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Abstract. We consider the forward investment problem in market models where the
stock prices are continuous semimartingales adapted to a Brownian filtration. We con-
struct a broad class of forward performance processes with initial conditions of power

mixture type, u(x) =
∫
I
x1−γ

1−γ ν(dγ). We proceed to define and fully characterize two-

power mixture forward performance processes with constant risk aversion coefficients in
the interval (0, 1), and derive properties of two-power mixture forward performance pro-
cesses when the risk aversion coefficients are continuous stochastic processes. Finally, we
discuss the problem of managing an investment pool of two investors, whose respective
preferences evolve as power forward performance processes.
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1. Introduction

Consider an investor with initial capital X0 = x > 0 aiming to invest in a market
consisting of a riskless bank account with zero interest rate and n ≥ 1 stocks whose price
processes S1, S2, . . . , Sn follow the continuous semimartingale dynamics

dSit
Sit

= µitdt+

dW∑
j=1

σjit dW j
t , i = 1, 2, . . . , n.(1)

Here, the stochastic processes µ = (µ1, µ2, . . . , µn) and σ = (σji)dW ,n
j,i=1 , for some dW ≥ 1,

are continuous and adapted to the filtration F = (Ft)t≥0 generated by a pair of dW and
dW⊥-dimensional standard Brownian motions (W,W⊥), for some dW⊥ ≥ 0, on a filtered
probability space (Ω,F ,F,P). When dW⊥ = 0 the market is complete, and incomplete
otherwise.

Given an initial investment capital x, and a choice of a self-financing portfolio with
allocations πt = (π1

t , π
2
t , . . . , π

n
t ) in units of fraction of current wealth among the n stocks,

the investor’s wealth generated from holding this portfolio will have the dynamics

dXπ
t

Xπ
t

= (σtπt)
>λtdt+ (σtπt)

>dWt, Xπ
0 = x,

with λt = (σ−1t )>µt denoting the Sharpe ratio, σ−1t the Moore-Penrose inverse of σt, and
> denoting transpose.

Assumption 1.1. The process supt∈[0,T ] ‖λt‖ is bounded almost surely for all T > 0.

The choice of an optimal portfolio for the investor is determined by the admissible
portfolio set and the investor’s personalized investment performance criterion.

Definition 1.2. Consider an Ft-progressively measurable portfolio process πt.
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i. We will say that the portfolio process is T -admissible, π ∈ AT , if for all t ≤ T
Xπ
t ≥ 0,

∫ t
0
|Xπ

s π
>
s µs|ds <∞, and

∫ t
0
|Xπ

s σsπs|2ds <∞.
ii. The portfolio process is forward admissible, π ∈ A, if it is T -admissible for all T > 0.

That is A = ∩
T>0
AT .

Definition 1.3. Consider an Ft-progressively measurable portfolio process πt, a compact
interval I, a positive measure ν(·), and v ∈ [1,∞).

i. We will say that the portfolio process is T -v-admissible, π ∈ AvT , if π ∈ AT ,∫ T

0

∫
I
E
[
(Xπ

t )2v(1−γ)‖σtπt‖2v
]
ν(dγ)dt <∞,(2)

and for some u > 1

sup
t∈[0,T ]

∫
I
E
[
(Xπ

t )2uv(1−γ)
]
ν(dγ) <∞.(3)

ii. The portfolio process is v-forward admissible, π ∈ Av, if it is T -admissible for all
T > 0. That is Av = ∩

T>0
AvT .

In this paper we study the optimal investment problem under forward investment crite-
ria, originally introduced and developed in Musiela and Zariphopoulou 2006, Musiela and
Zariphopoulou 2007, as well as in Henderson and Hobson 2007. The forward problem ad-
dresses investment with an a priori unknown time horizon over which the investor’s utility
function may evolve. The forward investment problem then is to find an F-progressively
measurable process U·(·) : [0,∞)× (0,∞)→ R and a π∗ ∈ A satisfying

(a) with probability one, all functions x 7→ Ut, t ≥ 0 are strictly concave and increasing;
(b) for each π ∈ A, the process Ut(X

π
t ), t ≥ 0 is an F-supermartingale;

(c) the process Ut(X
π∗
t ), t ≥ 0 is an F-martingale.

