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Abstract

This paper studies the problem of understanding implied volatilities from options written on
leveraged exchanged-traded funds (LETFs), with an emphasis on the relations between LETF
options with different leverage ratios. We first examine from empirical data the implied volatility
skews for LETF options based on the S&P 500. In order to enhance their comparison with non-
leveraged ETFs, we introduce the concept of moneyness scaling and provide a new formula that
links option implied volatilities between leveraged and unleveraged ETFs. Under a multiscale
stochastic volatility framework, we apply asymptotic techniques to derive an approximation for
both the LETF option price and implied volatility. The approximation formula reflects the role
of the leverage ratio, and thus allows us to link implied volatilities of options on an ETF and its
leveraged counterparts. We apply our result to quantify matches and mismatches in the level and
slope of the implied volatility skews for various LETF options using data from the underlying
ETF option prices. This reveals some apparent biases in the leverage implied by the market
prices of different products, long and short with leverage ratios two times and three times.
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scaling
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1 Introduction

Exchange-traded funds (ETFs) are products that track the returns on various financial quantities.
For example, the SPDR S&P 500 ETF (SPY) tracks the S&P 500 index, so a share in the SPY
should yield the identical daily return as that index. Other ETFs track commodities and even
volatility indices like the VIX. Except for an expense fee, they are a low-cost and simple tool for
speculation that have become increasingly popular. Their speculative use has been attributed for
instance to a recent rise in the value of commodities in the past few years. In the US, the ETF
market has grown from a dozen funds with one billion dollars in assets in 1995 to over a thousand
funds with $1.5 trillion in assets as of January 2012. For many investors, ETFs provide various
desirable features such as liquidity, diversification, low expense ratios and tax efficiency.

Some ETFs, called leveraged ETFs (LETFs), promise a fixed leverage ratio with respect to a
given underlying asset or index. Among others, the ProShares Ultra S&P500 (SSO) is an LETF
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on the S&P 500 with leverage ratio β = +2, which is supposed to generate twice the daily return
of the S&P 500 index, minus an expense fee. The leverage ratio can also be negative, meaning the
LETF is taking a short position in the underlying’s returns. In other words, by longing an inverse
LETF, an investor can short the underlying without conducting a short-selling transaction or facing
the associated margin requirement. As an example, the ProShares UltraShort S&P500 (SDS) is an
LETF on the S&P 500 with β = −2. There are also triple leveraged LETFs, such as ProShares
UltraPro S&P 500 (UPRO) with β = +3, and ProShares UltraPro Short S&P 500 (SPXU) with
β = −3. Surprisingly, even during the political climate for deleveraging in the aftermath of the 2008
Financial Crisis, markets for options on LETFs, which contribute an additional layer of leveraging,
have grown, and it is important to analyze how these markets reflect volatility risk.

We analyze options (puts and calls) written on various LETFs. Since different LETFs are
supposed to track the same underlying index or ETF, these funds and their associated options have
very similar sources of randomness. This gives rise to the question of consistent pricing of options
on ETFs and LETFs. Specifically, we discuss the dynamics of leveraged ETFs and analyze the
implied volatility surfaces derived from options prices on leveraged and unleveraged ETFs through
stochastic volatility models. Our empirical evidence suggests potential price discrepancies among
ETF options with different leverage ratios. We also introduce the concept of moneyness scaling,
and provide a new formula that links option implied volatilities between leveraged and unleveraged
ETFs. Moreover, we discuss another interpretation of moneyness scaling through the notion of
matching the dual Deltas between LETF and ETF options.

In existing literature, Cheng and Madhavan (2009) analyze the return dynamics of LETFs in
a discrete-time model. They illustrate that, due to daily re-balancing, the LETF value depends
on the realized volatility of the underlying index. This path-dependence can lead to value erosion
over time. In a related study, Avellaneda and Zhang (2010) discuss the performance and potential
tracking errors of LETFs and demonstrate the path-dependent characteristics under both discrete-
time and continuous-time frameworks. In a risk analysis on LETFs, Leung and Santoli (2012)
discuss the admissible leverage ratios induced by a risk measure, for example, value-at-risk (VaR)
and conditional VaR. In the context of constant proportion trading, Haugh (2011) derives similar
price dynamics of LETFs under a jump-diffusion model and examines the tracking errors of LETFs.
On the other hand, there is relatively little literature on pricing LETF options. In their theses,
Russell (2009) analyzes LETF implied volatilities with the CEV and other models, and Zhang
(2010) provides numerical results for pricing LETF options assuming the underlying follows the
Heston model. However, they do not compare LETF option prices with different leverage ratios.
Most recently, Ahn et al. (2012) propose an approximation to compute LETF option prices with
Heston stochastic volatility and jumps for the underlying.

Our study utilizes asymptotic methods for multiscale stochastic volatility models; see, for ex-
ample, Fouque et al. (2011), and references therein. This asymptotic approach has been applied
to analyze, for example, interest rate derivatives (Cotton et al., 2004), commodities derivatives
(Jaimungal and Hikspoors, 2008), and defaultable equity options (Bayraktar, 2008). In Fouque and
Kollman (2011) and Fouque and Tashman (2012), the authors propose a number of continuous-time
CAPM models with stochastic volatility. A key feature of their models is the CAPM Beta coeffi-
cient that represents the covariance of the asset and market returns divided by the market variance.
Using this terminology, one can also view LETFs as aiming to achieve a pre-specified CAPM Beta
by maintaining a fixed leverage ratio.

The main objective of the current paper is to apply the asymptotic methodology to reveal
the role of leverage ratio in the implied volatilities of LETF options. In particular, we obtain a
mathematical connection between the approximated unleveraged ETF implied volatility skew and
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its leveraged counterparts. This allows us to first calibrate the coefficients that appear in the
asymptotic expansion using unleveraged ETF option data, such as those on SPY, and infer the
approximated LETF options implied volatility. This procedure is practically important since the
index or unleveraged ETF option data tends to be significantly richer than the associated LETF
option data. Empirically, we observe that the unleveraged market typically has better liquidity and
more contracts with different strikes and maturities traded. Alternatively, we also calibrate the
approximated LETF IVs using the LETF option data directly, and compare the calibration results
from the two approaches.

