = ess sup
π∈Zt,T

IE
{

Û(Xπ
T )| Ft

}

. (4)
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When the dynamic programming principle holds, the Merton problem can be written as

Mt(Xt) = ess sup
π∈Zt,s

IE {Ms(X
π
s )| Ft} , 0 ≤ t ≤ s ≤ T. (5)

Some well-known examples when (5) holds include i) markets with Markovian dynamics where the
optimal portfolio allocation can be found by solving a Hamilton-Jacobi-Bellman (HJB) equation; ii)
when the utility is of exponential type, in which case (5) holds under quite general semimartingale
models (see Mania and Schweizer (2005), and Leung and Sircar (2009b)); and iii) when the expected
utility is replaced by a dynamic time-consistent concave utility functional, defined, for instance,
from a BSDE in Itô markets (see Klöppel and Schweizer (2006); Cheridito and Kupper (2009)).
The dynamic programming principle (5) is taken as the defining characteristic of the forward
performance criterion.

In the forward performance framework, the investor’s utility function u0(x) is defined at the
initial time 0, and his performance criterion evolves forward in time. We adapt the definition of
the forward performance process given by Musiela and Zariphopoulou (2008):

Definition 1 An Ft-adapted process (Ut(x))t≥0 is a forward performance process if:

1. it satisfies the initial datum U0(x) = u0(x), x ∈ R, where u0 : R 7→ R is an increasing and
strictly concave function of x,

2. for each t ≥ 0, the mapping x 7→ Ut(x) is increasing and strictly concave in x ∈ R,

and

3. for 0 ≤ t ≤ s < ∞, we have

Ut(Xt) = ess sup
π∈Zt,s

IE{Us(X
π
s )| Ft}, (6)

for any Ft-measurable initial wealth Xt.

In related studies, condition 3 is also referred to as the horizon-unbiased condition in Henderson
and Hobson (2007) and the self-generating condition in Žitković (2009).

As with the classical utility maximization problem, the existence and characterization of the op-
timal strategy in (6) are challenging questions and depend on the market structure and utility func-
tion used. Related research for forward performance processes includes Musiela and Zariphopoulou
(2010b), El Karoui and M’Rad (2010), and Žitković (2009) (for exponential preferences). In this
paper, however, our analysis will focus on a class of explicit forward performance processes (see
Theorem 3), whose optimal strategies have been completely characterized in the recent papers
Berrier et al. (2009) and Musiela and Zariphopoulou (2010a). Our objective is to apply forward
performance to the indifference pricing of American options and investigate some properties of the
forward indifference prices.

2.1 Forward Indifference Price

We introduce the forward indifference valuation from the perspective of the holder of an American
option. The option payoff is modelled by an Ft-adapted bounded process denoted by (gt)0≤t≤T ,
with a finite expiration date T . The collection of admissible exercise times is the set of stopping
times with respect to F0,T = (Ft)0≤t≤T that take values in [0, T ]. For 0 ≤ t ≤ s ≤ T , we denote by
Tt,s the set of stopping times taking values in [t, s].
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The option holder chooses his dynamic trading strategy π and exercise time τ , in order to max-
imize his expected forward performance from both investing in the market and receiving the option
payoff. This leads to a combined stochastic control and optimal stopping problem. Specifically, we
define

Vt(Xt) = ess sup
τ∈Tt,T

ess sup
π∈Zt,τ

IE {Uτ (X
π
τ + gτ ) | Ft} , t ∈ [0, T ], (7)

which is the holder’s value process based on a forward performance starting at time t with wealth
Xt.

In the classical case with a terminal utility function Û , the holder’s optimal investment problem
is to solve

ess sup
τ∈Tt,T

ess sup
π∈Zt,τ

IE {Mτ (X
π
τ + gτ ) | Ft} ,

where M is the solution to the Merton problem defined in (4). In this formulation, M plays the
role of intermediate utility at stopping times τ ≤ T , and therefore, specifies that option proceeds
received at any exercise time τ are re-invested following the Merton optimal strategy up till time
T . By contrast, the forward performance process U specifies utilities at all times, without reference
to any specific horizon.

The holder’s forward indifference price pt for the American option g is defined as the discounted
cash amount such that the option holder is indifferent between two positions: optimal investment
with an American option position, and optimal investment without the American option but instead
with extra initial wealth pt.

Definition 2 The holder’s forward indifference price process (pt)0≤t≤T for the American option is
defined by the equation

Vt(Xt) = Ut(Xt + pt), t ∈ [0, T ], (8)

where Vt and Ut are given in (7) and (6) respectively.
The forward indifference price is useful for characterizing the option holder’s optimal exercise

time τ∗. Under appropriate integrability conditions (Karatzas and Shreve, 1998, Theorem D.12),
the optimal stopping time is the first time the value process reaches the reward process. From (7)
and (8), we have

τ∗
t = inf {t ≤ s ≤ T : Vs(Xs) = Us(Xs + gs)}

= inf {t ≤ s ≤ T : Us(Xs + ps) = Us(Xs + gs)}
= inf {t ≤ s ≤ T : ps = gs} . (9)

The representation (9) implies that the option holder will exercise the American option as soon as
the forward indifference price reaches (from above) the option payoff. It allows us to analyze the
holder’s optimal exercise policy through his forward indifference price.

In Sections 3 and 4, we will focus our study on two specific financial applications: i) the valuation
of an American option written on a stock S with stochastic volatility under forward performance
criterion of exponential type (to be defined in (26)), and ii) modeling early exercises of employee
stock options (ESOs) for criteria beyond the exponential forward performance.

2.2 Forward Performance of Generalized CARA/CRRA Type

Henceforth, we will focus our attention on a special class of forward performance processes intro-
duced by Musiela and Zariphopoulou (2008), namely, the time-monotone ones. These processes
are represented by the compilation of a deterministic function u(x, t) which models the investor’s
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dynamic risk preferences, and a stochastic time-change (At)t≥0 that solely depends on the market.
Recently, Berrier et al. (2009) and Musiela and Zariphopoulou (2010a) studied various properties
and alternative characterizations of this family of forward performances.

Theorem 3 (Musiela and Zariphopoulou (2008) and (2010)) Define the stochastic process

At =

∫ t

0
λ2

s ds, t ≥ 0. (10)

Let u : R × R+ 7→ R be C3,1, strictly concave, and increasing in its spatial argument. Assume that
it satisfies the nonlinear partial differential equation

ut =
1

2

u2
x

uxx
, (11)

with initial condition u(x, 0) = u0(x) , where u0 ∈ C3(R). Then, the process Ut(x), defined by

Ut(x) = u (x,At) , t ≥ 0, (12)

is a forward performance process. Moreover, the trading strategy π∗ given by

π∗
t = −λt

σt

ux(X∗
t , At)

uxx(X∗
t , At)

, t ≥ 0, (13)

where X∗ = Xπ∗
is the associated wealth process following (3), is optimal.

By its definition in (10), A is an increasing stochastic process that depends on the Sharpe ratio
of the traded asset S. Also, it is commonly called the mean-variance trade-off process (see e.g.
Pham et al. (1998) and references therein). In constructing the forward performance process in
(12), A acts as a stochastic time change to the deterministic preference function u(x, t).

We stress that because equation (11) is ill-posed, one needs to specify the class of initial con-
ditions that yields a well-defined solution for all times. This is not a trivial matter and was
investigated in detail in Musiela and Zariphopoulou (2010a). A related problem, that was also
studied there, is to determine for which initial conditions the policies specified by (13) are admis-
sible. Because the related arguments for both the aforementioned questions are quite lengthy, we
provide the key results in the Appendix. The time-monotone forward performance criteria used in
Section 3 and 4 belong to the admissible class.

