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Abstract

We study the problem of portfolio optimization in an incomplete market using deriva-
tives as well as basic assets such as stocks. In such markets, an investor may want
to use derivatives, as a proxy for trading volatility, for instance, but they should be
traded statically, or relatively infrequently, compared with assumed continuous trading
of stocks, because of the much larger transaction costs. We discuss the computational
tractability obtained by assuming exponential utility, and connection to the method of
utility-indifference pricing. In particular, we show that the optimal number of deriva-
tives to invest in is given by the optimizer in the Legendre transform of the indifference
price as a function of quantity, evaluated at the market price. This is illustrated in a
standard diffusion stochastic volatility model, when the indifference price is the solution
of a quasilinear PDE problem. We suggest some asymptotic approximations for the op-
timal derivative holding, first when it might be small, and second in the case of slowly
varying volatility.
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1 Introduction

In this article, we study the problem of portfolio optimization using stocks and derivatives,
where the performance is measured by expected exponential utility.

1.1 Background

Portfolio optimization problems within the context of continuous-time stochastic models of
financial variables have been, and continue to be, the subject of much research activity in
financial mathematics and engineering. A wide-ranging theory has been developed since the
papers of Merton [30, 31] for understanding the issue of optimal asset allocation for maximizing
expected utility under various sources of market incompleteness (such as transaction costs,
trading constraints or stochastic volatility), different utility prescriptions, the presence of
random endowments and so on. Key references, in particular for the duality theory used
heavily to obtain existence and uniqueness results in incomplete markets, are [27, 26], and
recent extensions can be found in [6, 36].

Typically, these results study the problem of optimizing over continuous trading strategies
in primitive (or underlying) securities such as stocks. However, traders have long been using
derivative securities as a proxy for some of the untradeable components in an incomplete
market. A standard example is a strangle which involves long positions in a European call
option with strike Ku and a European put option with the same maturity date T and a lower

2



strike Kl. Both options are out-of the money at the time of their purchase, so we assume
the current stock price S0 ∈ (Kl, Ku). The terminal payoff as a function of the stock price
on date T is shown in Figure 1. Such a position is often described as being “long volatility”,
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u

Figure 1: Strangle payoff function.

since the holder is rewarded by a significant move in the stock price, either up or down.
In this paper, we study the problem of incorporating derivatives along with stocks in the

investment problem. A crucial difference between the two asset classes is that transaction
costs on derivatives trades are significantly higher than on basic stocks. In addition, there
may be greater liquidity issues in the less frequently traded derivatives markets. We shall
assume, therefore, that stocks can be traded continuously, ignoring transaction costs, but
that options can only be bought or sold statically.

Other authors have studied a similar problem, but under different assumptions. Carr and
Madan [5] assumed the availability for trading of European options of all strikes, thereby
completing the market, and in a one-period equilibrium model. Liu and Pan [29] assumed
continuous trading of the derivatives, again completing the market in a different way. We
shall assume a given finite set of contingent claims available for purchase (or short sale) at
given unit market prices. For tractability, we will also assume the investor’s preferences to be
described by an exponential utility function.

In a complete market, derivatives are redundant because they can be replicated by dynamic
trading in the underlying. In that case, the problem studied here is not well-posed. The
utility-indifference pricing mechanism, introduced by Hodges and Neuberger [18], asks at
what price an investor is indifferent, with respect to maximum expected utility, about a given
derivatives position in an incomplete market. It turns out that this question, rephrased in
terms of quantity of derivatives for given market prices, yields the answer as to the optimal
static position to take in the derivatives.
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1.2 The Investment Problem

We describe here the problem in the simplest setting of one stock and one derivative. The
more general problem where there are many options available is studied in [20].

We suppose there is an investor with initial investment capital v > 0. He can trade
dynamically in a stock and a bank account. The stock price process is denoted S, and is
defined on a probability space (Ω,F , P ), where P is the investor’s subjective measure. For
simplicity, we take the interest rate to be zero throughout. The analysis can be modified for
a nonzero interest rate by switching to discounted variables.

He can also trade statically in a derivative security that pays the random amount G on
date T . The market price of the derivative is p.

Assumption 1.1 The payoff G is bounded.

Remark 1.2 Although the strangle given as an example in the previous section, and other
common strategies involving call option payouts are not bounded, we shall assume they are
replaced by their cutoff versions, where the cutoffs are conditioned on sufficiently extreme
events so as not to affect practical accuracy. For some relaxations of this assumption, see [9],
[3] or [22].

Assumption 1.3 The investor has an exponential utility function:

U(x) = −e−γx,

where γ > 0 is his risk-aversion parameter.

The investor buys α derivatives for price αp at time zero, and holds them till expiration
at time T . With his remaining capital v−αp, he trades continuously in the Merton portfolio,
that is, the stock and bank account. Let θt be the amount held in the stock at time t, and
(Xt)0≤t≤T the value of this latter portfolio

Xt = v − αp +

∫ t

0

θtdt.

Then the investor’s problem is to maximize over both the dynamic control θ and the static
derivative quantity α his expected utility of terminal wealth.

Let
u(x, αG, γ) = sup

θ
E

{−e−γ(XT +αG)
}

,

the optimal expected utility from trading the stock with initial capital x, and an option payout
(or random endowment) αG at the terminal time. Then the investor’s problem is to find

max
α

u(v − αp, αG, γ). (1)

This is an optimization of a function which is itself the value function of a stochastic
control problem. In the next section, we show that it is closely related to another control
problem, namely that of finding the utility-indifference price of the derivatives.
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2 Indifference Pricing and the Dual Formulation

We consider a market with two tradeable instruments: the stock, or the risky asset, S and
the riskless bond. We assume that S is a locally bounded (P,F)-semi-martingale where F is
a filtration on the given probability space satisfying the usual conditions.

2.1 Utility Indifference Prices

We start by defining the set of absolutely continuous (equivalent) local martingale measures
Pa (Pe) as

Pa = {Q ¿ P |S is a local (Q,F)-martingale},
Pe = {Q ∼ P |S is a local (Q,F)-martingale}.

The indifference price of the claim G is specified through the solutions of two stochastic
control problems. The first is the classical Merton optimal investment problem

M(x, γ) = sup
Θ
E

{−e−γXT
}

, (2)

where Θ is a suitable set of trading strategies made precise below. The second is the optimal
investment problem for the buyer of the claim,

u(x,G, γ) = sup
Θ
E

{−e−γ(XT +G)
}

. (3)

Clearly, u(x, 0, γ) = M(x, γ).
Then the (buyer’s) indifference price h of G is defined by

u(x− h(G, γ), G, γ) = M(x, γ). (4)

To be specific about the permissible trading strategies, we first introduce Pf (P ), the set
of measures in Pa with finite relative entropy with respect to P , where the relative entropy of
a measure, H(Q|P ) is defined

H(Q|P ) =

{
E

{
dQ
dP

log
(

dQ
dP

)}
, Q ¿ P ,

∞, otherwise.
(5)

Assumption 2.1 There exists an equivalent local martingale measure with finite relative en-
tropy

Pf (P ) ∩ Pe 6= ∅. (6)

We denote by Θ the set of S-integrable trading strategies for which the corresponding wealth
process is a martingale under all measures in Pf (P ) with respect to the filtration F.
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2.2 Dual Problem: Relative Entropy Minimization

It is convenient for interpretation and computation to study the dual of the buyer’s stochastic
control problem (3). The dual of the maximization of expected exponential utility over trading
strategies with a static option position is the problem of minimizing this option’s payoff over
a space of measures penalized by the relative entropy of the measure. Before stating these
results and related references, we sketch the relation between these problems.