The rest of the paper is organized as follows. In Section 2, we give an overview of pricing LETF
options under the Black-Scholes, local volatility, and stochastic volatility models. In Section 3.1,
we examine the empirical implied volatility term structures for various LETF options based on
the S&P 500. Motivated by the market observations, we introduce in Section 3.2 the concept of
moneyness scaling for linking LETF implied volatilities with different leverage ratios. In Section 4,
we consider the pricing of LETF options in a multiscale stochastic volatility framework, and derive
an approximation formula for implied volatilities. Then in Section 5, we analyze market option data
using these results. Finally, concluding remarks are provided in Section 6.

2 LETF Option Prices and Implied Volatilities

We begin our analysis by studying LETF option prices and their implied volatilities. Therefore,
our objective is to relate the implied volatilities of LETF options to the implied volatilities of
(unleveraged) ETF options, and understand the role of leverage ratio β.

2.1 LETF valuation in the Black-Scholes Model

In order to define implied volatility for LETF options, we first consider their pricing under the
constant volatility Black–Scholes model. Let (Xt)t≥0 be the reference index being tracked by an
ETF or its leveraged counterparts. Examples of the underlying index include the indices Nasdaq
100, S&P 500, Russell 2000, etc. Under the unique risk-neutral pricing measure P⋆, the underlying
asset price X follows the lognormal process:

dXt

Xt
= r dt+ σ dW ⋆

t , (1)

where W ⋆ is a standard Brownian motion under P⋆, along with constant interest rate r and constant
volatility σ.

A long-leveraged ETF (Lt)t≥0 based on X with a constant leverage ratio β ≥ 1 is constructed
as follows. At any time t, the cash amount of βLt (β times the fund value) is invested in X, and
the amount (β − 1)Lt is borrowed at the risk-free rate r ≥ 0. As is typical for all ETFs, a small
expense rate c ≥ 0 is incurred. For simplicity, we assume perfect tracking. Under the risk-neutral
pricing measure P⋆, the fund price process (Lt)t≥0 satisfies the SDE

dLt

Lt
= β

(
dXt

Xt

)
− ((β − 1)r + c) dt (2)

= (r − c) dt+ βσ dW ⋆
t . (3)

For a short-leveraged fund β ≤ −1, the cash amount βLt is shorted on X, and (1− β)Lt is kept in
the money market account. To model the fund price (Lt)t≥0, SDEs (2)-(3) also apply but with a
negative β. In practice, most typical leverage ratios are β = 1, 2, 3 (long) and −1,−2,−3 (short).
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From SDEs (1) and (3), the β-LETF can be written in terms of its reference index:

Lt

L0
=

(
Xt

X0

)β

e−(r(β−1)+c)t−
β(β−1)

2
σ2t. (4)

This means that the growth in the LETF Lt/L0 over time period length t is the underlying’s growth
Xt/X0 to the power β, but with time decays due to the expense fee and, most crucially, the build
up of volatility (because for β > 1 or β < 0, β(β − 1) > 0). Over longer times, the volatility will
lead to significant attrition in fund value, even if the underlying is performing well.

2.2 LETF Option Prices & Greeks

The no-arbitrage price of a European call option on L with terminal payoff (LT −K)+ on date T
is given by

C
(β)
BS(t, L;K,T ) := e−r(T−t)IE⋆{(LT −K)+ |Lt = L} = CBS(t, L;K,T, r, c, |β|σ), 0 ≤ t ≤ T (5)

where CBS(t, L;K,T, r, c, σ) is the standard Black-Scholes formula for a call option with strike K
and expiration date T when the interest rate is r, dividend rate is c, and volatility parameter is σ.
We observe from equation (5) that theoretical call prices on the LETF L can be expressed in terms
of the traditional Black-Scholes formula with volatility scaled by the absolute value of the leverage
ratio β.

Since the LETF price L is again a lognormal process, the computation of all Greeks for LETF
options follows in the same vein as in the Black-Scholes model. Here, we comment on the role of
leverage ratio β on Delta only. The Delta represents the holding in the LETF L in the dynamic
hedging portfolio, and is defined by the partial derivative with respect to the LETF value L:

∂C
(β)
BS

∂L
(t, L;K,T, r, c, σ) = e−c(T−t)N(d

(β)
1 ),

where N is the standard normal c.d.f. and

d
(β)
1 =

log(L/K) + (r − c+ β2σ2

2 )(T − t)

|β|σ
√
T − t

. (6)

One interesting question is how the Greeks of an ETF option is related to that of a β-LETF option
since these options share the same source of randomness. We shall address this in Proposition 2
below.

2.3 LETF Implied Volatility

One useful way to compare option prices, especially across strikes and maturities, is to express each
of them in terms of its implied volatility (IV). Given the observed market price Cobsof a call on L
with strike K and expiration date T , the corresponding implied volatility I(β) is given in terms of
the inverse of the Black-Scholes formula for the LETF option:

I(β)(K,T ) = (C
(β)
BS)

−1(Cobs) =
1

|β|C
−1
BS(C

obs). (7)

Note we normalize by the |β|−1 factor in our definition of implied volatility so that they remain on
the same scale (i.e. the implied volatilities from the 2x LETF options are not typically double those
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from options on unleveraged ETFs). As a hypothetical special case, if the observed option price

coincides with the Black-Scholes model price, i.e. Cobs = C
(β)
BS(t, L;K,T ), then it follows from (5)

that the implied volatility reduces to

I(β)(K,T ) =
1

|β|C
−1
BS (CBS(t, L;K,T, r, c, |β|σ)) = 1

|β| |β|σ = σ.

As a result, if market prices follow the Black-Scholes model, all calls written on ETFs and LETFs,
regardless of the different leverage ratios, strikes and expiration dates, must have identical implied
volatility. The same conclusion follows for put options. Nevertheless, we will observe from empirical
data the well-known implied volatility skews for LETF options. The key question is how the level
of skews (slope) depends on the leverage ratio.