A quantity that plays a crucial role in the description of the optimal wealth and portfolio
processes (X∗, π∗) is the so-called local risk tolerance function R : R × R+ 7→ R+, defined by

R(x, t) = − ux(x, t)

uxx(x, t)
, (14)

with u solving (11). Using (13) and (14), the dynamics of the optimal wealth X∗ can be expressed
as

dX∗
t = R(X∗

t , At)λt (λt dt + dWt) . (15)

Furthermore, by applying differentiation to (14), one can show that R is the solution of an
equation of fast diffusion type, namely

Rt +
1

2
R2Rxx = 0. (16)
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The above autonomous equation for R(x, t) suggests that one could first model the local risk
tolerance directly, and in turn recover the dynamic risk preference function u(x, t) from (14).
This provides an alternative way to construct forward performance criteria. This idea was further
developed in Zariphopoulou and Zhou (2009) who proposed the following two-parameter family of
risk tolerance functions:

R(x, t;α, β) :=
√

αx2 + βe−αt, x ∈ R, t ≥ 0, α, β > 0. (17)

We illustrate an example of this risk tolerance in Figure 1.

Figure 1: The risk tolerance function R(x, t; α, β) in (17) with α = 4, and β = 0.25. For any fixed wealth
x, R(x, ·; α, β) decreases with time, while for any fixed time t, R(·, t; α, β) increases as wealth decreases or
increases away from zero.

There are several reasons to work with this family of risk tolerance. First, it yields, in the
limits as α or β goes to zero, the risk tolerance functions that resemble those related to the
three most popular cases, specifically, the exponential, power and logarithmic. We summarize
from Zariphopoulou and Zhou (2009) the limiting cases leading to risk tolerance functions and the
corresponding utilities as follows:

lim
α→0

R(x, t;α, β) =
√

β, u(x, t) = −e
− x√

β
+ t

2 , x ∈ R (exponential); (18)

lim
β→0

R(x, t;α, β) =
√

αx, u(x, t) =
xδ

δ
e
− δ

2(1−δ)
t
, x ≥ 0, α 6= 1 (power); (19)

lim
β→0

R(x, t; 1, β) = x, u(x, t) = log x − t

2
, x > 0 (logarithmic), (20)

where δ :=
√

α−1√
α

. According to (19) and (20), in the limit β ↓ 0, R(x, t;α, β) is defined only

over a positive/strictly positive wealth domain. In Figure 2, we illustrate the limit in (18) where
the risk tolerance function converges to the constant

√
β as α ↓ 0. In Section 3, we will work

with the exponential forward performance which corresponds to constant risk tolerance in (18).
In view of the limits in (18) and (19), we may call

√
α the power risk tolerance and

√
β the
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exponential risk tolerance. Hence, the risk tolerance R(x, t;α, β) for α, β > 0 can be viewed as a
combination/interpolation of the power and exponential extremes.

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

wealth (x)

R
(x

,t;
α,

β)

Risk Tolerance Function

α=4

α=1

α=0

α=0.5

Figure 2: As α decreases from 4 to 0, with β = 0.25 and t = 1, the risk tolerance function R(x, t; α, β)
converges to the constant level

√
β = 0.5, as predicted by the limit in (18).

For the general case with α, β > 0, Zariphopoulou and Zhou (2009) compute, via integration of
(14), the dynamic risk preference function u(x, t;α, β) associated with R(x, t;α, β) in (17):

Proposition 4 (Proposition 3.2 of Zariphopoulou and Zhou (2009)) The dynamic risk preference
function u(x, t;α, β) associated with R(x, t;α, β) in (17) for α, β > 0 is given by

u(x, t;α, β) = m
κ1+ 1

κ

α − 1
e

1−κ
2

t
β
κ
e−αt + (1 + κ)x(κx +

√

αx2 + βe−αt)

(κx +
√

αx2 + βe−αt)1+
1
κ

+ n, α 6= 1, (21)

|

u(x, t; 1, β) =
m

2

(

log(x +
√

x2 + βe−t) − e−t

β
x
(

x −
√

x2 + βe−t
)

− t

2

)

+ n, α = 1,

where κ =
√

α, and m > 0, n ∈ R are integration constants.

As mentioned earlier, in the context of the domain of the local risk tolerance, the function
u(x, t;α, β) is also well-defined for all x ∈ R, except in the limit case β ↓ 0. This property is
particularly useful in indifference valuation, for it eliminates the nonnegativity constraints on the
investor’s wealth (with and without the claim at hand).

3 American Options under Stochastic Volatility

In this section, we study the forward indifference valuation of an American option in a stochastic
volatility model. We work with the exponential forward performance, which, as mentioned in the
previous section, corresponds to the parameter choice α = 0. A comparative analysis with the
classical exponential utility indifference pricing is provided in Section 3.3.
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The discounted stock price S is modeled as a diffusion process satisfying

dSt = Stσ(Yt)(λ(Yt) dt + dWt). (22)

The Sharpe ratio λ(Yt) and volatility coefficient σ(Yt) are driven by a non-traded stochastic factor
process (Yt)t≥0 which evolves according to

dYt = b(Yt) dt + c(Yt) (ρdWt +
√

1 − ρ2dŴt). (23)

The processes W and Ŵ are two independent Brownian motions defined on (Ω,F , (Ft)t≥0, P),
where Ft is taken to be the augmented σ-algebra generated by ((Wu, Ŵu); 0 ≤ u ≤ t). The
coefficient ρ ∈ (−1, 1) accounts for the correlation between S and Y . The volatility function
σ(·) and the diffusion coefficient c(·) are smooth, positive and bounded. The Sharpe ratio λ(·)
is bounded continuous, and b(·) is Lipschitz continuous on R. Similar conditions can be found
in Sircar and Zariphopoulou (2005) and, as therein, our model excludes the Heston model whose
volatility function is not bounded. For indifference pricing under the Heston model, we refer to
Grasselli and Hurd (2008).

The American option yields payoff g(Sτ , Yτ , τ) at any exercise time τ ∈ [0, T ], where g(·, ·, ·) is
a smooth and bounded function. The holder of the American option dynamically trades between
the stock and money market account, and his discounted trading wealth follows

dXπ
t = πtσ(Yt)(λ(Yt) dt + dWt), (24)

where (πt)t≥0 is the discounted cash amount invested in stock (cf. (22)).

3.1 Exponential Forward Indifference Price

We model the American option holder’s risk preferences by the exponential forward performance
process. This corresponds to the limiting case in (18) where the risk tolerance becomes a constant√

β (see also Figure 2). As seen in (18), the function u(x, t) is given by

u(x, t) = −e−γx+ t
2 , (25)

where γ := 1/
√

β can be considered as the investor’s local risk aversion parameter. In turn,
applying Theorem 3, we obtain the exponential forward performance process

U e
t (x) = −e−γx+ 1

2

R t
0 λ(Ys)2ds, t ≥ 0. (26)

As defined in (7), the option holder’s value process based on the exponential forward perfor-
mance is given by

V e
t (Xt) = ess sup

τ∈Tt,T

ess sup
π∈Zt,τ

IE
{

−e−γ(Xπ
τ +g(Sτ ,Yτ ,τ))e

1
2

R τ
0 λ(Ys)2ds | Ft

}

= e
1
2

R t
0 λ(Ys)2ds ess sup

τ∈Tt,T

ess sup
π∈Zt,τ

IE
{

−e−γ(Xπ
τ +g(Sτ ,Yτ ,τ))e

1
2

R τ
t

λ(Ys)2ds | Ft

}

. (27)

We observe that the second term in (27) is the value of a combined stochastic control and optimal
stopping problem. Working under the Markovian stochastic volatility market (22)-(23), we look
for a candidate optimal Ft-adapted Markovian strategy by studying the associated HJB variational
inequality.
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To facilitate notation, we introduce the following differential operators and Hamiltonian:

LSY v =
1

2
σ(y)2s2vss + ρc(y)σ(y)svsy +

1

2
c(y)2vyy + λ(y)σ(y)svs + b(y)vy,

L0
SY v =

1

2
σ(y)2s2vss + ρc(y)σ(y)svsy +

1

2
c(y)2vyy + (b(y) − ρc(y)λ(y))vy , (28)

and

H(vxx, vxy, vxs, vx) = max
π

(

π2σ(y)2

2
vxx + π

(

ρσ(y)c(y)vxy + σ(y)2svxs + λ(y)σ(y)vx

)

)

.