2.2.1 Sketch of Duality Theory

Let us start by weakening the martingale equality constraint to an inequality

u(x,G, γ) = sup
θ
E {U(XT + G)} , (7)

s.t. EQ {XT} ≤ x, ∀Q ∈ Pf (P ). (8)

As G is bounded, we define ξ = XT + G. For a measure Q ∈ Pf (P ), a positive constant Λ,
and a trading strategy such that (8) holds,

E {U(ξ)} ≤ E
{

U(ξ)− Λ
dQ

dP
(ξ −G− x)

}
,

since we are adding a nonnegative quantity to the right hand side. Taking the supremum over
all allowable strategies ω by ω, which is equivalent to taking supremum over ξ’s, we get

sup
ξ
E {U(ξ)} ≤ E

{
V

(
Λ

dQ

dP

)}
+ Λ

(
x + EQ{G}) , ∀Q ∈ Pf (P ), and ∀Λ ≥ 0, (9)

where V (Λ) is the Fenchel-Legendre transform of U(x)

V (Λ) = sup
x∈R

(U(x)− Λx) =
Λ

γ
log

Λ

γ
− Λ

γ
, Λ ≥ 0. (10)

Note that E
{
V

(
ΛdQ

dP

)}
is finite for Λ < ∞ as Q is in Pf (P ). Furthermore, taking the infimum

in (9) over all possible Q’s and Λ’s, we get

sup
ξ
E {U(ξ)} ≤ inf

Λ≥0
inf

Q∈Pf (P )
E

{
V

(
Λ

dQ

dP

)}
+ Λ

(
x + EQ{G}) . (11)

Writing V (Λ) explicitly as defined in (10), the above reduces to

sup
π
E {U(ξ)} ≤ inf

Λ≥0
inf

Q∈Pf (P )

(
Λ

γ
log

Λ

γ
− Λ

γ
+ Λx + Λ

(
1

γ
H(Q|P ) + EQ{G}

))
. (12)

The optimizing Q in (12) does not depend on Λ, which will not be true for other common
utility functions, and in particular log and power.
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One part of the problem is showing the existence and uniqueness of Q̂ ∈ Pf (P ) that
minimizes

1

γ
H(Q|P ) + EQ{G}

under Assumption 2.1 and the boundedness assumption on G. In [9], Delbaen et al. reduce
this problem to the case, where G = 0 with a measure transformation and they conclude as
needed by using the results of Fritelli [16]. Given Q̂, the parameter Λ̂ that minimizes the
right hand side of (12) is given by

Λ̂ = γ exp

(
−γ

(
x + EQ̂{G}+

1

γ
H(Q̂|P )

))

which is strictly positive. From (10), the corresponding maximizer ξ̂ of the right hand side of
(9) is given by

ξ̂ = −1

γ
log

(
Λ̂

γ

dQ̂

dP

)
= X̂T + G.

With the above representation, we conclude that X̂T is a martingale under Q̂. Concluding
that the wealth is a stochastic integral of a trading strategy in Θ with respect to S is more
involved, and we refer the reader to Lemma 3.3 of [9], or Proposition 1.2.3 of [3]. Then X̂T is
optimal for the primal problem, because for any trading strategy in Θ, we have

E {U(ξ)} ≤ E
{

U(ξ)− Λ̂
dQ̂

dP
(ξ −G + x)

}
≤ E

{
U(ξ̂)− Λ̂

dQ̂

dP
(ξ̂ −G + x)

}
= E

{
U(ξ̂)

}
.

2.2.2 Main Duality Formula

For exponential utility, a duality result including a contingent claim in a general semi-
martingale setting was shown by Delbaen et al. [9]. They show the equality of the solutions

¶

µ

³

´

u(x,G, γ) = − exp

(
−γ inf

Q∈Pf (P )

(
EQ{G}+

1

γ
H(Q|P )

)
− γx

)
, (13)

and they conclude that the optimizers in both problems are achieved in their feasible sets.
Moreover, the minimizing measure is equivalent to P . They give different theorems corre-
sponding to different feasible sets of strategies.

Rouge and El Karoui [35] studied indifference pricing with a Brownian filtration using
backward stochastic differential equations. Kabanov and Stricker [25] showed that some of
the assumptions in [9] were superfluous. Becherer [3] extended the results of [9] by using the
extensions of [25]. It is worth noting that our set of feasible trading strategies corresponds
to Θ2 in [3]. The duality relation for general utility functions defined on R+ was considered
in [27], and for utility functions defined on R in [36]. However, these papers do not involve a
claim. The results were extended to include a claim in [6] and [33].
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2.3 Expressions for Indifference Prices

It is easy to see from the duality formula (13) that the dependence of the value function u
in (3) on the initial wealth x is simply through the multiplicative factor −e−γx. This is the
typical ansatz one would make in a dynamic programming approach to solving the problem
in Markovian models, and we see that the separation of variables is quite general. Since the
indifference price h, defined in (4), is merely an adjustment in initial wealth level for setting
G to zero, it immediately follows that

h(G, γ) =
1

γ
log

(
M(0, γ)

u(0, G, γ)

)
, (14)

and substituting the specific expressions for the duals of the buyer’s and Merton problems,
we can write

¶

µ

³

´

h(G, γ) = inf
Q∈Pf (P )

(
EQ {G}+

1

γ
H(Q|P )

)
− inf

Q∈Pf (P )

1

γ
H(Q|P ). (15)

Notice that h is independent of the initial wealth.

Indifference Price with an Alternative Expression

The entropy terms in (15) can be combined into one entropy term with a different prior
measure, the minimal entropy martingale measure, which is the measure minimizing the
relative entropy in Pf (P ):

Q0 = arg min
Q∈Pf (P )

H(Q|P ). (16)

Results on the existence and uniqueness of this measure can be found in Fritelli [16] and
Grandits and Rheinländer [17].

Theorem 2.1 (Theorem 2.2-5 of Fritelli [16] and Theorem 2.2 of Delbaen et al. [9]) Under
assumption (6), Q0 exists, is unique, is in Pf (P ) ∩ Pe and its density has the form

dQ0

dP
= c0e

−γX0
T , (17)

where X0
T is the optimal terminal wealth associated with the solution of the Merton problem

(2) and
log c0 = H(Q0|P ) < ∞.

Moreover, X0
T is attained by a trading strategy in Θ.

Proposition 2.2 Assume
dQ0

dP
∈ L2(P ). (18)

The indifference price h(G, γ) of the bounded claim G is equal to

h(G, γ) = inf
Q∈Pf (Q0)

(
EQ {G}+

1

γ
H(Q|Q0)

)
. (19)
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Proof: From (17), the relative entropy of a measure Q ¿ P with respect to P can be
written in terms of its relative entropy with respect to Q0 as

H(Q|P ) = H(Q|Q0) + H(Q0|P )− γEQ
{
X0

T

}
. (20)

If we choose Q in Pf (P ), the last term on the right hand side of (20) is zero as X0
T is a

martingale under Q. Moreover, Q is also in Pf (Q
0) as all terms in (20) except from H(Q|Q0)

are finite and Q0 ∼ P .
To deduce the reverse conclusion, we note that if the assumption given in (18) holds, eγ|X0

T |

is in L1(Q0) because

EQ0
{

eγX0
T

}
= E

{
dQ0

dP
eγX0

T

}
= c0 < ∞.