To this end, let us first draw insight from a model-free bound on the slope of the LETF option
implied volatility. Assuming the current LETF price is L and holding r, T , and β fixed, we consider
the implied volatility curve I(β)(K) as a function of strike K.

Proposition 1 The slope of the implied volatility curve admits the following bound:

−e−(r−c)(T−t)

|β|L
√
T − t

(1−N(d
(β)
2 ))

N ′(d
(β)
1 )

≤ ∂I(β)(K)

∂K
≤ e−(r−c)(T−t)

|β|L
√
T − t

N(d
(β)
2 )

N ′(d
(β)
1 )

, (8)

where dβ1 is given in (6) with σ = Iβ(K) and d
(β)
2 = d

(β)
1 − |β|I(β)(K)

√
T − t.

Proof. By definition, the implied volatility I(K), as a function of K, satisfies the equality Cobs =
CBS(t, L;K,T, r, c, |β|I(β)(K)). In the absence of arbitrage, the observed and Black-Scholes call
option prices must be decreasing in strike K. By chain rule, we have

∂Cobs

∂K
=

∂CBS

∂K
(|β|I(β)(K)) + |β|∂CBS

∂σ
(|β|I(β)(K))

∂I(β)(K)

∂K
≤ 0. (9)

Since the Black-Scholes Vega ∂CBS

∂σ
> 0 for calls and puts, we rearrange to obtain the upper bound

on the slope of the implied volatility curve:

∂I(β)(K)

∂K
≤ − 1

|β|
∂CBS/∂K

∂CBS/∂σ
(|β|I(β)(K)), (10)

where the partial derivatives are evaluated with volatility parameter (|β|I(β)(K)). Similarly, the
fact that put prices are increasing in strike K implies the lower bound:

∂I(β)(K)

∂K
≥ − 1

|β|
∂PBS/∂K

∂PBS/∂σ
(|β|I(β)(K)), (11)

where PBS is the Black-Scholes put option price. Recall that puts and calls with the same K and
T also have the same implied volatility I(β)(K). Hence, combining (10) and (11) gives (8).

The bound (8) means that the slope of the implied volatility curve cannot be too negative or
too positive. It also reflects that a higher leverage ratio in absolute value will scale both the upper
and lower bounds, making the bounds more stringent. Intuitively, this suggests that the implied
volatility curve for LETF options would be flatter than that for ETF options. Our empirical analysis
(for instance, Figure 2) also confirm this pattern over a typical range of strikes. We observe however

that the leverage ratio β also appears in d
(β)
1 and d

(β)
2 , so the overall scaling effect is nonlinear.
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3 LETF Implied Volatilities and Moneyness Scaling

We now turn to data and compare the implied volatilities from options on various ETFs and LETFs
that track the S&P 500 index (SPX). For each expiration date, the implied volatility curve is plotted
as a function of log-moneyness

LM = log

(
strike

(L)ETF price

)
.

Based on the observed market IVs, we will then propose the method of moneyness scaling to view
and compare these IV curves in Section 3.2.

3.1 Empirical Implied Volatilities

First, we look at the IVs for options on SPX and those on the ETF SPY that tracks SPX. The
implied volatilities are remarkably close: for August 23, 2010, we show the first eight maturities in
Figure 1.

Next, we look at how implied volatilities on SPY and the 2x LETF SSO compare. On August 23,
2010, SSO has only five maturities, but generally strike prices over a broader range. Figure 2 shows
the implied volatilities at each of the common maturities and the ratio of the implied volatilities
(interpolating the SPY IVs in LM to match them up). In Figure 2(f), we illustrate the IV ratios
between SSO and SPY options, for long and short maturities. As the log-moneyness increases, the
ratio increases from about 0.8 to around 1.2. The ratio is closest to 1 when the log-moneyness is
slightly greater than zero (near-the-money).

We now turn to the implied volatilities on the −2x LETF SDS. Figure 3 shows the implied
volatilities at each of the available maturities on August 23, 2010, as well as the ratios of the implied
volatilities. In contrast to the SSO IVs, the IV ratio between SDS and SPY increases from about
0.4 to around 1.8 as the log-moneyness increases, and the range is wider than that between SPY
and SSO. Again, the ratio is closest to 1 when the log-moneyness is slightly greater than zero
(near-the-money).

Our first observation is that the implied volatilities from leveraged and unleveraged ETF options
of the same log-moneyness and maturity are clearly not the same. The SSO IVs decrease with LM,
have a shallower negative skew as compared with SPY, and cross near-the-money. On the other
hand, SDS IVs increase with LM, as they are short in the S&P 500, and they also cross the SPY IV
skew near the money. In addition, for both SSO:SPY and SDS:SPY ratios, they have an apparent
structure of increasing as LM increases, being closest near-the-money. In the next section, we
will analyze how well theses structures can be captured in the framework of multiscale stochastic
volatility models.

3.2 Implied Volatility Comparison via Moneyness Scaling

The most salient features of the empirical implied volatilities in Figures 1-3 are: (i) the IV curve for
SSO (β = 2) appears to be flatter than that for SPY (β = 1), and (ii) the IV curve for SDS (β = −2)
is upward sloping as opposed to downward sloping like those for SPY (β = 1) and SSO (β = 2). The
second observation is intuitive because higher implied volatility is commonly associated with more
bearish options positions, such as OTM puts, written on the S&P 500 index X. For β > 0, this
corresponds to the LETF puts with strikes less than the spot LETF price. For β < 0, the bearish
positions correspond to the LETF calls with strike greater than the spot LETF price, giving rise
to an upward sloping implied volatility. In fact, these features are persistent across other dates,
including a year-long dataset which we will analyze in Section 5.
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Figure 1: SPX (blue cross) and SPY (red circles) implied volatilities on August 23, 2010 for different
maturities (from 26 to 481 days) plotted against log-moneyness.
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Figure 2: SPY (blue cross) and SSO (red circles) implied volatilities against log-moneyness (LM) for in-
creasing maturities. Panel (f) shows SSO:SPY implied volatility ratios for different maturities.
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Figure 3: SPY (blue cross) and SDS (red circles) implied volatilities against log-moneyness (LM) for in-
creasing maturities. Figure 3(f) shows SDS:SPY implied volatility ratios for different maturities.