Note that LSY and L0
SY are, respectively, the infinitesimal generators of the Markov process

(St, Yt)t≥0 under the historical measure P and the minimal martingale measure Q0. The latter
measure is defined in (35).

Next, we consider the HJB variational inequality:











































Vt + LSY V + H(Vxx, Vxy, Vxs, Vx) +
λ(y)2

2
V ≤ 0,

V (x, s, y, t) ≥ −e−γ(x+g(s,y,t)),

(

Vt + LSY V + H(Vxx, Vxy, Vxs, Vx) +
λ(y)2

2
V
)

·
(

− e−γ(x+g(s,y,t)) − V (x, s, y, t)
)

= 0,

V (x, s, y, T ) = −e−γ(x+g(s,y,T )),

(29)

for (x, s, y, t) ∈R×R+×R×[0, T ]. Given a solution V (x, s, y, t) to (29) that is C2,2,2,1, except across
a lower-dimensional optimal exercise boundary, one can show by standard verification arguments
(see, for example, Theorem 4.2 of Oksendal and Sulem (2005)) that V is the value function for the
combined optimal control/stopping problem in (27). Therefore, we can write

V e
t (Xt) = e

1
2

R t

0
λ(Ys)2ds V (Xt, St, Yt, t). (30)

As is common in classical indifference pricing of American options, the existence of a solution
(in an appropriate regularity class) to the HJB equation or variational inequality is a non-trivial
and technical issue. In the classical exponential utility indifference pricing for American options,
Oberman and Zariphopoulou (2003) show the existence of a unique viscosity solution of the HJB
variational inequality for the value function. In fact, our variational inequality (29) differs from

that in Oberman and Zariphopoulou (2003) only by the term λ(y)2

2 V . For our analysis in this
section, we assume the existence of a unique solution V (x, s, y, t) to the variational inequality (29)
with the regularity needed for the verification arguments.

Assumption 5 We assume that there exists a unique smooth solution V (x, s, y, t) to the variational
inequality (29) so that (30) holds.

Applying (26) and (30) to Definition 2, the option holder’s exponential forward indifference
price function p(x, s, y, t) is given by

p(x, s, y, t) = −1

γ
log
(

− V (x, s, y, t)
)

− x. (31)
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Substituting (31) into the variational inequality (29), we derive the variational equality for p(x, s, y, t).
It turns out that the indifference price is independent of the wealth argument x and solves the free
boundary problem







































pt + L0
SY p − 1

2
γ(1 − ρ2)c(y)2p2

y ≤ 0,

p(s, y, t) ≥ g(s, y, t),

(

pt + L0
SY p − 1

2
γ(1 − ρ2)c(y)2p2

y

)

· (g(s, y, t) − p(s, y, t)) = 0,

p(s, y, T ) = g(s, y, T ),

(32)

for (s, y, t) ∈ R+× R × [0, T ].
By the first-order condition in (29) and the formula (31), the optimal hedging strategy (π̃∗

t )0≤t≤T

can be expressed in terms of the partial derivatives of the forward indifference price, namely,

π̃∗
t =

λ(Yt)

γσ(Yt)
+

St

γ
ps(St, Yt, t) +

ρc(Yt)

γσ(Yt)
py(St, Yt, t).

The first term in this expression is the optimal strategy in (13) when there is no claim. The second
and third parts of the strategy π̃∗

t account for the sensitivity of the indifference price with respect
to the traded and nontraded assets S and Y respectively.

The optimal exercise time is the first time that the indifference price reaches the option payoff:

τ∗
t = inf{t ≤ u ≤ T : p(Su, Yu, u) = g(Su, Yu, u)} . (33)

In practice, one can numerically solve the variational inequality (32) to obtain the optimal exercise
boundary which represents the critical levels of S and Y at which the option should be exercised.
We remark that the indifference price, the optimal hedging and exercising strategies are all wealth
independent. The same phenomenon occurs in the classical indifference valuation with exponential
utility.

3.2 Dual Representation

The option holder’s forward performance maximization in (27) can be considered as the primal
optimization problem, and it yields the first expression for the forward indifference price in (31). In
this subsection, our objective is to derive a dual representation for the forward indifference price,
which turns out to be related to pricing the American option with entropic penalty. This result
will allow us to express the price in a way analogous to the classical exponential indifference price.
We carry out this comparison in Section 3.3.

First, we denote by M(P) the set of equivalent local martingale measures with respect to P on
FT . As is well-known (see, for example, Frey (1997)), these measures are characterized by their
respective density process with respect to P, which is given by the stochastic exponential

Zφ
t =

dQφ

dP

∣

∣

Ft
= exp

(

−1

2

∫ t

0
λ(Ys)

2 + φ2
s ds −

∫ t

0
λ(Ys) dWs −

∫ t

0
φs dŴs

)

, (34)

where (φt)0≤t≤T is a Ft-progressively measurable process satisfying
∫ T

0 φ2
s ds < ∞, P-a.s., and

IE{Zφ
T } = 1.

By Girsanov’s Theorem, it follows that the two processes W φ
t = Wt+

∫ t

0 λ(Ys)ds and Ŵ φ
t = Ŵt +

∫ t

0 φs ds
are independent Qφ-Brownian motions. The process φ is commonly referred to as the volatility risk
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premium for the second Brownian motion Ŵ . When φ = 0, the resulting measure Q0 is the
well-known minimal martingale measure (MMM), whose Radon-Nikodym derivative is

dQ0

dP
= exp

(

−1

2

∫ T

0
λ(Ys)

2 ds −
∫ T

0
λ(Ys) dWs

)

; (35)

see Föllmer and Schweizer (1990).
Next, we define the conditional relative entropy of Qφ with respect to P over the interval [t, τ ],

with τ ∈ Tt,T , as

Hτ
t (Qφ|P) := IEQφ

{

log
Zφ

τ

Zφ
t

|Ft

}

. (36)

Direct computation from (34) shows that this relative entropy is, in fact, a quadratic penalization
on the risk premia λ and φ. In other words,

Hτ
t (Qφ|P) =

1

2
IEQφ

{
∫ τ

t

λ(Ys)
2 + φ2

s ds|Ft

}

. (37)

We denote the set of equivalent local martingale measures with finite relative entropy (with respect
to P) as

Mf :=
{

Qφ ∈ M(P) : HT
0 (Qφ|P) < ∞

}

.

The probability measure that yields the minimum relative entropy with respect to P is called the
minimal entropy martingale measure (MEMM) and is defined by

QE := arg min
Qφ∈M(P)

HT
t (Qφ|P). (38)

Key results on the MEMM in a general semimartingale market framework can be found in Fritelli
(2000) and Grandits and Rheinländer (2002). This measure also arises in hedging and indifference
valuation under exponential utility; see Delbaen et al. (2002) and Rouge and El Karoui (2000),
among others.

Remark 6 If the Sharpe ratio is constant, i.e. λ(y) = λ, then the conditional relative entropy
simplifies to

HT
t (Qφ|P) =

λ2

2
(T − t) + IEQφ

{
∫ T

t

φ2
s ds|Ft

}

.

As a result, setting φ = 0 minimizes HT
t (Qφ|P). This is a well-known example where the MEMM

QE coincides with the MMM Q0.