Using Lemma 3.5 of Delbaen et al. [9] for the random variable |X0
T |, we deduce that

EQ
{|X0

T |
} ≤ H(Q|Q0) + e−1EQ0

{
eγ|X0

T |
}

.

In other words, X0
T is in L1(Q) for all Q ∈ Pf (Q

0). As the last term on the right hand side
of (20) is now guaranteed to be finite for all Q ∈ Pf (Q

0), we conclude that Pf (Q
0) ⊂ Pf (P ).

But then the last term on the right hand side of (20) is zero for all Q ∈ Pf (Q
0). ¤

The expression (19) points out buyer’s tendency to price the claim with its worst-case
expectation penalized by the entropic distance from the prior risk-neutral measure, Q0.

As Q0 ∼ P , we can also apply the duality result to (19), and obtain

h(G, γ) = −1

γ
log

(
− sup

Θ
EQ0

{
−e−γ(X0

T +G)
})

. (21)

3 Utility Indifference Pricing

The investor who is contemplating buying α options at market price p will maximize her
expected terminal utility by choosing the optimal number of options (assuming it exists)

α∗ = arg max
α

u(x− αp, αG, γ). (22)

Throughout, we assume a linear pricing rule in the market. From the definition (4) of h, this
is equivalent to

α∗ = arg max
α

M(x− αp + h(αG, γ), γ),

= arg max
α
−e−γ(x−αp+h(αG,γ))−H(Q0|P ),

using (13) with G ≡ 0 and the definition (16) of Q0. Extracting the terms which depend on
α, this reduces to

α∗ = arg max
α

(h(αG, γ)− αp) . (23)
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In other words, the optimal derivatives position is found from the Fenchel-Legendre transform
of the indifference price as a function of quantity, evaluated at the market price. From this,
it is clear that existence and uniqueness of the solution to our optimization problem (22) will
depend on the strict concavity of the indifference price as a function of quantity, and the value
of the market price p.

To this end, in the next few sections, we study some properties of the indifference price
h(αG, γ) as a function of α and γ.

3.1 Dependence on the Risk-Aversion Parameter

Large Risk-Aversion Limit

As investors become more risk-averse, the price they are willing to pay for a contingent claim
tends to the subhedging price of the claim

lim
γ↑∞

h(G, γ) = inf
Q∈Pe

EQ{G}. (24)

In fact it is easy to show from (15) that the limit is the infimum of the expected payoff over
all measures in Pf (P ) ∩ Pe; however, to show that it is also the infimum over all measures in
Pe, requires more work. For a proof of the result, we refer the reader to the Corollary 5.1 of
[9].

Zero Risk-Aversion Limit

It was proved by Becherer [3] that in the limit as the risk aversion parameter tends to zero, the
indifference price goes to the expected payoff under the minimal entropy martingale measure:

lim
γ↓0

h(G, γ) = EQ0{G}. (25)

Monotonicity

Monotonicity of the indifference price as a function of the risk aversion parameter can be seen
directly from (15). For γ1, let us define the measure that attains the minimum in (15) as Q1,
which is guaranteed to exist by the duality result. Then,

h(G, γ1) = EQ1 {G}+
1

γ1

(
H(Q1|P )−H(Q0|P )

)
. (26)

The last term on the right hand side is nonnegative as Q0 is the minimal entropy martingale
measure. Dividing this positive term by γ2 > γ1 instead of γ1, we only make the right hand
side of (26) smaller:

h(G, γ1) ≥ EQ1 {G}+
1

γ2

(
H(Q1|P )−H(Q0|P )

)
. (27)
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As h(G, γ2) is the infimum of

EQ {G}+
1

γ2

(
H(Q|P )−H(Q0|P )

)

over Q in Pf (P ) and as Q1 is in this feasible set, we conclude that

EQ1 {G}+
1

γ2

(
H(Q1|P )−H(Q0|P )

) ≥ h(G, γ2). (28)

Combining equations (27) and (28), we conclude the monotonicity of the indifference price as
a function of the risk aversion parameter: h(G, γ1) ≥ h(G, γ2) for γ2 > γ1.

The results on the limits of the indifference price and its monotonicity are also given by
Rouge and El Karoui [35] in the context of Itô process models. They also show that the
indifference price takes all values between these bounds for different levels of the risk-aversion
parameter γ.

3.2 Extreme Quantity Asymptotics

Becherer [3] also notes that the indifference price is a decreasing function of the risk aversion
parameter and satisfies the property

h(αG, γ) = αh(G,αγ) for α > 0, (29)

which follows easily from (15). Therefore, the fair price of the claim G, introduced by Davis
in [7], and defined as

lim
α↓0

h(αG, γ)

α
,

the marginal value of introducing G, is given by:

lim
α↓0

h(αG, γ)

α
= lim

γ↓0
h(G, γ) = EQ0{G}.

Equations (24) and (29) imply that

lim
α↑∞

1

α
h(αG, γ) = inf

Q∈Pe

EQ {G} . (30)

Moreover,

lim
α↓−∞

1

α
h(αG, γ) = − lim

α↑∞
1

α
h (α(−G), γ) = − inf

Q∈Pe

EQ {−G} = sup
Q∈Pe

EQ {G} . (31)

The limit is known as the superhedging price of the claim.
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3.3 Differentiability

In this section, we prove the following:

Proposition 3.1 The derivative of the indifference price of αG with respect to α exists for
α ∈ R and

∂

∂α
h(αG, γ) = EQα {G} , (32)

where Qα is the measure minimizing entropy with respect to Pα over Pf (P
α), with

dPα

dP
= cαe−γαG, and cα =

(
E

{
e−γαG

})−1
. (33)

Proof: We directly calculate the limits in the definition of the derivative:

lim
ε↓0

h((α + ε)G, γ)− h(αG, γ)

ε
= lim

ε↑0
h((α + ε)G, γ)− h(αG, γ)

ε
= EQα{G}. (34)

By (14), the first limit is equal to

lim
ε↓0

1

γε
log

(
supΘ E{−e−γ(XT +αG)}

supΘ E{−e−γ(XT +(α+ε)G)}
)

. (35)

In terms of Pα, (35) can be expressed as

lim
ε↓0

1

γε
log

(
supΘ EP α {−e−γXT

}

supΘ EP α {−e−γ(XT +εG)}

)
. (36)

This expression is the limit as ε goes to zero of the indifference price per unit of εG options,
from the viewpoint of an investor with subjective measure Pα (compare with (14)), if we can
show that for this investor the set of allowable trading strategies is Θ. In other words, we
need to show that Pf (P ) = Pf (P

α). Using the definition of Pα given in (33) and that G is
bounded, the relative entropy of a measure Q with respect to Pα can be written in terms of
its entropy with respect to P as

H(Q|Pα) = H(Q|P )− log cα + EQ{γαG}. (37)

Equality of the sets follows trivially.
As Pα ∼ P , (6) is satisfied with the new prior Pα, and we can use the duality result to

re-write (36) as

lim
ε↓0

inf
Q∈Pf (P α)

(
EQ{G}+

1

γε
H(Q|Pα)

)
− inf

Q∈Pf (P α)

(
1

γε
H(Q|Pα)

)
. (38)

Taking the limit as ε goes to zero is equivalent to taking the limit as the risk aversion parameter
goes to zero with the prior Pα fixed, and we conclude by (25) that the limit exists and is
equal to EQα {G}. The result for the second limit in (34) follows similarly. ¤
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3.4 Strict Concavity

The indifference price is concave in α as it is the infimum over Pf (P ) of the affine function of
α

αEQ{G}+
1

γ
(H(Q|P )−H(Q0|P )).