The process U·(·) is referred to as a forward performance process (FPP) and its fixed-
time projections Ut(·), t ≥ 0 should be thought of as the (random) utility functions of
an investor who is reacting to the information flow F. When conditions (b) and (c) hold
locally the process U·(·) is referred to as a “local FPP”, and when the conditions hold
in a true sense the process U·(·) will be referred to as a “true FPP”. Condition (c) then
characterizes the optimal allocations π∗ ∈ A for such an investor.

If U is an Itô process in t and twice differentiable in the wealth parameter, then in
Musiela and Zariphopoulou 2010b it was shown that U is a local FPP if and only if it
solves the following stochastic partial differential equation

dUt(x) =
1

2

|∂xUt(x)(σ>t )−1µt + σ>t (σ>t )−1∂xa
W
t (x)|2

∂2xxUt(x)
dt+ at(x) · d(Wt,W

⊥
t ),

where the FPP is characterized by the forward volatility process a = (aW , aW
⊥

). Not
only it is hard to solve this SPDE, but also we do not even know what initial conditions
would yield existence of a solution. For general initial conditions, a characterization
of local FPPs through a solution of a non-linear PDE was first given in Musiela and
Zariphopoulou 2010a. A lot of literature was then dedicated to studying FPPs with the
power utility of wealth initial condition

U0(x) = C0
x1−γ

1− γ
,

where C0 > 0 and γ ∈ (0,∞)/{1}. For Markovian factor market models explicit classes of
power local FPPs were constructed in Nadtochiy and Zariphopoulou 2014, Nadtochiy and
Tehranchi 2015, Liang and Zariphopoulou 2017, and Avanesyan, Shkolnikov, and Sircar
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2020. Asymptotic results have been developed in Shkolnikov, Sircar, and Zariphopoulou
2016. In recent years, non-Markovian factor market models have gained traction in the
literature. Most importantly, in Gatheral, Jaisson, and Rosenbaum 2018 it has been
demonstrated that a non-Markovian factor market model, where the stochastic volatility
is driven by a fractional Brownian motion, fits the observed financial time series quite well.
Moreover the said factor is not a semimartingale, but is adapted to a Brownian filtration.
Hence, the market dynamics in (1) include the case of the so-called rough fractional
stochastic volatility. In this general setting power FPPs have been fully characterized
in Choulli and Ma 2017 and Bo, Capponi, and Zhou 2018, without and with portfolio
constraints respectively.

In general, investors do not have CRRA preferences. And even if individual investors
do have constant relative risk aversion coefficients, portfolio managers or funds have to
satisfy multiple different investors with different risk preferences at the same time. On
a more personal level, in the life of a couple there exist major investment decisions that
can only be made by pooling the resources. By maximizing an objective that is a convex
combination of different power utilities one can hope to achieve reasonable performance
for all types of investors or partners. Hence, we construct FPPs for initial utilities that
are formed through convex combinations of utility functions of power form

U0(x) =

∫
I

x1−γ

1− γ
ν(dγ),

where I ⊂ (0,∞)/{1} is the compact interval of the risk aversion coefficients in question.
One can think of I as a pool of investors with different risk aversion parameters, whereby
the measure ν(·) assigns the relative weight of particular risk aversions in the investor
pool. In this context, when ν(·) is a point mass we are dealing with a single rational in-
vestor with CRRA preferences, and hence the respective FPP is of power form. However,
when ν(·) is a two-point mass, we would be dealing with an investment pool consisting
of two such investing partners, and the respective FPP is what we will call of two-power
mixture form. A natural example of such investment pools are joint investment accounts
or major financial decisions made by couples. Thus, in Section 4 we extensively charac-
terize the two-power mixture FPPs, and also analyze the case when the joint utility of
the couple is not an FPP.

Mixtures of utilities were first introduced in portfolio optimization literature in Fouque,
Sircar, and Zariphopoulou 2017 as a sum of two CRRA utilities with differing risk aversion
coefficients, which corresponds to the case when ν(·) is a discrete point-mass measure.
Some asymptotic results are derived for the Merton problem, however no results have
been derived for FPPs with initial conditions of mixture type. The only work that we
are aware of that deals with consistent utilities with initial conditions of power mixture
type is El Karoui, Hillairet, and M’rad 2017, where the authors consider the problem
of finding a dynamic equilibrium by maximizing the aggregate utility of the economy.
Below for the first time we construct such local FPPs and proceed to derive conditions
that ensure that the local FPPs are in fact true FPPs.