9



In order to explain these patterns, we introduce the idea of linking implied volatilities between
ETF and LETF options via the method of moneyness scaling. This will be useful for traders
to compare the option prices across not only different strikes but also different leverage ratios,
and potentially identify option price discrepancies. One plausible explanation for the different IV
patterns is that different leverage ratios correspond to different underlying dynamics. Therefore,
the distribution of the terminal price of any β-LETF naturally depends on the leverage ratio β.

In a general stochastic volatility model, we can write the log LETF price as

log

(
LT

L0

)
= β log

(
XT

X0

)
− (r(β − 1) + c)T − β(β − 1)

2

∫ T

0
σ2
t dt,

where (σt)t≥0 is the stochastic volatility process. The terms log
(
LT

L0

)
and log

(
XT

L0

)
are the log-

moneyness of the terminal LETF value and terminal ETF value. Next, we condition on that

the terminal (random) log-moneyness log
(
XT

X0

)
equal to some constant LM (1), and compute the

conditional expectation of the β-LETF log-moneyness. This leads us to define

LM (β) := βLM (1) − (r(β − 1) + c)T − β(β − 1)

2
IE⋆

{∫ T

0
σ2
t dt
∣∣ log

(
XT

X0

)
= LM (1)

}
. (12)

In other words, LM (β) is the best estimate for the terminal log-moneyness of LT , given the terminal

value log
(
XT

X0

)
= LM (1). This equation strongly suggests a relationship between the log-moneyness

between ETF and LETF options, though the conditional expectation in (12) is non-trivial.
In order to obtain a more explicit and useful relationship, let us consider the simple case with a

constant σ as in the Black-Scholes model. Then, equation (12) reduces to

LM (β) = β LM (1) − (r(β − 1) + c)T − β(β − 1)

2
σ2T. (13)

By this formula, the β-LETF log-moneyness LM (β) is expressed as an affine function of the unlever-
aged ETF log-moneyness LM (1). The leverage ratio β not only scales the log-moneyness LM (1),
but also plays a role in two constant terms.

Interestingly, the moneyness scaling formula (13) can also be derived using the idea of dual Delta
matching under the Black-Scholes model. To this end, the dual Deltas of the LETF call and put
options are defined, respectively, by the partial derivatives of their prices with respect to strike (see
Reiss and Wystup (2001)):

∂C
(β)
BS

∂K
(t, L;K,T, r, c, σ) = −e−r(T−t)N(d

(β)
2 ),

∂P
(β)
BS

∂K
(t, L;K,T, r, c, σ) = e−r(T−t)N(−d

(β)
2 ), (14)

where d
(β)
2 = d

(β)
1 − |β|σ

√
T − t (see (6)).

Proposition 2 Under the Black-Scholes model, the dual Delta of a β-LETF call (resp. put), with
log-moneyness LM (β) defined in (13), coincides with
(i) the dual Delta of an ETF call (resp. put) with log-moneyness LM (1) if β > 0, or
(ii) the negative of the dual Delta of an ETF put (resp. call) with log-moneyness LM (1) if β < 0.
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Proof. Applying (13) to the dual Delta of the β-LETF call, we get

−e−r(T−t)N(d
(β)
2 ) = −e−r(T−t)N

(
−LM (β) + (r − c− β2σ2

2 )(T − t)

|β|σ
√
T − t

)

= −e−r(T−t)N

(
β

|β| ·
−LM (1) + (r − σ2

2 )(T − t)

σ
√
T − t

)

= −e−r(T−t)N
(
sign(β) d

(1)
2

)
. (15)

For β > 0, equality (15) indeed yields the dual delta for the ETF call with log-moneyness LM (1).

For β < 0, then −e−r(T−t)N(−d
(1)
2 ) in (15) is the negative of the dual delta of an ETF put with

log-moneyness LM (1) (see (14)). The LETF put case follows the same line of proof.
As a related result, the risk-neutral probability of expiring in-the-money for an ETF call with

log-moneyness LM (β) is the same as that for an LETF call for β > 0, or an LETF put for β < 0,
with log-moneyness LM (β). Precisely, from (4) and (13) we see that

Q

{
log(XT /X0) > LM (1)

}
= Q

{
log(LT /L0) ≷ LM (β)

}
, for β ≷ 0.

This also means that, under the Black-Scholes model, the price of an ETF binary call with log-
moneyness LM (1), if traded, should be equal to the price of an LETF binary call with log-moneyness
LM (β) for β > 0, and an LETF binary put with log-moneyness LM (β) for β < 0.

In the same spirit, we can apply (13) to link the log-moneyness pair (LM (β), LM (β̂)) of LETFs
with different leverage ratios (β, β̂), namely,

LM (β) =
β

β̂

(
LM (β̂) + (r(β̂ − 1) + ĉ)T +

β̂(β̂ − 1)

2
σ2T

)
− (r(β − 1) + c)T − β(β − 1)

2
σ2T, (16)

where ĉ is the fee associated with the β̂-LETF.
In summary, the proposed moneyness scaling method is a simple and intuitive way to identify the

appropriate pairing of ETF and β-LETF IVs. In other words, for each β-LETF IV, the associated
log-moneyness LM (β) can be viewed as a function of the log-moneyness LM (1) associated with the
unleveraged ETF. Consequently, we can plot the IVs for both the β-LETF and ETF over the same
axis of log-moneyness LM (1) (see Figure 4). As a result, we can compare the LETF IVs with the
ETF IVs by plotting them over the same log-moneyness axis. In practical calibration, we do not
observe or assume a constant volatility σ. In order to apply moneyness scaling formula (13), we
replace σ with the average IV across all available strikes for the ETF options. A more cumbersome
alternative way is to estimate the conditional expectation of the integrated variance in (12). The
expected variance σ2

t at time t ≤ T conditioned on the terminal value of the underlying is not easily
computable even for specific models. It becomes explicit in the Black-Scholes model with constant
volatility, as stated in (13).