Since it has also a well-defined gradient, the indifference price is in fact differentiable. More-
over, the derivative of the indifference price is bounded between the limits given in (30) and
(31). Therefore, the existence of α∗ as defined in (23) is guaranteed for market prices that
are between these limits, in other words for market prices that are between the superhedging
and subhedging prices of the option G.

Another interpretation of this result follows from Theorem 5.3 in [37], which states that
the interval given by the superhedging and subhedging prices of an option is exactly the
interval of no-arbitrage prices of that option. Therefore, the existence of α∗ is guaranteed for
arbitrage-free market prices, p.

In this theorem, Schachermayer also points out that there are two cases. Either the
subhedging price of an option is equal to its superhedging price, in which case the option is
replicable and the set of no-arbitrage prices of the option is a single point, or the subhedging
price of an option is strictly less than its superhedging price, in which case the set of no-
arbitrage prices is the open interval

(
inf

Q∈Pe

EQ{G}, sup
Q∈Pe

EQ{G}
)

. (39)

In the following proposition, we show strict concavity of the indifference price of an option
which is not replicable in the sense specified by Schachermayer in [37].

Proposition 3.2 The indifference price of αG is a strictly concave function of α ∈ R if the
subhedging price of G is strictly less than its superhedging price.

Proof: Let us start by fixing α2 > α1. We will assume that h(αG, γ) is a linear function of
α on the line segment between α1 and α2 and derive a contradiction. We define the measures
P 1 = Pα1 and P 2 = Pα2 as in (33), and Q1 and Q2 as the measures that minimize the entropy
with respect to P 1 and P 2, respectively. From (37), we get

(H(Q2|P 1)−H(Q1|P 1)) + ((H(Q1|P 2)−H(Q2|P 2)) = γ(α1 − α2)(EQ2{G} − EQ1{G}).

As EQi{G} is the slope of the the indifference price at αi, the right hand side is equal to zero,
by our linearity assumption. Now, Q1 is the minimizer of H(Q|Pα1) over Pf (P ) which includes
Q2, so the first term in the left hand side is nonnegative. The same conclusion applies to the
second term, therefore both terms are zero. Then the uniqueness of the minimal entropy
martingale measure (see Theorem 2.1) implies that Q1 = Q2.

Using (17) and (33), the density of Qi can be specified as follows

dQi

dP
= cie−γ(Xi

T +αiG), for i = 1, 2,
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where X1
T and X2

T are the optimal terminal wealths in the optimization problems defining
u(0, α1G, γ) and u(0, α2G, γ). Therefore, these terminal wealths are attained by two trading
strategies in Θ. Combining the above density representation with the equality of Q1 and Q2,
we get

(α2 − α1)G = const + X1
T −X2

T .

Then for all Q ∈ Pf (P ), EQ{G} is a constant (and is equal to the Davis’ fair price). However,
Corollary 5.1 in Delbaen et al. [9] states that the supremum of EQ{G} over Q ∈ Pe(P ) is
equal to the supremum over Q ∈ Pf (P ) ∩ Pe and therefore the former is also equal to the
Davis fair price. This implies that the set of no-arbitrage prices is a single point and the
option is replicable, which is a contradiction. We conclude that the indifference price is a
strictly concave function of α. ¤

lim
α→ 0

 h(α G)/α=EQ
0

 {G}

lim
α↓  −∞

 h(αG)/α=sup
Q∈  P

e

EQ{G}

lim
α↑  ∞

 h(αG)/α= inf
Q∈  P

e

EQ{G}

 α

h(αG)

0

Figure 2: The indifference price is a strictly concave function of the number of derivatives.
The limit of the slope as α goes to infinity is the subhedging price of the derivative, and the
superhedging price as α goes to minus infinity. The slope at α equal to zero is the Davis fair
price.

3.5 Several Contingent Claims

In realistic situations, there are many contingent claims available for an investor to incorporate
in her portfolio. Suppose there are N options in the market with bounded payoffs Gi and
market prices pi for i = 1, .., N . The optimal number of each option to hold can be formulated
in a similar way to the single option case. Let α = (α1, .., αN) denote a static position in the
options. Then it is clear from our previous analysis that the optimal static position α∗ in the
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lim
α→ 0

 h(α G)/α=EQ
0

 {G}

lim
α↓  −∞

 h(α G)/α=sup
Q∈  P

e

EQ{G}

lim
α ↑  ∞

 h(α G)/α= inf
Q∈  P

e

EQ{G}

 α

h(α G)/α

0

Figure 3: The indifference price over α. The limit of the slope as α goes to infinity is the
subhedging price of the derivative, and the superhedging price as α goes to minus infinity.
The slope at α equal to zero is the Davis’ fair price.

derivatives is given by
α∗ = arg max

α
(h(α ·G, γ)− α · p) , (40)

where α · G =
∑N

i=1 αi Gi. The problem is now to find conditions on the indifference price
as a function of the vector α and the market price vector p of the derivatives G for existence
and uniqueness of an optimal investment strategy. In [20], we show:

• Assuming that none of the claims Gi is redundant (in a sense made precise there), the
set of no-arbitrage price vectors is an open convex subset V of RN .

• The indifference price is a strictly concave function of α with a well-defined gradient.

• For each market price vector p in V , there exists a unique optimal derivatives position
α∗.

4 Stochastic Volatility Models

Stochastic volatility models are popular because they capture the deviation of stock price
data from the Black-Scholes geometric Brownian motion model in a parsimonious way. They
were originally introduced in the late 1980’s by Hull and White [19] and others for option
pricing. Much of their success derives from their predicted option prices exhibiting the implied
volatility skew that is observed in many options markets. See [14], for example, for details.
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The risky asset S is modelled by the following SDEs

dSt = µSt dt + σ(Yt)St dW 1
t , (41)

dYt = b(Yt) dt + a(Yt)
(
ρ dW 1

t + ρ′ dW 2
t

)
, (42)

where Y is the volatility driving factor correlated with the stock price and ρ′ =
√

1− ρ2. W 1

and W 2 are two independent Brownian motions on the given space and we take the filtration
to be the augmented natural filtration of these Brownian motions. We will throughout assume
the following.

Assumption 4.1 i. σ and a are smooth and bounded with bounded derivatives,

ii. 0 < L ≤ σ, for some constant L < ∞,

iii. b is smooth with bounded first derivative.