The results are presented in the following fashion. In Section 2 we construct a broad
class of general power mixture type true FPPs. Using this result, in Section 3 we obtain
a class of power true FPPs, and discuss the meaning of the parametrization. In Section
4 we fully characterize the class of two-power mixture true FPPs when the risk aversion
parameters are constant and in the interval (0, 1), as well as obtain necessary conditions
for the general parametrization. We wrap up Section 4 by discussing the problem of
dynamic pooled investment of two rational agents, whose individual preferences evolve
as power type FPPs with different risk aversion parameters. In Section 5 we construct
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a three-power mixture FPP, that exhibits the limitations of necessary conditions derived
in Section 4. Finally, in Section 6 we summarize our results and point towards future
directions.

2. General Power Mixture Forward Performances

Consider an investment pool of investors with CRRA preferences whose risk aversion
coefficients belong to a compact interval I ⊂ (0,∞)/{1}. Let the Borel measure ν(·)
denote the relative weight given to investors based on their risk aversion. The weighting
measure can be chosen based on various criteria, e.g. relative sizes of investment asso-
ciated with each risk aversion coefficient, investment manager’s preferences. The joint
utility in the investment pool then is given by

U0(x) =

∫
I

x1−γ

1− γ
ν(dγ).(4)

In this section our aim is to characterize a broad class of FPPs with power mixture initial
condition (4). Thereby, we construct dynamically consistent investment criteria for the
above-mentioned investment pools.

2.1. General characterization of mixture FPPs. For a stochastic process (Mt)t≥0,
from here on we will denote its stochastic exponential by

E(Mt) := exp
(
Mt −

1

2
〈M〉t

)
.

In our first result we characterize all local FPPs of power-mixture type.

Theorem 2.1. Suppose the market model (1), a compact set I ⊂ (0,∞)/{1}, and a fixed
risk aversion coefficient γ0 ∈ I. Then, for initial preferences

U0(x) =

∫
I

x1−γ

1− γ
ν(dγ),

where ν(·) is a positive measure, the process

Ut(x) =

∫
I

x1−γ

1− γ
E(Mγ

t )E(V γ
t )ν(dγ)(5)

is a local FPP, with an associated optimal portfolio given by a solution to

σtπ
∗
t =

1

γ0
(λt +Hγ0

t ),

where the pairs (Mγ
t , V

γ
t ) are given by

Mγ
t =

∫ t

0

Hγ
s · dWs +

∫ t

0

Jγs · dW⊥
s , Hγ

t =
γ − γ0
γ0

λt +
γ

γ0
Hγ0
t ,(6)

V γ
t =

∫ t

0

vγsds, vγt = −1− γ
2γ
|λt +Hγ

t |2,(7)

and Hγ0
t , J

γ
t ∈ Ft are such that for all admissible π, P−almost surely∫

I

(∫ t

0

(Xπ
s )2(1−γ)

(
E(Mγ

t )E(V γ
t )
)2

×
(∣∣∣∣ 1

1− γ
Hγ
s + σsπs

∣∣∣∣2 +

∣∣∣∣ 1

1− γ
Jγs

∣∣∣∣2)ds

) 1
2

ν(dγ) <∞.
(8)
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Remark 2.2. The processes Hγ0
t and {Jγt }γ∈I are not fixed, thereby giving us significant

degrees of freedom in constructing FPPs. We discuss interpretations for these processes
in the end of this subsection, as well as in Section 3.1.

Proof. We will prove this theorem by a verification argument. Fix any t > 0. Now, for
all γ ∈ I define the processes

Uγ
t (x) :=

x1−γ

1− γ
E(Mγ

t )E(V γ
t ),

and let us first show that they are indeed local FPPs. For an arbitrary admissible portfolio
π we have

Uγ
t (Xπ

t ) =
1

1− γ
E
(∫ t

0

(σsπs)
>λsds+

∫ t

0

(σsπs)
>dWs)

)1−γ

E(Mγ
t )E(V γ

t ).

Applying Itô’s formula to the process Uγ
t (Xπ

t ) we get

dUγ
t (Xπ

t )

(Xπ
t )1−γE(Mγ

t )E(V γ
t )

=
1

1− γ
dMγ

t + (σtπt)
>dWt

+

(
1

1− γ
vγt + (σtπt)

>(λt +Hγ
t )− γ

2
|σtπt|2

)
dt

:=Dγ(πt)dt+
1

1− γ
dMγ

t + (σtπt)
>dWt.