We may also express any measure Qφ in terms of Q0 via the Radon-Nikodym derivative, namely,

dQφ

dQ0
=

dQφ

dP

/

dQ0

dP
= exp

(

−1

2

∫ T

0
φ2

s ds −
∫ T

0
φs dŴ 0

s

)

. (39)

We denote the density process of Qφ with respect to Q0 by Zφ,0
t = IEQ0{dQφ

dQ0 |Ft}.
Treating Q0 as the prior risk-neutral measure, we can define the conditional relative entropy

Hτ
t (Qφ|Q0) of Qφ with respect to Q0 over the interval [t, τ ] as

Hτ
t (Qφ|Q0) = IEQφ

{

log
Zφ,0

τ

Zφ,0
t

|Ft

}

=
1

2
IEQφ

{
∫ τ

t

φ2
s ds|Ft

}

. (40)

With these notations, we are now ready to state the duality formula for the exponential forward
indifference price.
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Proposition 7 The American option holder’s exponential forward indifference price p(s, y, t) is
the solution of the combined stochastic control and optimal stopping problem:

p(St, Yt, t) = ess sup
τ∈Tt,T

ess inf
Qφ∈Mf

(

IEQφ {g(Sτ , Yτ , τ)|Ft} +
1

γ
Hτ

t (Qφ|Q0)

)

. (41)

Before giving the proof in the next subsection, let us first discuss the intuitive interpretation
of the forward indifference price according to the duality formula (41). In essence, the holder tries
to value the American option over a set of equivalent local martingale measures, and his selection
criterion for the optimal pricing measure is based on relative entropic penalization (scaled by risk
aversion γ). Indeed, the second term in (41) is the relative entropy of a candidate measure Qφ with
respect to the MMM Q0 up to the exercise time. Therefore, the holder assigns the corresponding
optimal risk premium φ∗ according to (42). Due to the entropic penalty, we observe from (41) that
the exponential forward indifference pricing rule is nonlinear in terms of the number of options
held.

There are two ways to establish Proposition 7. The first approach is to apply the variational
inequalities in Section 3.1. One can check that the variational inequality (32) for the indifference
price p(s, y, t) in (31) is identical to the one for the stochastic control/stopping problem on the
RHS of (41). Using this approach, the associated optimal control φ∗ must satisfy

φ∗
t = −γc(Yt)

√

1 − ρ2 py(St, Yt, t), 0 ≤ t ≤ T, (42)

subject to integrability condition so that Qφ∗ ∈ Mf . This approach requires a number of regularity
conditions for the nonlinear variational inequalities (32) and (41) and for the candidate optimal
control φ∗.

Hence, in the next subsection, we will prove Proposition 7 via an alternative approach which
does not involve the variational inequalities. The key idea is to derive the dual representation for
the forward value function in (30) using an analogous duality formula from the classical exponential
indifference pricing for American options (Leung and Sircar, 2009b); see Theorem 8 below. Before
we present the proof, we first need to recall and discuss the classical exponential utility indifference
price.

3.3 Comparison with the Classical Exponential Utility Indifference Price

In this section, we first summarize the duality results from the classical exponential utility indiffer-
ence pricing, and then apply them to derive the forward indifference formula (41). Moreover, we
also provide a comparative analysis between the classical and forward indifference valuation.

We start with a brief review of the classical indifference pricing with exponential utility under
stochastic volatility models. We refer the reader to, for example, Sircar and Zariphopoulou (2005),
Benth and Karlsen (2005), and Grasselli and Hurd (2008) for European-style derivatives, as well
as Oberman and Zariphopoulou (2003) and Leung and Sircar (2009b) for American options.

In the classical setting, the investor’s risk preferences at time T are modeled by the exponential
utility function −e−γx, with risk aversion parameter γ > 0. In the stochastic volatility model
described in (22)-(23), the value function of the Merton problem (cf. (4)) is

M(Xt, Yt, t) = sup
π∈Zt,T

IE
{

−e−γXπ
T | Ft

}

, (43)

with (Xπ
t )t≥0 given by (24).

13



As is well known, see for example, Delbaen et al. (2002) and Rouge and El Karoui (2000),
the Merton value function admits a dual representation in terms of relative entropy minimization,
namely,

M(Xt, Yt, t) = − exp
(

−γXt − HT
t (QE |P)

)

, (44)

where HT
t (QE |P) is the conditional relative entropy of QE with respect to P over [t, T ].

If the American option g is held, then the investor seeks the optimal trading strategy and
exercise time to maximize the expected utility of wealth from both his dynamic portfolio and the
option’s payoff at exercise. Upon exercise of the option, the investor will reinvest the contract
proceeds, if any, to his trading portfolio, and continue to trade up to time T . As a consequence,
the holder faces the optimization problem

V̂ (Xt, St, Yt, t) = ess sup
τ∈Tt,T

ess sup
π∈Zt,τ

IE {M (Xπ
τ + g(Sτ , Yτ , τ), Yτ , τ) | Ft } (45)

= ess sup
τ∈Tt,T

ess sup
π∈Zt,τ

IE
{

−e−γ(Xπ
τ +g(Sτ ,Yτ ,τ))e−HT

τ (QE |P) | Ft

}

, (46)

where M is defined in (43). The classical indifference price p̂ of the American option is then
determined from the equation

M(x, y, t) = V̂ (x − p̂(x, s, y, t), s, y, t). (47)

Under a general semimartingale framework, Leung and Sircar (2009b) have derived a duality
formula for the optimization problem (45) and the exponential indifference price p̂. Herein, we
summarize the results as written for our stochastic volatility market setting. We use the shorthand

notation IEQφ

t {·} ≡ IEQφ{·|Ft}.

Theorem 8 (Propositions 2.4 and 2.8 of Leung and Sircar (2009b)) The classical value function
in (45) for holding the American option g is given by

V̂ (Xt, St, Yt, t)

= −e−γXt exp

(

− ess sup
τ∈Tt,T

ess inf
Qφ∈Mf

(

IEQφ

t {γg(Sτ , Yτ , τ)} + Hτ
t (Qφ|P) + IEQφ

t

{

HT
τ (QE |P)

}

)

)

.

(48)

The classical exponential indifference price is given by

p̂(St, Yt, t) = ess sup
τ∈Tt,T

ess inf
Qφ∈Mf

(

IEQφ

t {g(Sτ , Yτ , τ)} +
1

γ
Hτ

t (Qφ|QE)

)

. (49)

Now, we apply Theorem 8 to establish Proposition 7, namely, the duality formula (41) for the
forward exponential indifference price.

Proof of Proposition 7. We begin by writing the function V (Xt, St, Yt, t) in (30) as

V (Xt, St, Yt, t) = ess sup
τ∈Tt,T

ess sup
π∈Zt,τ

IE
{

−e−γ(Xπ
τ +g(Sτ ,Yτ ,τ)− 1

2γ

R τ
t

λ(Ys)2ds) | Ft

}

= ess sup
τ∈Tt,T

ess sup
π∈Zt,τ

IE
{

−e−γ(Xπ
τ +g̃(Sτ ,Yτ ,τ))e−HT

τ (QE |P) | Ft

}

,
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where

g̃(Sτ , Yτ , τ) = g(Sτ , Yτ , τ) − 1

2γ

∫ τ

t

λ(Ys)
2ds − 1

γ
HT

τ (QE |P).

In other words, the optimization problem V (Xt, St, Yt, t) has the same form as V̂ (Xt, St, Yt, t) in
(48), but with a new option payoff g̃(Sτ , Yτ , τ), instead of g(Sτ , Yτ , τ), at any exercise time τ ∈ Tt,T .