In this class of models, the wealth process satisfies

dXt = µπt dt + σ(Yt)πt dW 1
t , X0 = x, (43)

where πt represents the dollar amount invested in the stock at time t. The set of admissible
policies Θ in this model is the set of trading strategies that satisfy the integrability constraint

E
{∫ T

0
π2

t dt
}

< ∞. We consider European claims G = g(ST , YT ), where g is smooth and

bounded with bounded derivatives. However, many path-dependent claims can be treated in
a similar manner with additional variables or boundary conditions. For example, indifference
pricing of barrier options was studied in [22]. We do not discuss American-style options here.

The indifference price in this model can be characterized as the solution of a quasilinear
PDE by using the HJB equations related to the value functions u and M as in [38]. An
alternative is solving the corresponding dual control problems given in (15), which is the
approach we will follow here. We start by finding the minimal entropy martingale measure
Q0.

4.1 Q0 within the Stochastic Volatility Model

The so-called minimal martingale measure, P 0, which was introduced in [13], is defined by
the following Girsanov transformation

dP 0

dP
= exp

(
−

∫ T

0

µ

σ(Ys)
dW 1

s −
1

2

∫ T

0

µ2

σ2(Ys)
ds

)
.

By our assumptions on σ(y), P 0 has finite relative entropy and is equivalent to P . Therefore,
Q0 is in Pf (P ) ∩ Pe, and Assumption 2.1 is satisfied.

For a given equivalent local martingale measure, P λ there exists λ with
∫ T

0
λ2

t dt < ∞ a.s.
such that

dP λ

dP
= exp

(
−

∫ T

0

µ

σ(Ys)
dW 1

s +

∫ T

0

λs dW 2
s −

1

2

∫ T

0

(
µ2

σ2(Ys)
+ λ2

s

)
ds

)
. (44)
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For the moment we shall consider λ in H2(P λ), where H2(Q) consists of all adapted processes

u that satisfy the integrability condition EQ
{∫ T

0
u2

t dt
}

< ∞. The entropy of such a measure

P λ with respect to P is

EP λ

{
1

2

∫ T

0

(
µ2

σ(Yt)2
+ λ2

t

)
dt

}
. (45)

We introduce the stochastic control problem related to maximizing the negative of relative
entropy

ψ(t, y) = sup
λ∈H2(P λ)

EP λ

{
−1

2

∫ T

t

(
µ2

σ2(Ys)
+ λ2

s

)
ds

∣∣∣Yt = y

}
. (46)

The Hamilton-Jacobi-Bellman (HJB) equation associated with this stochastic control problem
is

ψt + L0
yψ + sup

λ

(
ρ′a(y)ψyλ− 1

2
λ2

)
=

µ2

2σ2(y)
, t < T, (47)

ψ(T, y) = 0,

where L0
y is the infinitesimal generator of the process (Yt) under P 0 and is given by

L0
y =

1

2
a2(y)

∂2

∂y2
+

(
b(y)− ρa(y)

µ

σ(y)

)
∂

∂y
.

Performing the maximization in (47), we obtain

ψt + L0
yψ +

1

2
(1− ρ2)a2(y)ψ2

y =
µ2

2σ2(y)
, t < T, (48)

ψ(T, y) = 0,

with the corresponding optimal control

λ∗t = ρ′a(Yt)ψy(t, Yt). (49)

The PDE in (48) can be linearized by a logarithmic transformation:

ψ(t, y) =
1

(1− ρ2)
log f(t, y).

Then f satisfies

ft + L0
yf = (1− ρ2)

µ2

2σ2(y)
f, t < T, (50)

f(T, y) = 1.

Using the probabilistic representation of the solution of (50), we have

ψ(t, y) =
1

(1− ρ2)
logEP 0

{
exp

(
−

∫ T

t

µ2(1− ρ2)

2σ2(Ys)
ds

) ∣∣∣Yt = y

}
. (51)
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Lemma 4.1 Under Assumption 4.1, the density of the minimal entropy martingale measure
is

dQ0

dP
= exp

(
−

∫ T

0

µ

σ(Yt)
dW 1

t +

∫ T

0

λ∗(t, Yt)dW 2
t −

1

2

∫ T

0

(
µ2

σ2(Yt)
+ (λ∗(t, Yt))

2

)
dt

)
(52)

with λ∗ and ψ given in (49), (51) respectively. The minimum relative entropy H(Q0|P ) is
equal to −ψ(0, y).

Proof: From Theorem 2.9.10 in [28], under Assumption 4.1, f which is given by

f(t, y) = EP 0

{
exp

(
−

∫ T

t

µ2(1− ρ2)

2σ2(Ys)
ds

) ∣∣∣Yt = y

}

is in C1,2([0, T ) × R) and satisfies a polynomial growth condition in y. Moreover, f is the
unique solution in this class of functions. As ψ is attained by logarithmic transformation of
f which is strictly positive, it will satisfy the same conclusions. Then, the optimality of the
solution can be concluded by Theorem IV.3.1 in Fleming and Soner [12]. Notice that f(t, y)
is bounded. Under Assumption 4.1, taking the derivative of (50) with respect to y and using
the probabilistic representation of the solution, we conclude that ψy(t, y) and hence λ∗(t, y)
are also bounded. Therefore, λ∗ defined in (49) is an optimizer of (46). The final step that
Q0 is given by (52), in other words it was sufficient to consider λ ∈ H2(P λ) follows from
Proposition 3.2 of [17]. We refer to [4] and [22] for detailed calculations. ¤

4.2 Indifference Pricing PDE

In similar fashion, we introduce the stochastic control problem

ν(t, S, y) = inf
λ
EP λ

{
αg(ST , YT ) +

1

2γ

∫ T

t

(
µ2

σ2(Ys)
+ λ2

s

)
ds

∣∣∣St = S, Yt = y

}
. (53)

Given the solution of this stochastic control problem, the indifference price is

h(αG, γ) = ν(0, S, y) +
1

γ
ψ(0, y).

The HJB equation associated with the stochastic control problem in (53) is as follows:

νt + L0
S,yν + inf

λ

(
ρ′a(y)νyλ +

1

2γ
λ2

)
= − µ2

2γσ2(y)
, t < T, (54)

ν(T, S, y) = αg(S, y),

where L0
S,y is the generator of (St, Yt) under P 0

L0
S,y =

1

2
σ2(y)S2 ∂2

∂S2
+ ρσ(y)a(y)S

∂2

∂S∂y
+ L0

y.
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Performing the minimization in (54), we have

νt + L0
S,yν −

1

2
γ(1− ρ2)a2(y)ν2

y = − µ2

2γσ2(y)
, t < T, (55)

ν(T, S, y) = αg(S, y),

with the corresponding optimal control

λα(t, S, y) = −γρ′a(y)νy(t, S, y).

For h(t, S, y) = ν(t, S, y) + 1
γ
ψ(t, y), it follows from (55) and (48) that h(t, S, y) solves

ht + LQ0

S,yh−
1

2
γ(1− ρ2)a2(y)h2

y = 0, t < T, (56)

h(T, S, y) = αg(S, y),

where

LQ0

S,y = L0
S,y − ρ′ a(y)ψy(t, y)

∂

∂y

is the generator of (St, Yt) under Q0. The PDE in (56) is the HJB equation associated with
the stochastic control problem in (19).