Note that Dγ(πt) is a globally concave function of πt, and thus we can find an optimal
πγ∗t by finding a critical point of the function Dγ(·)

∂πD
γ(πγ∗t ) = σ>t (λt +Hγ

t )− γσ>t σtπ
γ∗
t ,

which yields that a portfolio process solving the equation

σtπ
γ∗
t =

1

γ
(λt +Hγ

t )

would maximize the function Dγ(·). Plugging in the expressions for Hγ
t we get

σtπ
γ∗
t =

1

γ0
(λt +Hγ0

t ) = σtπ
γ∗0
t =: σtπ

∗
t .

Let us now calculate the maximal value of the function Dγ(·),

Dγ(π∗t ) =
1

1− γ
vγt +

1

2γ
|λt +Hγ

t |2 = 0,

where the last equality follows from (6), (7). Thus, for all π ∈ A the drift will be non-
positive. Thereby, for all γ ∈ I the processes Uγ

t (Xπ
t ) are local supermartingales for all

π ∈ A and local martingales for the portfolio π∗. Note that our initial process can be
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written as

Ut(X
π
t ) =

∫
I
Uγ
t (Xπ

t )ν(dγ)

=

∫
I

∫ t

0

(Xπ
s )1−γE(Mγ

s )E(V γ
s )Dγ(πs)ds ν(dγ)

+

dW∑
i=1

∫
I

∫ t

0

(Xπ
s )1−γE(Mγ

s )E(V γ
s )

×
(

γ

(1− γ)γ0
Hγ0
s +

γ − γ0
(1− γ)γ0

λs + σsπs

)
i

dWs, i ν(dγ)

+

d
W⊥∑
j=1

∫
I

∫ t

0

1

1− γ
(Xπ

s )1−γE(Mγ
s )E(V γ

s )Jγ, is dW⊥
s, j ν(dγ).

From (8), by invoking the stochastic Fubini Theorem (Theorem 2.2) from Veraar 2012,
we get that the last two terms are local martingales. The first summand is always non-
positive, since Dγ(πs) ≤ 0 for all γ ∈ I, and becomes 0 when evaluated at the optimal
π∗ (the non-positivity of the integrand also yields the measurability of the integral by
Fubini’s theorem). Hence, the function Ut(x) takes values in R∪{−∞}. For the purposes
of optimal portfolio selection U·(·) is well defined, since there exists π∗ for which its drift
is equal to 0, and therefore the portfolios yielding the {−∞} value for the drift term, and
thereby for U·(·), cannot be optimal and therefore can be ignored. Thus, (Ut(X

π
t )) is a

local supermartingale for all admissible portfolios and there exists an admissible portfolio
for which it is a local martingale. Therefore, U·(·) satisfies conditions (b) and (c) in the
definition of forward performance processes. Note that the process (Ut(x)) is concave and
increasing in x, hence satisfying the condition (a) in the definition. Thus, U·(·) is a local
FPP. �

The next result provides conditions under which the local power-mixture FPPs are
indeed true FPPs.

Theorem 2.3. Suppose the market model (1), a compact set of risk aversion coefficients
I, and a fixed risk aversion coefficient γ0 ∈ I. Let (Mγ, V γ) be as in (5), (6) and (7), and
let π ∈ Av. Additionally let Hγ0 , Jγ be such that

E
[ ∫

I
exp

(
cJ

∫ T

0

|Jγt |2dt
)
ν(dγ)

]
<∞, sup

t∈[0,T ]
E
[ ∫

I
‖Jγt ‖

2uv
v−1ν(dγ)

]
<∞,(9)

E
[ ∫

I
exp

(
cH(γ)

∫ T

0

|Hγ0
t |2dt

)
ν(dγ)

]
<∞, sup

t∈[0,T ]
E[‖Hγ0

t ‖
2uv
v−1 ] <∞,(10)

for all T > 0, where cJ and cH(γ) are such that

cJ >
qp2
2

(qp1 − 1), cH(γ) >

{
uvp3(1− γ)(2uvp1(1− γ)− 1)/γ20 ,
1
2
qp3γ

(
qp1γ − 1

)
/γ20 ,

for some p1, p2, p3 > 1 satisfying 1
p1

+ 1
p2

+ 1
p3

< 1, and q := 2v
v−1 . Then, for initial

preferences

U0(x) =

∫
I

x1−γ

1− γ
ν(dγ),
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the process

Ut(x) =

∫
I

x1−γ

1− γ
E(Mγ

t )E(V γ
t )ν(dγ)

is a true FPP, with an associated optimal portfolio given by a solution to

σtπ
∗
t =

1

γ0
(λt +Hγ0

t ).