Next, we apply the log-moneyness scaling to the empirical IVs. In Figure 4, we plot both the
ETF and LETF IVs after moneyness scaling on August 23, 2010 with 54 days to maturity. As we
can see, the mapping works remarkably well as the LETF and ETF IVs overlap significantly, except
in the SPXU case. In contrast to Figures 1-3, the IVS for the short LETFs, SDS and SPXU, are
now downward sloping and are almost parallel with the SPY IVs. As a result, the log-moneyness
scaling allows us to visibly discern the potential mismatch between ETF and LETF IVs.
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Figure 4: SPY (blue cross) and LETF (red circles) implied volatilities after moneyness scaling on August
23, 2010 with 54 days to maturity, plotted against log-moneyness of SPY options.

4 Implied Volatility Asymptotics for LETF Options

In this section, we study LETF option implied volatilities within a multiscale stochastic volatility
framework. An asymptotic approximation will allow us to examine the role played by the leverage
ratio β in a parsimonious fashion. Starting in the class of two-factor diffusion stochastic volatility
models described by their characteristic time scales of fluctuation (one fast mean-reverting, one
slowly varying), the implied volatility approximation allows us to trace how β impacts the level and
skew structure, as well as the term-structure from LETF options, as compared to the unleveraged
ETF options. Just as implied volatility can be seen as a synoptic quantity that is useful in visualizing
the departure of market options data from a constant volatility theory, the group parameters1 iden-
tified by the asymptotics provides a lens through which to analyze relationships between leveraged
and unleveraged implied volatility surfaces.

1These are parameters that group together some of the stochastic volatility model parameters. We refer to Fouque
et al. (2011).
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Under a risk neutral measure IP ⋆, the reference index X, the LETF L, fast volatility factor Y
and slow volatility factor Z are described by the system of SDEs:

dXt = rXt dt+ f(Yt, Zt)Xt dW
(0)⋆
t (17)

dLt = (r − c)Lt dt+ βf(Yt, Zt)Lt dW
(0)⋆
t (18)

dYt =

(
1

ε
α(Yt)−

1√
ε
η(Yt)Λ1(Yt, Zt)

)
dt+

1√
ε
η(Yt) dW

(1)⋆
t (19)

dZt =
(
δ ℓ(Zt)−

√
δ g(Zt)Λ2(Yt, Zt)

)
dt+

√
δ g(Zt) dW

(2)⋆
t . (20)

Here, the standard IP ⋆-Brownian motions
(
W (0)⋆,W (1)⋆,W (2)⋆

)
are correlated as follows:

d〈W (0)⋆,W (1)⋆〉t = ρ1 dt, d〈W (0)⋆,W (2)⋆〉t = ρ2 dt, d〈W (1)⋆,W (2)⋆〉t = ρ12 dt ,

where |ρ1|, ρ2|, |ρ12| < 1, and 1+2ρ1ρ2ρ12−ρ21−ρ22−ρ212 > 0, in order to ensure positive definiteness
of the associated covariance matrix. The correlation coefficients capture skew effects that are an
important feature of typical implied volatility surfaces. Under the pricing measure IP ⋆, Λ1(y, z) and
Λ2(y, z) are the associated market prices of volatility risk. The dynamics of Y and Z under the
historical measure IP are given by setting Λ1 and Λ2 to zero in (19) and (20) (and replacing the
Brownian motions by IP -Brownian motions).

The small positive parameter ε corresponds to the short mean-reversion time scale of the fast
volatility factor Y . The coefficients α(y) and η(y) need not be specified for our asymptotic analysis,
as long as the corresponding process Y is mean-reverting (ergodic) under IP , and has a unique
invariant distribution denoted by Φ that is independent of ε. We assume that the volatility function
f is positive, smooth in z, and such that f2(·, z) is integrable with respect to Φ. While specifying ε
is not needed here (it will be contained in terms calibrated from data), one typically thinks of this
fast factor as capturing mean-reversion in volatility on the scale of a few days.

On the other hand, the small positive parameter δ characterizes the slow volatility factor Z.
The coefficients ℓ(z) and g(z) need not be specified for our analysis. Again δ does not need to be
specified at this stage (it will appear in parameters calibrated from data), but one may think of the
slow factor as describing volatility fluctuations on a time scale of a few months.

This class of models has been applied to price equity options (that is, on X) in Fouque et al.
(2011), where further technical details and empirical motivation are provided. Next, we investigate
the impact of leverage β on the pricing of LETF options and their implied volatilities.

4.1 Options on Index or Unleveraged ETF

We first consider the pricing of a European option on X and its implied volatility. The no arbitrage
price of a European option with terminal payoff h(XT ), representing either a call or put option, is
given by

P ε,δ(t,Xt, Yt, Zt) = IE⋆
{
e−r(T−t)h(XT ) | Xt, Yt, Zt

}
.

The function P ε,δ(t, x, y, z) solves a high-dimensional partial differential equation. This is very com-
putationally intensive to solve and does not lead to efficient calibration procedures. Alternatively,
we apply the perturbation theory, as discussed in Fouque et al. (2011), in order to simplify the
calibration problem and shed light on the implied volatilities.