Therefore, substituting the payoff g̃ for g in Theorem 8 yields

V (Xt, St, Yt, t)

= −e−γXt exp

(

− ess sup
τ∈Tt,T

ess inf
Qφ∈Mf

(

IEQφ

t {γg̃(Sτ , Yτ , τ)} + Hτ
t (Qφ|P) + IEQφ

t

{

HT
τ (QE |P)

}

)

)

= −e−γXt exp

(

− ess sup
τ∈Tt,T

ess inf
Qφ∈Mf

(

IEQφ

t

{

γg(Sτ , Yτ , τ) − 1

2

∫ τ

t

λ(Ys)
2ds
}

+ Hτ
t (Qφ|P)

)

)

= −e−γXt exp

(

− ess sup
τ∈Tt,T

ess inf
Qφ∈Mf

(

IEQφ

t {γg(Sτ , Yτ , τ)} + Hτ
t (Qφ|Q0)

)

)

, (50)

where the last equality follows from (36) and (40). This is an alternative representation for V in
(30). Finally, applying the duality formula (50) to (31) yields the forward exponential indifference
price formula (41).

The classical and forward exponential indifference prices in Theorem 8 and Proposition 7 bear
a striking similarity, except that the relative entropy term in (49) is computed with respect to QE ,
but in (41) it is computed with respect to Q0. To highlight this, we shall compare the variational
inequality of the forward indifference price in (32) with its classical analogue.

As is well known, the classical Merton function M admits a separation of variables due to the
choice of exponential utility.

Proposition 9 The value function M(x, y, t) is given by

M(x, y, t) = −e−γxf(y, t)
1

1−ρ2 , (51)

where ρ is the correlation coefficient in (23), and f solves

ft + L0
Y f =

1

2
(1 − ρ2)λ(y)2f, (52)

for (x, t) ∈ R × [0, T ), with f(y, T ) = 1, for y ∈ R. The operator L0
Y is the infinitesimal generator

of Y under the MMM Q0, and is given by

L0
Y f =

1

2
c(y)2fyy + (b(y) − ρc(y)λ(y)) fy.

Details can be found, for example, in Theorem 2.2 of Sircar and Zariphopoulou (2005).
Using (51) and (47), we obtain the formula

V̂ (x, s, y, t) = −e−γ(x+p̂(x,s,y,t))f(y, t)
1

1−ρ2 . (53)

To derive the variational inequality for the indifference price, one can use the variational in-
equality for V and then apply the transformation (53). Again, the choice of exponential utility
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yields wealth-independent indifference prices, i.e. p̂(x, s, y, t) = p̂(s, y, t). We obtain










































p̂t + LE
SY p̂ − 1

2
γ(1 − ρ2)c(y)2p̂2

y ≤ 0,

p̂(s, y, t) ≥ g(s, y, t),
(

p̂t + LE
SY p̂ − 1

2
γ(1 − ρ2)c(y)2p̂2

y

)

· (g(s, y, t) − p̂(s, y, t)) = 0,

p̂(s, y, T ) = g(s, y, T ),

(54)

for (s, y, t) ∈ R+×R+×[0, T ]. Here, LE
SY is the infinitesimal generator of (S, Y ) under the MEMM

QE, namely,

LE
SY w = L0

SY w + l(y, t)c(y)
√

1 − ρ2wy, (55)

where L0
SY is given in (28) and

l(y, t) =
1

√

1 − ρ2
c(y)

fy(y, t)

f(y, t)
. (56)

As shown in Section 2 of Sircar and Zariphopoulou (2005), the function l(y, t) is smooth and
bounded, and is the risk premium corresponding to the minimal entropy martingale measure
(MEMM) QE, namely,

dQE

dP
= exp

(

−1

2

∫ T

0
(λ(Ys)

2 + l(Ys, s)
2) ds −

∫ T

0
λ(Ys) dWs +

∫ T

0
l(Ys, s) dŴs

)

. (57)

Therefore, the operator LE
SY is the infinitesimal generator of (S, Y ) under QE.

It is important to notice that the fundamental difference between the variational inequalities
(32) and (54) lies in the operators L0

SY in (28) and LE
SY in (55). Indeed, these two variational

inequalities reflect, respectively, the special roles of the MMM in the forward indifference setting
and the MEMM in the classical model.

Note that the classical indifference price p̂ in (54) involves the MEMM operator LE
SY which

in turn depends on f(t, y). Therefore, the computation of p̂ requires first solving the PDE (52)
followed by solving the variational inequality (54). However, in the forward indifference valuation,
the indifference price can be obtained by solving only one variational inequality (32). Hence, under
the forward exponential performance, the forward indifference formulation allows for more efficient
computation than in the classical framework.

Remark 10 If the claim is written on Y only, say with payoff function g(y, t), then the indifference
price does not depend on S. Applying a logarithmic transformation to the variational inequality
(32), the nonlinear variational inequality can be linearized. Then, under Assumption 5, the forward
indifference price admits the probabilistic representation:

p(y, t) = − 1

γ(1 − ρ2)
log inf

τ∈Tt,T

IEQ0
{

e−γ(1−ρ2)g(Yτ ,τ) |Yt = y
}

. (58)

In contrast, the classical exponential utility indifference price of an American option with the same
payoff function g(y, t) can be found in Oberman and Zariphopoulou (2003) and is given by

p̂(y, t) = − 1

γ(1 − ρ2)
log inf

τ∈Tt,T

IEQE
{

e−γ(1−ρ2)g(Yτ ,τ) |Yt = y
}

, (59)

with QE given in (57). Again, we see that the measure Q0 in the forward performance framework
plays a similar role as QE in the classical setting.
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Remark 11 If the Sharpe ratio λ is constant, then the measures Q0 and QE coincide by Remark

6. In fact, direct substitution shows that the function f(t) := e−(1−ρ2)λ2

2
(T−t) solves the PDE (52).

This implies that l(y, t) = 0 and QE = Q0. As a result, the classical and forward indifference prices
in (58) and (59) above, where the claim is written on Y only, are in fact identical.

3.4 Risk Aversion and Volume Asymptotics

Proposition 7 provides a convenient representation for analyzing the exponential forward indiffer-
ence price’s sensitivity with respect to risk aversion and the number of options held. Next, we
further elaborate on these dependencies.

First, let us consider a risk-averse investor with local risk aversion γ who holds a > 0 units of
American options, and suppose that all a units are constrained to be exercised simultaneously. In
this case, the holder’s indifference price p(s, y, t; γ, a) is again given by (41) but with the payoff
g(Sτ , Yτ , τ) replaced by ag(Sτ , Yτ , τ). The optimal exercise time τ∗(a, γ) is the first time that the
forward indifference price reaches the payoff from exercising all a units:

τ∗(a, γ) = inf{t ≤ u ≤ T : p(Su, Yu, u; γ, a) = ag(Su, Yu, u)}. (60)

Proposition 12 Fix a > 0 and t ∈ [0, T ]. If γ2 ≥ γ1 > 0, then

p(s, y, t; γ2, a) ≤ p(s, y, t; γ1, a)

and
τ∗(a, γ2) ≤ τ∗(a, γ1), almost surely.

Proof. For γ2 ≥ γ1 > 0, it follows from (41) that p(s, y, t; γ2, a) ≤ p(s, y, t; γ1, a). Therefore, as γ
increases, p(s, y, t; γ, a) decreases, while the payoff ag(s, y, t) does not depend on γ. By (60), this
leads to a shorter exercise time (almost surely).

Furthermore, we deduce formally the risk-aversion limits of the indifference price. For the
technical details, we refer the reader to Leung and Sircar (2009b) who have shown these asymp-
totic results for the traditional exponential indifference price of American options in a general
semimartingale framework, and their proofs can be easily adapted here.

First, as γ increases to infinity, the penalty term in the indifference price representation (41)
vanishes. Consequently, we deduce the following limit:

lim
γ→∞

p(s, y, t; γ, a) = a · sup
τ∈Tt,T

inf
Qφ∈Mf

IEQφ {g(Sτ , Yτ , τ)|St = s, Yt = y} =: a · c(s, y, t). (61)

This limiting price c(s, y, t) is commonly referred to as the sub-hedging price of the American
options (see, for example, Karatzas and Kou (1998)). Interestingly, the classical indifference price
also converges to the same limit as γ → ∞ (see Proposition 2.17 of Leung and Sircar (2009b)).