The proof of this theorem is long and technical, and hence is presented in Appendix
A.

Remark 2.4. For an individual with risk aversion γ, that is wealth preferences Uγ
t (x), the

full expression for the optimal utility will be

(Xπ∗

t )1−γE(Mγ
t )E(V γ

t ) = exp

(
1

γ0
(λs +Hγ0

s ) · dWs −
1

2

∫ t

0

∣∣∣∣ 1

γ0
(λs +Hγ0

s )

∣∣∣∣2ds
+

1

γ0

∫ t

0

λTs (λs +Hγ0
s )ds

)
× E

(∫ t

0

λs · dWs

)
× E

(∫ t

0

Jγs · dW⊥
s

)
.

This shows that at the optimal portfolio level all the agents will be deriving the same
utility only subject to scaling according to the risk aversion coefficient γ and market-
uncorrelated utility components, that is

Uγ
t (Xπ∗

t ) = Uγ0
t (Xπ∗

t )× 1− γ0
1− γ

× E
(∫ t

0

Jγs · dW⊥
s

)/
E
(∫ t

0

Jγ0s · dW⊥
s

)
.

From Theorem 2.3 we get that if the investors’ preferences are shaped by all the in-
formation present in the filtration F, then up to invertibility of σt and some regularity
conditions we can always choose a process Ht so that any π ∈ A is deemed optimal.
That is, for any initial condition U(0, x) =

∫
I
x1−γ

1−γ ν(dγ), and any portfolio π ∈ A we can

explicitly construct a forward performance process, by choosing

Hγ0
t = γ0σtπt − λt.(11)

This suggests that any strategy for any person, when viewed through an appropriate lens,
can be deemed dynamically consistent. Thus, the self-generation criterion (as defined in
Zitkovič 2009) and an initial utility datum is not enough to specify the forward develop-
ment of one’s preferences. We refer the reader to Section 3 for further discussion on this
matter.

Note also that choice of the processes {Jγt }γ∈I in no way affects the portfolio selection.
Thus, even if we specify the optimal portfolio and the initial preferences, that will not pin
down the forward performance process. This is due to assuming that all the information
that affects price formation in the market can affect the investors’ preferences. In other
words, the filtration F is too large to pin down one FPP for a choice of an optimal portfolio
and an initial condition. We can deal with this issue by limiting the flow of information
that can affect the development of the investor’s preferences. In the following subsection
we do so by restricting the investor’s information available to the investor to a filtration
generated by some factor-driving Brownian motions B.
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2.2. Factor-generated Forward Performances. Consider an investor whose prefer-
ences are adapted to the factor filtration G generated by dB-dimensional Brownian motion
Bt, such that

Bt =

∫ t

0

ρ>s dWs +

∫ t

0

A>s dW⊥
s ,

where ρt, At ∈ Gt := σ(Bt). Let the market model be as in (1), with µt, σt ∈ Gt. Then,
for our power mixture FPPs in (5), {Mγ

t }γ∈I will have to be adapted to Gt, and hence
admit the representation

Mγ
t =

∫ t

0

H̃γ
s · dBs =

∫ t

0

(
ρsH̃

γ
s

)
· dWs +

∫ t

0

(
AsH̃

γ
s

)
· dW⊥

s ,

for some H̃t ∈ Gt. Thus, when Ut(x) ∈ Gt, it must be that H̃γ
t = (ρ>t ρt)

−1ρ>t H
γ
t , and

hence

Jγt = At(ρ
>
t ρt)

−1ρ>t H
γ
t .

Since

Hγ
t =

γ − γ0
γ0

λt +
γ

γ0
Hγ0
t ,

we get that Ut(x) is completely parametrized by the process Hγ0
t . Combining this with

(11), yields that to uniquely identify a factor-generated FPP it is enough to specify the
initial condition and the optimal portfolio.

Remark 2.5. Note that when the eigenvalue equality (EVE) condition (Avanesyan, Shkol-
nikov, and Sircar 2020, Definition 2.4) holds with a constant p, that is ρ>ρ = pIdB , we
get that

H̃γ
t =

1

r
ρ>t H

γ
t , Jγt =

1

r
Atρ

>
t H

γ
t .

Remark 2.6. We can certainly improve some of the lower bounds on the constants in
Theorem 2.3, given this added structure. We choose to omit these calculations as they
would not be contributing anything new to the discussion.