We summarize the main steps. In the following, we denote by 〈·〉 averaging with respect to the
invariant distribution Φ. We define:
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1. The averaged effective volatility σ̄(z) is defined by

σ̄2(z) = 〈f2(·, z)〉 =
∫

f2(y, z)Φ(dy). (21)

2. The corrected volatility parameter σ⋆(z) is composed of σ̄ adjusted by a small term from the
market price of volatility risk from the fast factor Y :

σ⋆(z) =
√

σ̄2(z) + 2V ε
2 (z), (22)

where V ε
2 (z) is of order

√
ε and is given by

V ε
2 (z) =

√
ε

2

〈
ηΛ1

∂φ

∂y

〉
. (23)

Here φ(y, z) is a solution to the Poisson equation:

1

2
η2(y)

∂2φ

∂y2
+ α(y)

∂φ

∂y
= f2(y, z) − σ̄2(z). (24)

Note that φ is defined up to an arbitrary additive function of z, but this will play no role in
the approximation below.

3. The three group parameters: V ε
3 containing the correlation ρ1 between shocks to the fast factor

Y and shocks to the index X is given by

V ε
3 (z) = −ρ1

√
ε

2

〈
ηf

∂φ

∂y

〉
. (25)

It is of order
√
ε. Next, V δ

0 contains the market price of volatility risk from the slow factor Z:

V δ
0 (z) = −g(z)

√
δ

2

〈
Λ2

〉
σ̄′(z), (26)

and V δ
1 contains the correlation ρ2 between shocks to the slow factor Z and shocks to the

index X

V δ
1 (z) =

ρ2g(z)
√
δ

2

〈
f
〉
σ̄′(z), (27)

and both V δ
0 and V δ

1 are of order
√
δ.

Proposition 3 For fixed (t, x, y, z), the European option price P ε,δ(t, x, y, z) is approximated by
P ⋆(t, x, z), where

P ⋆ = P ⋆
BS +

{
τV δ

0 + τV δ
1

(
x
∂

∂x

)
+

V ε
3

σ⋆

(
x
∂

∂x

)}
∂P ⋆

BS

∂σ
, (28)

and the order of accuracy is given by

P ε,δ = P ⋆ +O(ε log |ε|+ δ). (29)

Here, P ⋆
BS is the Black-Scholes call price with time-to-maturity τ = T − t and the corrected volatility

parameter σ⋆.
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We refer to (Fouque et al., 2011, Chapters 4-5) for the derivation and accuracy proof of these
formulas. Note that the stochastic volatility correction terms in (28) are comprised of Greeks of the
Black-Scholes price P ⋆

BS , in particular the Vega and the Delta-Vega.
In order to compute this approximated price P ⋆, only the group market parameters (σ⋆, V δ

0 , V
δ
1 , V

ε
3 )

need to be estimated from the term structure of implied volatilities obtained from European call and
put options. The price approximation (28) can be used to derive the implied volatility I associated
with P ε,δ defined by PBS(I) = P ε,δ. To do so, we define the variable Log-Moneyness to Maturity
Ratio by

LMMR =
log(K/x)

τ
. (30)

Proposition 4 The first-order approximation for the implied volatility is given by

I = b⋆ + τbδ +
(
aε + τaδ

)
LMMR+O(ε log |ε|+ δ), (31)

where the parameters (b⋆, bδ, aε, aδ) are defined in terms of (σ⋆, V δ
0 , V

δ
1 , V

ε
3 ) by

b⋆ = σ⋆ +
V ε
3

2σ⋆

(
1− 2r

σ⋆2

)
, aε =

V ε
3

σ⋆3
, (32)

bδ = V δ
0 +

V δ
1

2

(
1− 2r

σ⋆2

)
, aδ =

V δ
1

σ⋆2
. (33)

We refer to (Fouque et al., 2011, Section 5.1) for the derivation of these formulas. Note that V ε
3 is of

order
√
ε whereas V δ

0 and V δ
1 are both of order

√
δ. The implied volatility approximation shows that

the intercept b⋆ is of order one, the slope coefficients aε and aδ are of order
√
ε and

√
δ respectively,

and that bδ is of order
√
δ.

Remark 5 Proposition 4 describes an IV approximation that holds for a large class of multiscale
stochastic volatility models. Calibrating (σ∗, V δ

0 , V
δ
1 , V

ǫ
3 ) from implied volatilities reveals some av-

erages with respect to the functions f , Λ1, and Λ2. But since f , Λ1, and Λ2 are unspecified, this
allows for an enormous degree of freedom associated with these functions, and so the relationships
(22)-(27) do not impose constraints among (σ∗, V δ

0 , V
δ
1 , V

ǫ
3 ) in the calibration.

The approximations in Propositions 3 and 4 are valid with reasonably small ǫ and δ. The values
of ǫ and δ in (29) cannot be chosen to be arbitrarily small a priori. In fact, they are embedded
in the group parameters obtained from calibration. Since the parameters (σ∗)2, V δ

0 , V
δ
1 , and V ǫ

3 are
proportional to square root of δ and ǫ, they are expected to be small (Fouque et al., 2011, Chap. 4-5).
One can back out these four parameters from (32)-(33), and they can be used to price exotic options
to the same degree of approximation within the multiscale stochastic volatility models (Fouque et al.,
2011, Chap. 6).

4.2 Options on Leveraged ETF

We now proceed to investigate the role of β in the coefficients and parameters in the first-order
approximation of LETF option prices. First, the risk-neutral price of a European LETF option
with terminal payoff h(LT ) is given by

P ε,δ
β (t, Lt, Yt, Zt) = IE⋆

{
e−r(T−t)h(LT ) | Lt, Yt, Zt

}
.

The main goal is to trace how the β introduced in the scaling of the volatility term in (18) enters
the various parts of the asymptotics. For simplicity, we assume the expense fee c = 0.
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Proposition 6 For fixed (t, x, y, z), the LETF option price P ε,δ
β (t, x, y, z) is approximated by

P ε,δ
β = P ⋆

β +O(ε log |ε|+ δ),

where

P ⋆
β = P ⋆,β

BS +

{
τV δ

0,β + τV δ
1,β

(
x
∂

∂x

)
+

V ε
3,β

σ⋆
β

(
x
∂

∂x

)}
∂P ⋆,β

BS

∂σ
.