On the other hand, as the holder’s risk aversion γ decreases to zero, one can deduce from (41)
that it is optimal not to deviate from the prior measure Q0 (i.e. φ = 0), yielding zero entropic
penalty. This leads to valuing the American options under the MMM Q0, namely,

lim
γ→0

p(s, y, t; γ, a) = a · sup
τ∈Tt,T

IEQ0 {g(Sτ , Yτ , τ)|St = s, Yt = y} . (62)

In contrast, the classical indifference price converges to the risk-neutral price of the American
options under the MEMM QE instead of Q0.
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Finally, the forward indifference price satisfies the volume-scaling property:

p(s, y, t; γ, a)/a = p(s, y, t; aγ, 1).

As the number of options held increases, the average indifference price, p(s, y, t; γ, a)/a will decrease,
and by (60) the options will be exercised earlier. The classical indifference price for American
options also possesses the same volume-scaling property and exercise phenomenon.

Moreover, the risk-aversion limits in (61)-(62) lead to the large volume limit:

lim
a→∞

p(s, y, t; γ, a)

a
= c(s, y, t),

which is the sub-hedging price, and the small volume limit:

lim
a→0

p(s, y, t; γ, a)

a
= sup

τ∈Tt,T

IEQ0 {g(Sτ , Yτ , τ)|St = s, Yt = y} .

To summarize, in all these limiting cases, both the classical and forward indifference pricing
rules become linear with respect to quantity. In the large risk-aversion and large volume limits, the
classical and forward indifference prices will both converge to the sub-hedging price. However, in
the zero risk-aversion and zero volume limits, the classical and forward indifference prices, respec-
tively, converge to the risk-neutral prices under the MEMM QE and the MMM Q0. As pointed
out in Remark 6, when the Sharpe ratio λ is constant, the MEMM and MMM coincide, so the
corresponding zero risk-aversion and zero volume limits of the classical and forward indifference
prices are in fact the same.

4 Modeling Early Exercises of Employee Stock Options

Now, we consider the problem of exercising employee stock options (ESOs) under a time-monotone
forward performance criterion with the risk tolerance function R(x, t;α, β) in (17). These options
are American calls granted by a company to its employees as a form of compensation. A typical
ESO contract prohibits the employee from selling the option and from hedging by short selling the
firm’s stock. The sale and hedging restrictions may induce the employee to exercise the ESO early
and invest the option proceeds elsewhere. Modeling the employee’s exercise timing is crucial to the
accurate valuation of ESOs.

Empirical studies (see, for example, Bettis et al. (2005)) show that employees tend to exercise
their ESOs very early. Recent studies, for example, Henderson (2005) and Leung and Sircar (2009a),
apply classical indifference pricing to ESO valuation. In those papers, the employee was assumed
to have a classical exponential utility specified at the expiration date T of the options. Here, we
assume a forward performance criterion for the employee, which is not anchored to a specific future
time, and then numerically solve for the optimal exercise strategies under different scenarios.

We assume that the employee trades dynamically in a liquid correlated market index and a
riskless money market account in order to partially hedge against his ESO position. Alternative
hedging strategies for ESOs have also been proposed. For instance, Leung and Sircar (2009b) con-
sidered combining static hedges with market-traded European or American puts with the dynamic
investment in the market index.

We focus our study on the case of a single ESO. Typically, ESOs have a vesting period during
which they cannot be exercised early. The incorporation of a vesting period amounts to lifting the
employee’s pre-vesting exercise boundary to infinity to prevent exercise, but leaving the post-vesting
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policy unchanged. The case with multiple ESOs can be studied as a straightforward extension to our
model though the numerical computations will be more complex and time-consuming; see Grasselli
and Henderson (2009) for the case of multiple perpetual ESOs with exponential utility. Our main
objective is to examine the non-trivial effects of forward investment performance criterion on the
employee’s optimal exercise timing.

4.1 The Employee’s Optimal Forward Performance with an ESO

We assume that the money market account yields a constant interest rate r ≥ 0. The discounted
prices of the market index and the firm’s stock are modeled as correlated lognormal processes,
namely,

dSt = Stσ (λdt + dWt) , (traded) (63)

dYt = bYt dt + cYt (ρdWt +
√

1 − ρ2 dŴt) , (non-traded) (64)

where λ, σ, b, c are constant parameters. The ESO studied here has a discounted capped American
payoff given by

g(Yτ , τ) = (Yτ − Ke−rτ )+ ∧ L0, for τ ∈ T0,T ,

where T is the expiration date and L0 is a large upper bound to be used in our numerical method
(see Section 4.2).

This market setup is nested in the Itô diffusion market described in Section 2. Here, the Sharpe
ratio λ of the index S is now a constant, and the option payoff is independent of S. The employee
trades dynamically in the index S and the money market account, so his discounted wealth process
satisfies

dXπ
t = πtσ (λdt + dWt). (65)

We proceed with the employee’s forward performance criterion Ut(x). First, we adopt the
risk tolerance function in (17), namely, R(x, t) =

√

αx2 + βe−αt, and the corresponding dynamic
risk preference function u(x, t) given in Proposition 4. Then, we apply Theorem 3 to obtain
the employee’s forward performance Ut(x) = u(x, λ2t). In turn, the employee’s maximal forward
performance in the presence of the ESO is given by

V (x, y, t) = sup
τ∈Tt,T

sup
π∈Zt,τ

IE
{

u(Xπ
τ + g(Yτ , τ), λ2τ) |Xt = x, Yt = y

}

. (66)

In contrast to the stochastic volatility problem in Section 3, the option payoff depends on Y only,
and the state variable S disappears from the value function V .

To solve for the employee’s value function, we look for a solution to the following HJB variational
inequality:











































Vt + LY V − (ρcyVxy + λVx)2

2Vxx
≤ 0,

V (x, y, t) ≥ u(x + g(y, t), λ2t),

(

Vt + LY V − (ρcyVxy + λVx)2

2Vxx

)

·
(

u(x + g(y, t), λ2t) − V (x, y, t)
)

= 0,

V (x, y, T ) = u(x + g(y, T ), λ2T ),

(67)

for (x, y, t) ∈ R × R+× [0, T ], with LY V = 1
2c(y)2Vyy + b(y)Vy.
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We remark that the variational inequality (67) is highly nonlinear, and it can be simplified
only for very special local utility functions. In the exponential forward performance case, this can
be viewed as a special case under the stochastic volatility model discussed in Section 3. In the
perpetual case with exponential utility, Henderson (2007) derives an explicit solution for the value
function. Recent ESO valuation models, including Henderson (2005), Grasselli and Henderson
(2009), and Leung and Sircar (2009a), are also designed with the classical exponential utility. As
for the general case, we do not attempt to address the related existence, uniqueness, and regularity
questions.

4.2 Numerical Solutions

We apply a fully explicit finite-difference scheme to numerically solve (67) for the employee’s
optimal exercising strategy. First, we restrict the domain R×R+ × [0, T ] to a finite domain
D = {(x, y, t) : −L1 ≤ x ≤ L2, 0 ≤ y ≤ L0, 0 ≤ t ≤ T}, where Lk, k = 0, 1, 2, are chosen to be suf-
ficiently large to preserve the accuracy of the numerical solutions.

Next, a number of boundary conditions are imposed. Along y = 0, the firm’s stock price, and
thus the ESO, become worthless. Therefore, we set V (x, 0, t) = u(x, λ2t). When Y hits the high
level L0, we assume that the ESO will be exercised there, implying the condition

V (x,L0, t) = u(x + g(L0, t), λ
2t).