3. Power Forward Performances

A particular case of our set-up is when the measure ν is a Dirac measure for some γ ∈
(0,∞)/{1}. Hence, we obtain the characterizations for local and true FPPs as corollaries
of Theorems 2.1 and 2.3.

Corollary 3.1. Suppose the market model (1), and an investor with constant relative
risk aversion γ. Then, for initial preferences

U0(x) =
x1−γ

1− γ
,

the process

Ut(x) =
x1−γ

1− γ
E(Mt)E(Vt)

is a local FPP, with an associated optimal portfolio given by a solution to

σtπ
∗
t =

1

γ
(λt +Ht),
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where the pair (Mt, Vt) is given by

Mt =

∫ t

0

Hs · dWs +

∫ t

0

Js · dW⊥
s , Vt = −1− γ

2γ

∫ t

0

|λs +Hs|2ds,(12)

and Ht, Jt ∈ Ft.
The above corollary has been stated and proved in various ways ever since Musiela,

Zariphopoulou, et al. 2008, and later being fully characterized by Choulli and Ma 2017
(including non-continuous market scenarios). Most recently this characterization was
once again obtained by Bo, Capponi, and Zhou 2018 and extended to BSDE factor
representations. We note that in the latter paper when constructing true FPPs authors
rely on uniform integrability assumptions, which preclude them from constructing FPPs
with Ht being a constant. We only require a Novikov type condition to hold, which allows
us to construct such FPPs. Therefore, on the technical level the following Corollary 3.2
takes up its own space in the power FPP literature.

Corollary 3.2. Suppose the market model (1) and an investor with constant relative risk
aversion γ. Let (M,V ) be as in (12), and let π ∈ Av. Additionally let H, J be such that

E
[

exp

(
cJ

∫ T

0

|Jt|2dt
)]

<∞, sup
t∈[0,T ]

E
[
‖Jt‖

2uv
v−1

]
<∞,

E
[

exp

(
cH

∫ T

0

|Ht|2dt
)]

<∞, sup
t∈[0,T ]

E
[
‖Ht‖

2uv
v−1

]
<∞,

for all T > 0, where cJ and cH(γ) are such that

cJ >
qp2
2

(qp1 − 1), cH >

{
uvp3(1− γ)(2uvp1(1− γ)− 1)/γ2,
1
2
qp3γ

(
qp1γ − 1

)
/γ2,

for some p1, p2, p3 > 1 satisfying 1
p1

+ 1
p2

+ 1
p3

< 1, and q := 2v
v−1 . Then, for initial

preferences

U0(x) =
x1−γ

1− γ
,

the process

Ut(x) =
x1−γ

1− γ
E(Mt)E(Vt)(13)

is a true FPP, with an associated optimal portfolio given by a solution to

σtπ
∗
t =

1

γ
(λt +Ht).(14)

The characterization (13) was first implicitly derived in Musiela and Zariphopoulou
2010a, Theorem 4. Without explicitly discussing the power case, the authors character-
ized power FPPs as a functional transformation of a time-monotone FPP obtained in
Musiela and Zariphopoulou 2010a, Proposition 3:

Ut(x) = u(x,At)Zt,(15)

where At is a well-chosen finite variation process, and Zt = E(Mt) is the “market-view”
process. Using the latter as a change of measure we can always consider market dynamics
for which the investor’s optimal decisions will be determined by a time-monotone FPP.
That is, by defining a new measure Q through a Radon-Nikodym derivative

dQ
dP

∣∣∣∣
t

= E(Mt),(16)
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we obtain that maximizing our investor’s dynamic utility U·(·) under the measure P yields
the same optimal portfolios as when maximizing the time-monotone FPP u(x,At) under
the measure Q.

In addition to power forward performance processes obtained in Musiela and Za-
riphopoulou 2010a, Musiela and Zariphopoulou 2010b, Nadtochiy and Zariphopoulou
2014, Nadtochiy and Tehranchi 2015, Choulli and Ma 2017, Bo, Capponi, and Zhou
2018, the broad classes of FPPs derived in Musiela and Zariphopoulou 2008, Berrier,
Rogers, and Tehranchi 2009, Zitkovič 2009, etc. are all situated within the broad class
of FPPs that have the form (15). Power mixture FPPs do not fall within this class.
This will further become self-evident in the following section, where we fully characterize
two-power mixture forward performance processes with constant power paramaters.