If the claim is contingent on YT only (G = g(YT )), S vanishes from the PDE in (56),
and by a logarithmic transformation, the nonlinear PDE in (56) can be linearized. Hence, in
this case an explicit solution for the indifference price could be found (see ***article in this
volume***),

h(t, y) = − 1

γ(1− ρ2)
logEQ0

{
e−γ(1−ρ2)g(YT ) | Yt = y

}
. (57)

Such a situation arises when Y is not considered as a volatility driving process, but rather
as a non-traded asset, where another correlated asset S is available for trading. If further σ
is assumed to be independent of y, the minimal entropy martingale measure coincides with
the minimal martingale measure (since ψy is zero). The canonical example is modelling the
traded asset price process as a geometric Brownian motion (see, for example, [32]).

4.2.1 Regularity of the Value Function

The PDE in (55) does not admit an explicit solution and, in this section, we verify the
existence and uniqueness of a solution. The traditional existence results for HJB equations
require the feasible set of controls to be compact, which prevents us from direct use of these
results. Therefore, we will first consider bounded subsets and study the limiting behavior of
the value function as this bound is taken to infinity. A similar analysis was conducted by
Pham [34] for power utility.

In this section, we will further impose that a(y) = a is a constant. However, as Pham
suggests in Remark 2.1 in [34], this assumption is not restrictive as the original model can
be re-written in this form with the change of variable suggested in this remark. Then one
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needs to be careful in verifying the assumptions that guarantee existence and uniqueness of
a solution to the new system.

Under P 0, the corresponding stochastic differential equations for the stock price process
and the volatility driving process are

dSt = σ(Yt)St dW 0,1
t , (58)

dYt =

(
b(Yt)− ρa

µ

σ(Yt)

)
dt + a

(
ρ dW 0,1

t + ρ′ dW 0,2
t

)
, (59)

where W 0,1 and W 0,2 are two independent Brownian motions on (Ω,F , P 0). Let us re-write
the PDE in (55) as

νt + L0
S,yν + H(νy) = − µ2

2γσ2(y)
, t < T, (60)

ν(T, S, y) = αg(S, y),

where

H(p) = −1

2
γ(1− ρ2)a2p2. (61)

We also define L by
L(q) = max

p∈R
[H(p) + qp ] , (62)

which is the Fenchel-Legendre transform of H up to the sign of the qp term. The explicit
form for L is found as

L(q) =
q2

2γ(1− ρ2)a2
. (63)

As H is concave in p, and we have the following duality relation

H(p) = min
q∈R

[L(q) + qp ] .

Let us introduce the truncated functions

Hk(p) = min
q∈Bk

[L(q) + qp ] ,

where Bk is the (compact) interval of length 2k,

Bk = {q ∈ R : |q| ≤ k}, k > 0.

We consider the following differential equations

νk
t + L0

S,yν + Hk(νk
y ) = − µ2

2γσ2(y)
, t < T, (64)

νk(T, S, y) = αg(S, y),

and assume the following:
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Assumption 4.2 Assume g(S, y) is such that

|νk
y (t, S, y)| ≤ C,

for a positive constant C independent of k.

Theorem 4.2 Under Assumption 4.1 and Assumption 4.2, equation (60) has a unique solu-
tion ν ∈ C1,2,2

p ([0, T )× R+ × R) with ν continuous in [0, T ]× R+ × R.

Proof: Under Assumption 4.1, the function b(y) − ρaµ/σ(y) is C2 with a bounded first
derivative. By Theorem VI.6.2 in Fleming and Rishel [11], there exist unique solutions νk ∈
C1,2,2([0, T )×R+×R) which satisfy polynomial growth conditions in S and y, and which are
continuous on [0, T ]× R+ × R, and which solve (64). Moreover, applying Theorem IV.3.1 in
Fleming and Soner [12], these solutions have the following stochastic control representations

νk(t, S, y) = inf
q∈Bk

EQk

{∫ T

t

(
L(qs) +

µ2

2γσ2(Ys)

)
ds + αg(ST , YT )

∣∣∣St = S, Yt = y

}
, (65)

where the controlled dynamics under Qk are given by

dSt = σ(Yt)St dW k,1
t , (66)

dYt =

(
qt + b(Yt)− ρa

µ

σ(Yt)

)
dt + a

(
ρ dW k,1

t + ρ′ dW k, 2
t

)
, (67)

with W k,1 and W k,2 being two independent Brownian motions under Qk.
The function q → L(q)+qνk

y attains its minimum in R at q̂k(t, S, y) = −γ(1−ρ2)a2νk
y (t, S, y).

From Assumption 4.2, there exists a positive constant C independent of k such that

|q̂k(t, S, y)| ≤ C, for all t ∈ [0, T ], S ∈ R+, y ∈ R.

For k ≥ C,

Hk(νk
y ) = min

q∈Bk

[
L(q) + qνk

y

]
,

= min
q∈R

[
L(q) + qνk

y

]
,

= H(νk
y ),

for all (t, S, y) ∈ [0, T ] × R+ × R. We deduce that νk is a solution to (60) with the desired
smoothness conditions.

Assume ν(1) and ν(2) are two solutions to (60) that are in C1,2,2([0, T )×R+×R) and that
satisfy a polynomial growth condition on [0, T ] × R+ × R, and let ζ = ν(1) − ν(2). Then, ζ
solves

ζt + L0
S,yζ +

1

2
γ(1− ρ2)a2(ν(1)(t, S, y) + ν(2)(t, S, y))ζy = 0, t < T,

ζ(T, S, y) = 0.
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The probabilistic representation of the solution indicates that ζ(t, S, y) is the conditional
expectation of zero under the measure defined by the following Girsanov transformation

dP ν

dP 0
= exp

(∫ T

0

1

2
γ(1− ρ2)a2(ν(1)(t, St, Yt) + ν(2)(t, St, Yt)) dWt

− 1

4

∫ T

0

γ(1− ρ2)a2(ν(1)(t, St, Yt) + ν(2)(t, St, Yt)) dt

)

and therefore is equal to zero. Notice that P ν is well-defined under the assumptions on ν(1)

and ν(2). This guarantees uniqueness of the solution and completes the proof. ¤

Corollary 4.3 Let λα(t, S, y) = −γρ′aνy(t, S, y) where ν is the unique solution to (60) in
the class of C1,2,2([0, T ) × R+ × R) functions that satisfy a polynomial growth condition on
[0, T ]× R+ × R. Define Qα as

Qα = arg min
Q∈Pf

(
EQ{αG}+

1

γ
H(Q|P )

)
, (68)

in the stochastic volatility model given in (41) and (42) with a(y) = a. Then, the density of
Qα is given by

dQα

dP
= exp

(
−

∫ T

0

µ

σ(Yt)
dW 1

t +

∫ T

0

λα(t, St, Yt) dW 2
t −

1

2

∫ T

0

(
µ2

σ2(Yt)
+ (λα(t, St, Yt))

2

)
dt

)
.

(69)

Proof: Note that νy is bounded. Therefore, so is λα. From the Verification theorem (Theo-
rem IV.3.1 and Corollary IV.3.1 in [12]), ν is the optimal solution to (53), and λα is an optimal
Markov control policy. As in the case without claims in Section 4.1, the final step to show
that the optimal measure Qα defined in (68) is given by (69) again follows from Proposition
3.2 of [17]. We refer to [22] for details. ¤

Corollary 4.4 Under Assumption 4.1 and Assumption 4.2, equation (56) has a unique so-
lution h ∈ C1,2,2

p ([0, T )× R+ × R) with h continuous in ([0, T ]× R+ × R).