Along x = −L1 and x = L2, we adopt the Dirichlet boundary conditions

V (−L1, y, t) = u(−L1 + g(y, t), λ2t) and V (L2, y, t) = u(L2 + g(y, t), λ2t),

which imply that the employee will exercise the ESO at these boundaries. Over a uniform grid,
we apply an explicit finite-difference approximations and solve for V iteratively backward in time
starting at T .

At each time step, the inequality constraint V (x, y, t) ≥ u(x + g(y, t), λ2t) is enforced. By
comparing the value function and the obstacle term, we identify the continuation region C where
the ESO is not exercised, and the exercise region E where it is exercised, namely

C = {(x, y, t) ∈ R×R+×[0, T ] : V (x, y, t) > u(x + g(y, t), λ2t)}, (68)

E = {(x, y, t) ∈ R×R+×[0, T ] : V (x, y, t) = u(x + g(y, t), λ2t)}. (69)

From the numerical example in Figure 3, we observe that the value function dominates the
obstacle term. At any time t and wealth x, we locate the optimal stock price level y∗(x, t) that
separates the two regions C and E . As a result, the employee will exercise the ESO as soon as Yt

hits the threshold y∗(Xt, t):

τ∗ = inf{0 ≤ t ≤ T : Yt = y∗(Xt, t)}. (70)

In the case of call options, the boundary lies above the strike K. Figure 4 shows an example of the
optimal exercise boundary for the ESO.
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Figure 3: The value function V (x, y, t) dominates the obstacle term u(x + g(y, t), λ2t). The parameters are
λ = 33%, σ = 35%, b = 6%, c = 40%, ρ = 50%, r = 1%, K = 1, T = 1, α = 4, β = 0.25. At t = 0 and
x = 0, the critical stock price y∗(0, 0) = 1.58 is the point at which the value function touches the obstacle
term (above the strike).

Figure 4: The optimal exercise policy is characterized by the critical stock price y∗(x, t) as a function of
wealth x and time t. It decreases as time approaches maturity. In addition, it tends to shift lower as wealth
is near zero.
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4.3 Behavior of the Optimal Exercise Policy

We illustrate the employee’s optimal exercise boundary in Figure 4. Not surprisingly, the exercise
boundary y∗(x, t) decreases with respect to time, which implies that the employee is willing to
exercise the ESO at a lower stock price as it gets closer to expiry.

From Figure 5, we observe that the exercise boundary is wealth dependent. The employee
tends to delay exercising the ESO when his wealth deviates away from zero. We can gain some
intuition from our choice of risk tolerance function R(x, t;α, β). As wealth approaches zero, the
employee’s risk tolerance decreases (recall Figure 1), or equivalently, risk aversion increases. Higher
risk aversion influences the employee to exercise earlier to secure small gains rather than waiting
for future uncertain payoffs.

Finally, we show in Figure 6 that the exercise boundary tends to shift upward for higher values
of α and β, given the initial wealth x = 0. The effect of β is intuitive because the risk tolerance
function is increasing with respect to β. Therefore, the option holder with a higher β is effectively
less risk averse and may be willing to hold on to the ESO longer.
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Figure 5: The optimal exercise boundary represents the critical stock price level at which the ESO is
exercised, and varies for different wealth level x. (Left): The exercise boundary shifts upward as wealth
x increases from 0 to 1.5. (Right): The exercise boundary is the lowest when wealth x = −0.2. As wealth
decreases from −1 to −1.5, the exercise boundary rises again above the boundary with x = 0. The parameters
here are the same as in Figure 3.

5 Marginal Forward Indifference Price of American Options

In this section, we introduce the marginal forward indifference price of American options. A related
concept in the classical utility framework is the marginal utility price introduced by Davis (1997),
which is useful as an approximation for pricing a small number of claims. For completeness and the
upcoming comparison with the forward analogue, we provide a brief review of the marginal utility
price in the diffusion market.

5.1 The Classical Marginal Utility Price

In traditional utility maximization, the investor’s risk aversion is modeled by a deterministic utility
function, say Û(x), defined at time T . In the Itô diffusion market introduced in Section 2, the
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Figure 6: With initial wealth x = 0, the optimal exercise boundary varies for different values of β and
α. (Left): A higher value of β leads to a higher exercise boundary. (Right): A higher value of α shifts the
exercise boundary upward. The parameters here are taken to be same as those in Figure 3, except for α and
β specified in the figures above.

investor trades dynamically between the money market and stock S, and solves the Merton portfolio
optimization problem in (4).

Next, suppose that the investor decides to buy δ units of a European claim, each offering payoff
CT ∈ FT . The marginal utility price is defined as the per-unit price that the investor is willing to
pay for an infinitesimal position (δ ≈ 0) in the claim. This concept is introduced by Davis (1997).
He shows by a formal small δ expansion that the investor’s marginal utility price at time t is given
by

ĥt =
IE
{

Û ′(X̂∗
T )CT | Ft

}

M ′
t(Xt)

, t ∈ [0, T ], (71)

where X̂∗
T is the optimal terminal wealth for the Merton problem Mt(Xt) defined in (4), and Û ′ and

M ′
t are the derivatives with respect to the wealth-argument. Kramkov and Sirbu (2006) directly

adopt (71) as the definition of the marginal utility price for European claims, which we also adapt
to the case of American options.

Definition 13 The marginal utility price process (ht)0≤t≤T for an American option with payoff
process (gt)0≤t≤T is defined as

ht =
ess supτ∈Tt,T

IE
{

M ′
τ (X̂

∗
τ ) gτ | Ft

}

M ′
t(Xt)

, (72)

where Mt(Xt) is given in (4).

Among others, one important question is under what conditions will the marginal utility price
be independent of the investor’s wealth. In the classical setting for options without early exercise,
wealth-independence of marginal utility prices is very rare. In fact, Kramkov and Sirbu (2006)
show that only exponential and power utilities yield wealth-independent marginal utility prices for
any payoff and in any financial market.
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5.2 The Marginal Forward Indifference Price Formula

Following the definition of the classical marginal indifference price, we introduce the marginal
forward indifference price for our model. Henceforth, we will give the definitions and results based
on the Itô diffusion market settings described in Section 2, where the discounted stock price S
follows (2) and the option holder’s trading wealth Xt follows (3).

Definition 14 Let Ut(x) = u(x,At), with At =
∫ t

0 λ2
sds, be the investor’s forward performance

process, and assume X∗ is the optimal wealth process in (15) (cf. Theorem 3). The marginal
forward indifference price process (p̃t)0≤t≤T for an American option with an Ft-adapted bounded
payoff process (gt)0≤t≤T is defined as

p̃t =
ess supτ∈Tt,T

IE {ux (X∗
τ , Aτ ) gτ | Ft}

ux(X∗
t , At)

. (73)

At first glance, the marginal forward indifference price in (73) might depend on the holder’s
risk preferences and wealth. However, as the next result shows, under a time-monotone forward
performance the marginal forward indifference price is independent of both of these inputs, and
is simply given as the expected discounted payoff under the MMM, regardless of the investor’s
forward performance criterion.

Theorem 15 The marginal forward indifference price of an American option with payoff process
(gt)0≤t≤T is given by

p̃t = ess sup
τ∈Tt,T

IEQ0{gτ | Ft}, (74)

where Q0 is the MMM. Consequently, p̃t is independent of both the holder’s wealth and his forward
performance criterion.

Proof. Comparing (73) and (74), we observe that it is sufficient to show that

ux (X∗
τ , Aτ )

ux (X∗
t , At)

= exp

(

−1

2

∫ τ

t

λ2
s ds −

∫ τ

t

λs dWs

)

, τ ∈ Tt,T . (75)

Indeed, since λ is bounded, this leads to the desired measure change from the historical measure P

to the MMM Q0.
Applying Itô’s formula to ux(X∗

t , At) and using the SDE (15) for X∗ gives

dux (X∗
t , At) = λ2

t

(

uxt(X
∗
t , At) + R(X∗

t , At)uxx(X∗
t , At) +

R(X∗
t , At)

2

2
uxxx(X

∗
t , At)

)

dt

+ λtR(X∗
t , At)uxx(X∗

t , At) dWt. (76)

Next, we show that the drift vanishes. First, it follows from differentiating u(x, t) in (11) that

uxt = ux − u2
xuxxx

2u2
xx

.