3.1. Importance of the market-view process. Let us further investigate the meaning
of the market-view process E(M). In our construction, M is made up of two components
subjective to the investor: H and J . Only H enters the optimal portfolio selection
explicitly. As we have noted in the previous section, taking H to be as in (11), an
investor can make any portfolio optimal with respect to a power FPP as in (13). That
is, for each admissible portfolio there exists a market-view that makes it optimal. This
suggests that the space of power FPPs is in fact so large that only knowing that the
investor’s preferences evolve as a power FPP is not enough even to narrow the search for
their optimal portfolio. Any strategy, no matter how bad, has a dynamically consistent
forward investment criterion justifying it. To make the forward investment problem well-
posed we need to have additional information about the investor.

Thus, to reliably solve the forward investment problem with CRRA preferences, we
propose to first explicitly fix the market-view process E(M), and solve the equivalent opti-
mization problem of maximizing the expectation of a time-monotone FPP x1−γE(V )/(1−
γ) under the measure Q as in (16). To justify this, let us first change the measure to a
measure QH given through a Radon-Nikodym derivative

dQH

dP

∣∣∣∣
t

= E
(∫ t

0

Hs · dWs

)
.

Then, the market dynamics will be given by

dSit
Sit

=
{
σTt
(
(λt +Ht)dt+ dWH

t

)}
i
,

and since the optimal portfolio is given by (14), we get that under the measure QH

the investor’s optimal strategy is the traditional myopic Merton strategy. Thus, from
a portfolio manager’s perspective, H could be interpreted as the volatility in investor’s
preferences due to discrepancy between the investor’s and the portfolio manager’s beliefs
about the observable stock dynamics. Now, if we further change the measure to Q through
the remaining Radon-Nikodym derivative

dQ
dQH

∣∣∣∣
t

= E
(∫ t

0

Js · dW⊥
s

)
the market dynamics will not be affected in an explicit way, however the distribution of
λt and σt will change. This is best visible in a multi-factor market model setting.
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Consider the eigenvalue equality (EVE) multi-factor Markovian market model as in
Avanesyan, Shkolnikov, and Sircar 2020 with dynamics

dSit
Sit

= µi(Yt) dt+

dW∑
j=1

σji(Yt) dW j
t , i = 1, 2, . . . , n,

dYt = α(Yt)dt+ κ(Yt)
>dBt,

Bt = ρ>Wt + A>W⊥
t , ρ>ρ = pIdB ,

such that dB = dW⊥ , and let U·(·) ∈ Gt := σ(Bt) be a power FPP as given in (13). Then,
under the new measure Q, the market dynamics will be

dSit
Sit

=
{
σ(Yt)

>
((
λ(Yt) +Ht

)
dt+ dWQ

t

)}
i
, i = 1, 2, . . . , n,

dYt =
(
α(Yt) + r−1κ(Yt)

>ρ>t Ht

)
dt+ κ(Yt)

>dBQ
t .

Thus, the problem of forward investing is indeed reduced to maximization of the Q-
expectation of a time monotone performance criterion

UQ
t (x) =

1

1− γ
(
xe−

1
2γ
‖λ(Yt)+Ht‖2)1−γ,(17)

with market dynamics given above. From (17) it follows that, under the measure Q,
the investor is just trying to maximize their expected power utility of wealth discounted
by their perceived investment opportunities. Changing measure through the market-
view process E(Mt) gives us the investor’s subjective opinion about the stock and factor
dynamics (in this case the drift corrections). Thus, when discussing power FPPs that are
continuous in time as well as differentiable in wealth parameters, one can always reduce
the optimization problem to maximizing the expected value of a time-monotone FPP
under an appropriate market-view measure.

4. Two-Power Mixture Forward Performances

Motivated by the results in Choulli and Ma 2017 we proceed to characterize a class of
two-power mixture FPPs. That is we consider forward utilities of the form

Ut(x) = Atx
pt +Dtx

qt ,(18)

where A,D, and 0 < p, q < 1 are continuous stochastic processes adapted to the filtration
F. We further assume that the power parameters remain in the order pt ≤ qt for all t ≥ 0
almost surely.

4.1. General two-power mixture FPPs. From the definition of forward performance
processes we proceed to establish some necessary conditions the processes A,D, p, q must
satisfy. In particular, we obtain that A,D are non-negative, and that p, q are non-
decreasing and non-increasing processes respectively. Hence p, q must be of finite varia-
tion.