Proof: Write h(t, S, y) = ν(t, S, y) + 1
γ
ψ(t, y), where the ν and ψ are the unique solutions of

(60) and (48). The result follows trivially. ¤

4.3 Asymptotic Expansions

We end this section with two concave approximations of the indifference price as a function
of quantity that can be used to compute the approximate optimal derivatives positions under
appropriate assumptions. The first is based on a direct power series expansion in the quantity
α and so is valid for small quantities; the second is based on the slow time-scale of fluctuation
of an important factor of market volatility.
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4.3.1 Small α Approximation

The dependence of the indifference price on α appears in the terminal condition of (56),
and the indifference price is zero when α is zero. To gain an understanding of the price, we
construct a power series expansion for small α:

h(t, S, y) = αh(1)(t, S, y) + α2h(2)(t, S, y) + · · · .

Inserting this approximation into (56) and grouping order α terms, we deduce that h(1) satisfies

h
(1)
t + LQ0

S,yh
(1) = 0, t < T, S > 0, (70)

h(1)(T, S, y) = g(S, y),

and the solution is given by

h(1)(t, S, y) = EQ0{g(ST , YT ) | St = S, Yt = y}. (71)

Notice that h(1)(t, S, y) is Davis’ fair price of the claim [8].
Considering terms of order α2, we deduce that h(2) satisfies

h
(2)
t + LQ0

S,yh
(2) =

1

2
γ(1− ρ2)a2(Yt)

(
h(1)

y

)2
, t < T, S > 0, (72)

h(2)(T, S, y) = 0,

and by the Feynman-Kac formula,

h(2)(t, S, y) = EQ0

{
−1

2
γ(1− ρ2)

∫ T

t

a2(Ys)
(
h(1)

y (s, Ss, Ys)
)2

ds | St = S, Yt = y

}
. (73)

Notice that h(2) is negative reflecting the concavity of h. Considering only these first two
terms, the optimal number α∗ to hold is given by, approximately,

α∗ =
p− h(1)(t, S, y)

2h(2)(t, S, y)
.

For G = g(YT ), an explicit expression for h(2)(t, y) for the indifference price can be found
as

h(2)(t, y) =
1

2
γ(1− ρ2)

((
h(1)(t, y)

)2 − EQ0 {
g(YT )2

} | Yt = y
)

= −1

2
γ(1− ρ2)varQ0

t,y (g(YT )) ,

where varQ0

t,y denotes the conditional variance given {Yt = y}, under the measure Q0. Of
course, in this case, it is easier to obtain the terms directly by a Taylor series expansion on
(57). A similar expansion using Malliavin calculus is studied by Davis in [8], where the case
with high-correlation between the two assets is considered.
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4.3.2 Slow Volatility Approximation

There are a number of approaches for constructing stochastic volatility models that reflect
historical and option price data in a parsimonious manner. For example, [1, 10] advocate one-
factor stochastic volatility jump-diffusion models, while [2] employ Ornstein-Uhlenbeck Levy
processes. The motivation for departing from ‘traditional’ one-dimensional diffusion models
[19] is to bridge the seeming inconsistency between slow mean-reversion estimated from daily
stock returns and pronounced implied volatility skews at short maturities.

Another way of capturing these observations is to allow for two-factor stochastic volatility
models in which one factor is varying slowly and the other is fast mean-reverting. The advan-
tage is in remaining within a diffusion framework (at the cost of increased dimensionality),
where statistical, analytical and simulation tools are extremely convenient. In addition, many
problems can be tackled by constructing asymptotic approximations, using singular perturba-
tion techniques for the fast factor, and regular perturbation for the slow one. The asymptotic
analysis with just the fast factor is studied for a variety of derivative pricing problems in [14],
for partial hedging and utility maximization problems in [24, 23], for exotic options pricing
(and in particular passport options with their embedded portfolio optimization problems)
in [21], and for indifference prices in [38]. The joint asymptotics for no arbitrage European
option pricing with both scales appears in [15].

Here, we shall ignore the fast factor and concentrate on the slow scale asymptotics. The
assumption is that the time horizon of the investor’s problem is long enough that the effect
of the fast ergodic factor averages out. To this end, we introduce a small parameter δ > 0
representing the slow scale and replace b and a in (42) by δb(Yt) and

√
δa(Yt) respectively.

Therefore the dynamics of our volatility driving factor is given by

Yt = δ b(Yt) dt +
√

δ a(Yt)
(
ρ dW 1

t + ρ′ dW 2
t

)
.

We first construct the expansion for the function ψ(t, y), which is related to the value
function of the plain Merton problem by M(x, γ) = −e−γx+ψ(0,y). It is the solution of the
PDE problem (48), which we re-write as

ψt + δM2ψ −
√

δ
ρµa(y)

σ(y)
ψy +

1

2
δ(1− ρ2)ψ2

y =
µ2

2σ(y)2
, (74)

in t < T , with ψ(T, y) = 0. Here, we define

M2 =
1

2
a(y)2 ∂2

∂y2
+ b(y)

∂

∂y
, (75)

the infinitesimal generator of Y on the unit time-scale (that is, δ = 1).
We look for a formal expansion

ψ = ψ(0) +
√

δψ(1) + δψ(2) + · · · , (76)

which, for fixed (t, y), converges as δ ↓ 0. In fact, we want to construct the expansion of the
indifference price h up to order δ (to obtain some concavity as a function of α), and so we
shall only need the first two terms of the ψ expansion.
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Inserting the expansion (76) into (74) and comparing powers of δ, we find that ψ(0) should
be chosen to solve

ψ
(0)
t =

µ2

2σ(y)2
,

with zero terminal condition. This yields

ψ(0)(t, y) = −(T − t)
µ2

2σ(y)2
.

Moving to terms of order
√

δ, we find that ψ(1) should be chosen to solve

ψ
(1)
t =

ρµa(y)

σ(y)
ψ(0)

y ,

again with zero terminal condition. The solution is

ψ(1)(t, y) = (T − t)2ρµ3a(y)

4σ(y)

∂

∂y
σ(y)−2.

Now we construct an expansion in powers of
√

δ for the indifference pricing function h.
We first re-write the PDE (56) as

ht +
1

2
σ(y)2S2hSS +

√
δM1h + δM′

2h−
1

2
δγ(1− ρ2)a(y)2h2

y = 0, (77)

with h(T, S, y) = αg(S). Here,

M1 = ρσ(y)a(y)S
∂2

∂S∂y
+ a(y)

(
ρ′ ψ(0)

y − ρµ

σ(y)

)
∂

∂y
(78)

M′
2 = M2 + ρ′ a(y)ψ(1)

y

∂

∂y
, (79)

and we have substituted the expansion (76) for ψ.
We look for an expansion

h = h(0) +
√

δh(1) + δh(2) + · · · . (80)

Inserting (80) into (77) and comparing order one terms yields that h(0) should be chosen to
solve

LBS(σ(y))h(0) = 0, (81)

with h(0)(T, S, y) = αg(S), and where

LBS(σ(y)) =
∂

∂t
+

1

2
σ(y)2S2 ∂2

∂S2
,

the Black-Scholes differential operator at volatility level σ(y). Since (81) is simply the Black-
Scholes PDE with volatility coefficient σ(y), h(0) is the Black-Scholes price of the European
contract with payoff αg, which we denote

h(0)(t, S, y) = hBS(t, S; σ(y)).
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Comparing terms of order
√