Here the β-dependent group market parameters are:

V δ
0,β = |β|V δ

0 , V δ
1,β = β|β|V δ

1 , V ε
3,β = β3V ε

3 , σ⋆
β = |β|σ⋆, (34)

and P ⋆,β
BS is the Black-Scholes call option price with time-to-maturity τ = T − t and the corrected

volatility parameter σ⋆
β.

Proof. These follow from repeating Proposition 3 with f replaced by βf . Indeed we have the
following replacements: from (21), σ̄2 7→ β2σ̄2 and so σ̄ 7→ |β|σ̄; from (24), φ 7→ β2φ; from (23),
V ε
2 7→ β2V ε

2 , and so from (22), σ⋆ 7→ |β|σ⋆; from (25), V ε
3 7→ β3V ε

3 ; from (26), V δ
0 7→ |β|V δ

0 ; and
finally from (27), V δ

1 7→ β|β|V δ
1 .

Note that β enters the group parameters in different ways rather than just simply scaling them.
The next goal is to see how β impacts the calibration parameters that are fit to the implied volatility
surface.

Proposition 7 The implied volatility of an LETF option I(β) is defined as in (7) by

I(β) =
1

|β|P
−1
BS(Pβ),

where the inversion of the Black-Scholes formula is with respect to volatility. Its first-order approx-
imation, to order of accuracy O(ε log |ε|+ δ), is

I(β) ≈ b⋆β + τbδβ +
(
aεβ + τaδβ

)
LMMR, (35)

where the skew slopes are given in terms of the unleveraged ETF skew slopes by

aεβ =
1

β
aε, aδβ =

1

β
aδ, (36)

and where the level parameters (b⋆β, b
δ
β) are given in terms of the unleveraged ETF group parameters

(σ⋆, V δ
0 , V

δ
1 , V

ε
3 ) by

b⋆β = σ⋆ +
βV ε

3

2σ⋆

(
1− 2r

β2σ⋆2

)
, bδβ = V δ

0 +
βV δ

1

2

(
1− 2r

β2σ⋆2

)
. (37)

Proof. From Proposition 4, the approximation for |β|I(β) is given by

|β|I(β) ≈ b̂⋆β + τ b̂δβ +
(
âεβ + τ âδβ

)
LMMR,
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where LMMR = log(K/Lt)/τ is defined w.r.t. the LETF spot price Lt, and

b̂⋆β = σ⋆
β +

V ε
3,β

2σ⋆
β

(
1− 2r

σ⋆
β
2

)
, âεβ =

V ε
3,β

σ⋆
β
3 ,

b̂δβ = V δ
0,β +

V δ
1,β

2

(
1− 2r

σ⋆
β
2

)
, âδβ =

V δ
1,β

σ⋆
β
2 .

Substituting from (34) and dividing by |β| leads to (35) and the relations (36)-(37).
We note first that the first-order approximation reveals that the skew slope parameters have

the direct relationship (36), and so in particular the short leveraged ETFs implied volatilities have
the opposite signed slopes as we saw in Figure 3 for β = −2. The relationship between the level
parameters (the b’s) is not direct, but is given in (37) after passing through the V ’s. These relations
can be used to assess how less liquid LETF implied volatility surfaces relate to the more liquid ETF
IV surface within the framework of multiscale stochastic volatility, and we look at data in the next
section.

5 Analysis of ETF & LETF Implied Volatility Surfaces

Proposition 7 suggests a link between the approximated IVs of an ETF and its leveraged counterparts
within the multiscale stochastic volatility framework. The objective of this section is to examine
from market data the relationships between the calibrated implied volatility surfaces of ETF and
LETF options of different leverage ratios.

We consider two calibration approaches. On one hand, one can first calibrate the stochastic
volatility group parameters (σ⋆, V δ

0 , V
δ
1 , V

ε
2 , V

ε
3 ) using unleveraged ETF option data, such as those

on SPY. This will give the estimated (aεβ , b
⋆
β, a

δ
β , b

δ
β) for the approximated LETF options implied

volatility (35) for all available leverage ratios. This procedure is useful in practice especially
when the index/ETF option data is significantly richer than the LETF option data. Indeed, the
unleveraged market typically has better liquidity and more contracts with different strikes and
maturities traded. On the other hand, one can directly use the LETF option data to calibrate the
approximated IVs. We shall compare the two approaches to better under the IVs of LETF options.

5.1 From SPY IVs to LETF IVs

We first apply our IV approximation using option data from SPY to four associated leveraged ETFs,
namely, SSO, SDS, UPRO, and SPXU. Approximation (31) is fitted to the SPY IV surface to obtain
least-squares estimates of (aε, b⋆, aδ , bδ). Through (32)-(33), their values give (σ∗, V δ

0 , V
δ
1 , V

ǫ
3 ), which

are applied to (36) and (37) to yield our predictions for (aεβ, b
⋆
β , a

δ
β, b

δ
β). This calibration procedure

provides a way to compare IV surfaces across leverage ratios, all with reference to the unleveraged
ETF IV data.

In Figure 5, we overlay the IVs of LETF options from August 23, 2010 with the IV approximation
based on SPY option data. The LETF options shown have 117 days to maturity. The calibration
that leads to the predicted approximation involves using SPY options data of all available maturities.
Similarly, Figure 6 shows the data and predictions for 208-day maturity LETF options. In these
examples, we observe that the SPY-predicted slope is close to the LETF IV, except for one case
in panel 6(b) where the SDS IV looks relatively flat. The matching of IV slopes suggests that the
β-effect on the correlation or skew is quite consistent between the SPY and LETF data. On the
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Figure 5: IVs of LETF options with 117 days to maturity and prediction from SPY calibration.

other hand, there seems to be greater mismatch in the IV level between data and the prediction.
Since, in the theory, this is related through the b’s (see (37)) to the market prices of volatility risk,
it suggests differing risk premia across the different products.

Next, we examine the difference between prediction from SPY calibration and LETF option
data by repeating this procedure every day from September 1st 2009 to September 1st 2010. In
Figure 7, we show the relative errors in the predicted slopes and intercepts compared with a direct
least-squares fit to each LETF IV skew for each maturity.