Using this and the fact that R(x, t) = −ux(x, t)/uxx(x, t) to (76), we see that the drift in (76)
becomes zero. As a result, the SDE (76) simplifies to

dux (X∗
t , At) = λtR(X∗

t , At)uxx(X∗
t , At) dWt

= −λtux(X∗
t , At) dWt.

24



This implies that the process (ux (X∗
t , At))t≥0 is given by the stochastic exponential representation

in (75). Hence, by a change of measure, formula (74) follows. .

Theorem 15 illustrates a crucial feature of the forward indifference pricing mechanism. If we
consider that, in a general Itô diffusion market, different investors adopt different forward perfor-
mances according to Theorem 3, then their marginal forward indifference prices for an American
claim will necessarily be the same, regardless of their wealth and choices of forward performance.
In particular, this is true for the stochastic volatility model in (22)-(23) and the basis risk model in
(63)-(64). In contrast, the classical marginal utility price for a general utility function is typically
wealth and utility dependent (Kramkov and Sirbu, 2006, Theorem 7). In the basis risk model
as a special case, Kramkov and Sirbu (2006) show that the marginal utility price is also found
from pricing under the MMM, thus coinciding with the forward counterpart, even though they are
derived from very different performance mechanisms.

6 Conclusions and Extensions

In summary, we have discussed the forward indifference valuation for American options in an
incomplete model with a stochastic factor. We have applied it to value American options under
stochastic volatility and model the early exercises of ESOs. The option holder’s optimal hedging
and exercising strategies are found from solving the underlying variational inequalities.

The forward indifference valuation mechanism is profoundly different from the one in the clas-
sical approach. This is best illustrated in Section 3, in which the exponential forward indifference
price is expressed in terms of relative entropy minimization with respect to the MMM, rather than
with respect to the MEMM, as is the case in the traditional setting. Lastly, we also introduced the
marginal forward indifference price. In contrast to the classical marginal utility price, the marginal
forward indifference price based on any time-monotone forward performance is independent of both
the investor’s wealth and the particular form of time-monotone forward performance, and is given
as the risk-neutral expectation under the MMM.

Several major challenges and interesting problems remain for future investigation. These in-
clude the existence and regularity results for the variational inequalities associated with the optimal
forward performance and the forward indifference price. The nonlinearity of the variational inequal-
ities also requires the development of efficient numerical schemes. Moreover, even though we have
focused on the valuation of American options, it is important to examine its impact in the host
of other applications where traditional utility valuation has been used, for example, credit deriva-
tives (Leung et al., 2008; Jaimungal and Sigloch, 2010), volatility derivatives (Grasselli and Hurd,
2008), insurance products (Bayraktar and Ludkovski, 2009), and order book modeling (Avellaneda
and Stoikov, 2008). In all of these, the exponential utility is chosen for its convenient analytic
properties. The forward performance criterion provides a convenient tool to i) move away from
exponential utility, and ii) remove the horizon dependence.

A Admissibility and Characterization of Time-Monotone Forward

Performances

Musiela and Zariphopoulou (2010a) have shown that there exists a class of admissible initial condi-
tions, u0(x), for which the time-monotone performance is well defined and the associated optimal
portfolio process can be explicitly constructed. In this appendix, we highlight some of the main
results relevant to our study.
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The class of admissible initial conditions is given via a positive, finite Borel measure which is,
in turn, linked with a space-time harmonic function (see (78) and (80) below). As in Musiela and
Zariphopoulou (2010a), we define the set of measures B+ (R) by

B+ (R) =

{

ν ∈ B (R) : ∀B ∈ B, ν(B) ≥ 0 and

∫

R

eyxν (dy) < ∞, x ∈ R

}

. (77)

Proposition 16 (Proposition 3 of Musiela and Zariphopoulou (2010a)) (i) Let ν ∈ B+ (R). Then,
the function h defined, for (x, t) ∈ R× [0,+∞) , by

h (x, t) =

∫

R

eyx− 1
2
y2t − 1

y
ν (dy) + C, (78)

is a strictly increasing solution to the PDE:

ht +
1

2
hxx = 0. (79)

(ii) Assume that h above is of full range for each t ≥ 0, and let h(−1) : R × [0,+∞) → R be its
spatial inverse. Then, the function u defined by

u (x, t) = −1

2

∫ t

0
e−h(−1)(x,s)+ s

2 hx

(

h(−1) (x, s) , s
)

ds +

∫ x

0
e−h(−1)(z,0)dz, (80)

for (x, t) ∈ R × [0,+∞) , is an increasing and strictly concave solution of the PDE (11).

The above result yields a class of admissible initial data for a forward performance process.
Precisely, a function u0 : R → R is admissible, if it can be represented as

u0 (x) =

∫ x

0
e−h(−1)(z,0)dz, x ∈ R, (81)

where h(−1) is the spatial inverse of h defined in (78). Moreover, once the measure ν in (78) is
defined, the function h yields directly a dynamic preference function u satisfying (11).

The following result, taken from Musiela and Zariphopoulou (2010a), provides the explicit
construction of the optimal portfolio and the optimal wealth process. In establishing this result,
they rigorously proved the admissibility of the optimal portfolio π∗ under an integrability condition
on the measure ν given in (82) below.

Theorem 17 (Theorem 4 of Musiela and Zariphopoulou (2010a)) (i) Let h be a strictly increasing
solution to (79), for (x, t) ∈ R× [0,+∞) , and assume that the associated measure ν satisfies

∫

R

eyx+ 1
2
y2tν (dy) < +∞. (82)

Let also At be as in (10) and introduce mt, t ≥ 0, as

mt =

∫ t

0
λs dWs.

Define the processes X∗
t and π∗

t by

X∗
t = h

(

h(−1) (x, 0) + At + mt, At

)

(83)
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and

π∗
t = hx

(

h(−1) (X∗
t , At) , At

) λt

σt
, (84)

for t ≥ 0, x ∈ R with h as above and h(−1) standing for its spatial inverse. Then, the portfolio π∗
t

is admissible and generates X∗
t , i.e.,

X∗
t = x +

∫ t

0
σsπ

∗
s (λs ds + dWs) . (85)

(ii) Let u be the associated with h increasing and strictly concave solution to (11). Then, the
process u (X∗

t , At) , t ≥ 0, satisfies the SDE

du (X∗
t , At) = ux (X∗

t , At)σtπ
∗
t dWt, (86)

with X∗
t and π∗

t as in (83) and (84).
(iii) Let Ut (x), t ≥ 0, x ∈ R be given by (12) with u0 being an admissible initial condition.

Then, the processes X∗
t and π∗

t are optimal.

From (14) and (80), it can be shown that the local risk tolerance function is given by

R(x, t) = hx

(

h−1(x, t), t
)

, (87)

with h as in (78). Since both h(x, t) and u(x, t) are completely characterized by the measure ν,
the same holds for the local risk tolerance function R(x, t) in (87). In Example 12 of Musiela
and Zariphopoulou (2010a), it was shown that the measure linked to the parametric risk tolerance
function R(x, t;α, β) in (17) is given by

ν(dy) =

√
β

2

(

δ√α + δ−√
α

)

,

with δ±√
α are Dirac measures at ±√

α. Hence, it is clear that this measure satisfies the integrability
condition (82) in Theorem 17. Finally, in view of (78), the associated space-time harmonic function
is given by

h(x, t) =

√

β

α
e−

1
2
αt sinh(

√
αx).

Using this, the optimal portfolio and wealth processes are in turn explicitly constructed as in (84)
and (85).
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