δ yields that h(1) should be chosen to solve

LBS(σ(y))h(1) = −M1h
(0),

with zero terminal condition.
At this stage, it is convenient to introduce the notation

Dk = Sk ∂k

∂Sk
,

the kth logarithmic derivative. We will use shortly D for D1. As used extensively in the
singular perturbation analysis in [14], the solution of the PDE problem

LBS(σ(y))uk,` = −(T − t)`DkhBS

uk,`(T, S, y) = 0,

in t < T is given by

uk,`(t, S, y) =
(T − t)`+1

` + 1
DkhBS(t, S; σ(y)),

as can be verified by direct substitution.
Using that h(0) solves the Black-Scholes PDE and the relation

∂

∂σ
hBS = (T − t)σS2 ∂

∂S2
hBS

between the Greeks Vega and Gamma of Black-Scholes European option prices, we have

M1h
(0) = ρσ2aσ′(T − t)DD2h

(0) + (T − t)aσσ′
(
ρ′c′0(T − t)− ρµ

σ

)
D2h

(0),

where

c0(y) = − µ2

2σ(y)2
.

Therefore,

h(1) =
1

2
ρaσ2σ′(T − t)2DD2h

(0) + aσσ′
(

1

3
ρ′c′0(T − t)3 − 1

2

ρµ

σ
(T − t)2

)
D2h

(0).

Note that, so far, the nonlinear term in (77) has played no role and the approximation
h(0) +

√
δh(1) is linear in α. To pick up concavity in α, we need to proceed to the next term in

the expansion. Comparing terms of order δ in the PDE (77) with the substituted expansion
(80) gives

LBS(σ(y))h(2) = −M′
2h

(0) −M1h
(1) +

1

2
γ(1− ρ2)a(y)2(h(0)

y )2,

with zero terminal condition. We write

h(2) = h(2,1) + h(2,2) + α2F (t, S, y),
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where

LBS(σ(y))h(2,1) = −M′
2h

(0),

LBS(σ(y))h(2,2) = −M1h
(1),

LBS(σ(y))F =
1

2
γ(1− ρ2)a(y)2(h(0)

y )2,

each with zero terminal condition.
Using that

∂2

∂σ2
hBS = (T − t)D2hBS + σ2(T − t)2D2

2hBS,

and

h(0)
yy = σ′′

∂

∂σ
hBS + (σ′)2 ∂2

∂σ2
hBS,

we calculate

M′
2h

(0) = A(T − t)D2hBS +
1

2
a2σ2(σ′)2(T − t)2D2

2hBS + ρ′ac′1σσ′(T − t)3D2hBS,

where

A(y) =
1

2
a(y)2(σ(y)σ′′(y) + σ′(y)2) + b(y)σ(y)σ′(y),

c1(y) =
ρµ3a(y)

4σ(y)

∂

∂y
σ(y)−2.

Then,

h(2,1) =
1

2
A(T − t)2D2hBS +

1

6
a2σ2(σ′)2(T − t)3D2

2hBS +
1

4
ac′1σσ′(T − t)4D2hBS.

Similarly, writing

h(1) = c2(y)(T − t)2DD2h
(0) +

(
c3(y)(T − t)3 + c4(y)(T − t)2

)
D2h

(0),

and

M1 = (c5(y)D + (c6(y)(T − t) + c7(y))I)
∂

∂y
,

where

c2 =
1

2
ρaσ2σ′,

c3 =
1

3
aσσ′ρ′c′0,

c4 = −1

2
aσ′ρµ,

c5 = ρσa,

c6 = aρ′c′0,

c7 = −ρaµ/σ,
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and I = D0 is the identity operator, we obtain

M1h
(1) = (c5(y)D + (c6(y)(T − t) + c7(y))I)

(
c′2(T − t)DD2h

(0)

+(c′3(T − t)3 + c′4(T − t)2)D2h
(0) + c̃2(T − t)3DD2

2h
(0) + (c̃3(T − t)4 + c̃4(T − t)3)D2

2h
(0)

)
,

where
c̃i = ciσσ′,

and therefore

h(2,2) =
1

2
c5c

′
2(T − t)D2D2h

(0) +
1

4
c5c̃2(T − t)4D2D2

2h
(0)

+

(
1

4
c5c

′
3(T − t)4 +

1

3
c5c

′
4(T − t)3 +

1

3
c6c

′
2(T − t)3 +

1

2
c7c

′
2(T − t)2

)
DD2h

(0)

+

(
1

5
c5c̃3(T − t)5 +

1

4
c5c̃4(T − t)4 +

1

5
c6c̃2(T − t)5 +

1

4
c7c̃2(T − t)4

)
DD2

2h
(0)

+

(
1

6
c6c̃3(T − t)6 +

1

5
c6c̃4(T − t)5 +

1

5
c7c̃3(T − t)5 +

1

4
c7c̃4(T − t)4

)
D2

2h
(0)

+

(
1

5
c6c

′
3(T − t)5 +

1

4
c6c

′
4(T − t)4 +

1

4
c7c

′
3(T − t)4 +

1

3
c7c

′
4(T − t)3

)
D2h

(0).

Finally, F is given by

(σ′(y))2EP 0

{∫ T

t

1

2
γ(1− ρ2)a(y)2V2(u, S̃u)du

}
, (82)

and the Vega V = ∂
∂σ

hBS. In (82), S̃ is the solution of

dS̃t = σ(y)S̃t dW̃t,

with W̃ is a standard Brownian motion in (Ω,F , P 0). In other words, S̃ is a geometric
Brownian motion with constant volatility σ(y).

For example, if the option g(S̃T , YT ) were a put option written on S̃ with strike price K,
the explicit form of V would be as follows:

V(t, S̃) =
S̃
√

T − t√
2π

exp

(
−1

2
d2

1(t, S̃)

)
,

where

d1(t, S̃) =
log(S̃/K)

σ(y)
√

T − t
+

1

2
σ(y)

√
T − t.

In this case, the expectation in (82) reduces to

∫ T

t

1

2
γ(1− ρ2)a(y)2(σy(y))2

exp
(
− (T−t)2σ(y)4/4+2 log(K/S)

(T−2t+u)σ(y)2

)

2π
√

T − 2t + u
(T − u)3/2S

T−t
T−2t+u K

T−3t+2u
T−2t+u du,
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which can be calculated very fast.
Given the market price p per unit of the derivative security with payoff g(ST ), the optimal

number of derivative α∗ to hold is approximately given by the maximizer of

α(h̃(0) +
√

δh̃(1) + δh(2,1)) + α2δF − αp,

where h̃(0) = h(0)/α is the α-independent Black-Scholes price of one contract, and similarly

h̃(1). Therefore

α∗ ≈ p− (h̃(0) +
√

δh̃(1) + δh(2,1))

2δF
.

Clearly, this blows up as δ ↓ 0, unless p is the Black-Scholes price of the contract (with
today’s volatility). This is what we would expect in the convergence to a complete market,
when derivatives become redundant, and induce arbitrage opportunities for infinite profit
unless priced correctly by the market.
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