Note that the prediction uses data from all maturities from one product, namely SPY, and its
performance is measured against a direct affine fit to a single maturity skew on another product.
The mean and standard deviation of the relative errors are reported in Table 1.

From these, we see that the slope errors are negatively biased, except for the SDS (where the
standard deviation of the slope fit error is greater by an order of magnitude than those for the
other LETFs). For the intercept, the ±2 LETFs have better consistency with SPY than the more
leveraged ±3 LETFs where the risk premium mismatch seems greater.
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Figure 6: IVs of LETF options with 208 days to maturity and prediction from SPY calibration.

SSO SDS UPRO SPXU

Intercept Relative Error
mean 0.13% -0.07% 1.41% 7.49%

std dev. 2.36% 3.36% 4.83% 20.60%

Slope Relative Error
mean -15.51% 15.04% -20.00% -3.76%

std dev. 8.94% 42.55% 9.51% 6.74%

Table 1: The relative errors of the SPY-predicted intercept and slope for the IVs for SSO, SDS, UPRO, and
SPXU, over the period September 2009 to September 2010.

5.2 Direct Fitting to LETF IV Surfaces

Now we fit the implied volatility approximation according to formula (35) of Proposition 7 directly
to LETF IV data across all maturities. In contrast to the SPY options, there are fewer traded
contracts on LETFs. As seen in Figure 8, the first-order approximations based on the multiscale
stochastic volatility, while not perfect, capture the implied volatility data across strikes and matu-
rities reasonably well, and they provide an visualization of the slope of the IV.
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Figure 7: Histogram of relative errors of SPY-calibrated predictions of the IV slopes and intercepts for SSO,
SDS, UPRO, SPXU, collected over the period September 2009 to September 2010.
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Figure 8: LETF options IVs and their calibrated first-order approximations for all available maturities on
August 23, 2010.
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Next, we consider how the empirical skew slopes respect the relations (36). To do so, we calibrate
daily the skew parameters (aεβ, a

δ
β) for β ∈ {1,±2,±3}. Then we fix an arbitrary mid-range maturity,

τ = 100 days, and look at the ratios

Rij :=
aεβi

+ τaδβi

aεβj
+ τaδβj

, i, j ∈ {1,±2,±3}, i 6= j,

for the 10 pairwise combinations. In theory, the ratios should be

Rij = βj/βi.

Of course this does not hold so cleanly in the data, and we are interested in any systematic deviation
from these relationships. Since it is not clear which data might be “preferentially correct”, we give
the five datasets equal weighting and calculate estimates of each βi as if βj were correct, and then
average over the four estimates for each βi.

That is, for each daily observation Rij , we can compute estimated

β̂j|i := βiRij, β̂i|j := βj/Rij . (38)

The histograms of the daily averaged estimates

β̄i =
1

4

∑

j 6=i

β̂i|j

are presented in Figure 9, and the means and standard deviations are in Table 2.

SPY SSO SDS UPRO SPXU

β̄ mean 1.0512 1.9840 -2.6314 2.4705 -2.9264

β̄ standard dev. 0.1092 0.1596 0.5101 0.2605 0.4780

Table 2: The mean and standard deviation of estimated β̄ over September 2009-September 2010 for SPY,
SSO, SDS, UPRO, and SPXU.

These results reflect the relative leverage ratios implied by the market. In particular, the SPY,
SSO and, surprisingly, the SPXU implied volatilities are consistent with their leverage ratios of 1, 2
and −3 respectively. However, implied volatility skews from SDS (β = −2) appear to systematically
overestimate the magnitude of leverage ratio, as if the LETF was more short than it is actually
supposed to be. In contrast, the skews from UPRO (β = 3) systematically underestimate the
leverage ratio, as if the LETF was not so ultra-leveraged. While these are findings are dependent
on our framework for analyzing the data, the systematic discrepancies are quite striking.
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Figure 9: Histograms of β̄i, the implied β from September 2009-September 2010 LETF implied volatilities.

23



6 Conclusion

The recent growth of leveraged ETFs and their options markets calls for research to understand
the inter-connectedness of these markets. In our study, we have investigated from both empirical
and theoretical perspectives implied volatilities of options on LETFs with different leverage ratios.
Our analytical results have led us to examine implies volatilities in several ways. First, we propose
the method of moneyness scaling for enhance the comparison of IVs with different leverage ratios.
Then, under the multiscale stochastic volatility framework, we use unleveraged ETF option data
to calibrate for the necessary parameters to arrive at a predicted LETF options implied volatility
approximation (see Proposition 7). This approach allows us to use the richer unleveraged index/ETF
option data to shed light on the less liquid LETF options market. Alternatively, we also calibrate
directly from LETF option data to obtain the approximated implied volatilities.

Our calibration examples confirm the approximate connection between ETF and LETF IVs
revealed by the approximation formulas (31) and (35) within the multiscale stochastic volatility
framework, while volatility risk premium may differ across LETF options markets, especially for
the double-short and triple-short LETFs. Of course, it will be of future interest to perform the
analogous analysis in other regimes that have been studied in the unleveraged case: large strike
(Lee (2004); Gulisashvili and Stein (2009)); long maturity (Tehranchi (2009)); or short time-to-
expiration (Berestycki et al. (2004)).

Leveraged exchange-traded products are also available for other reference indexes such as Nasdaq
100 and Russell 2000, as well as other asset classes such as commodities and real estate. For
volatility trading, there are the S&P 500 Short-Term VIX Futures Index ETN (VXX), and Mid-
Term VIX Futures Index ETN (VXZ), as well as options on these two ETNs traded on CBOE.
All these should motivate research to investigate the connection between derivatives prices and the
consistency thereof, as we have done under the multiscale stochastic volatility framework. In this
regard, models that are tractable and capable of capturing the characteristics of inter-connected
markets are highly desirable. A related issue is to quantify the leverage risks and the feedback effect
on market volatility created by ETFs and LETFs2, not to mention what might occur if a sizeable
LETF option market is not well studied and understood.
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