Lemma 4.1. If a random field U·(·) given in (18) is a forward performance process, then
for all t > 0: At, Dt ≥ 0 when {pt < qt}, and At +Dt > 0 otherwise.

Proof. Let us fix a time t ≥ 0. Since U·(·) is an FPP, then Ut(x) must be strictly
increasing in x. We are considering twice-differentiable functions Ut(x) in x, hence the
above statement reduces to Ut(x) having a strictly positive first derivative in x. That is

ptAtx
pt−1 + qtDtx

qt−1 > 0.
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Since qt ≥ pt, for x > 0 we get

ptAt + qtDtx
qt−pt > 0.

If {pt = qt} holds, then the above inequality is equivalent to At + Dt > 0. That is,
for these realizations of the sample space, for a fixed time t, our investor has CRRA
preferences. Now for {pt < qt}, then taking x close to 0, and∞ respectively gives us that
At ≥ 0, and Dt ≥ 0. Additionally, we obtain that for no realization of the sample space
can it happen that At = Dt = 0. �

Remark 4.2. For a general discrete power mixture FPP of the form

Ut(x) =
m∑
i=1

Aitx
pit ,

such that p1 ≤ . . . ≤ pm for some m > 2, using the same approach as in the proof of
Lemma 4.1, only yields that the first and the last coefficients are non-negative A1

t , A
m
t ≥ 0.

That is, if we consider larger discrete power mixtures than two-power mixtures, we can
obtain non-negativity only for the leading risk-aversion coefficients p1, pm. This is further
expanded on in Section 5.

Now, let us show that p and q can only be of finite variation.

Lemma 4.3. Let 0 < p < q < 1 be continuous processes and Ut(x) be as in (18). Let
A, D be as before and such that for all T > 0

sup
t∈[0,T ]

E
[
At
]
<∞, sup

t∈[0,T ]
E
[
Dt

]
<∞,(19)

and U·(·) is an FPP. Then, the processes p, q are P-almost surely non-decreasing and
non-increasing respectively. That is, for all 0 < s < t

p0 ≤ ps ≤ pt < qt ≤ qs ≤ q0, P− a.s.

Proof. Take any 0 < s < t. Note that the null-portfolio, π0 := 0, is an admissible
portfolio. Thus, (Ut(x))t≥0 is a supermartingale and we get

E
[
Atx

pt +Dtx
qt
∣∣Fs] ≤ Asx

ps +Dsx
qs .(20)

First, let us consider the case when x > 1. Then xqs > xps , and since As, Ds ≥ 0, (20)
yields

E
[
Dtx

qt
∣∣Fs] ≤ (As +Ds

)
xqs .

Let us define an equivalent measure Q1 ∼ P, with a Radon-Nikodym derivative

dQ1

dP
=

Dt/(As +Ds)

E[Dt/(As +Ds)]
.

Thus, we obtain

EQ1
[
xqt−qs − 1

∣∣Fs] ≤ CQ1 := E
[
Dt

∣∣Fs]−1 − 1

Representing xqt−qs as elog(x)(qt−qs)+ + elog(x)(qt−qs)− − 1 we get

EQ1
[
elog(x)(qt−qs)+ + e− log(x)(qt−qs)−

∣∣Fs] ≤ CQ1 + 2.

Since e· is a convex function, using Jensen’s inequality yields

elog(x)E
Q1 [(qt−qs)+|Fs] + e− log(x)EQ1 [(qt−qs)−|Fs] ≤ CQ1 + 2.

Letting x go to infinity we obtain that E[(qt − qs)+|Fs] = 0. Thus for all 0 < s < t we
get that P− a.s. qt ≤ qs.
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Now, let us consider the case x < 1. Here, xps > xqs , and just like above we get

E
[
Atx

pt
∣∣Fs] ≤ (As +Ds

)
xps .

Defining a new measure Q2 ∼ P
dQ2

dP
=

At/(As +Ds)

E[At/(As +Ds)]
,

and proceeding as previously, we obtain that for all x < 1

elog(x)E
Q2 [(pt−ps)+|Fs] + e− log(x)EQ2 [(pt−ps)−|Fs] ≤ CQ2 + 2.

Letting x approach 0 we get that E[(pt−ps)−|Fs] = 0, and thus for all 0 < s < t, pt ≥ ps,
P−almost surely. �

Remark 4.4. By setting x = 1 in (20), we obtain that (At +Dt) has to be a supermartin-
gale.

One question that arises is, when are the finite variation processes p and q constant?
In the proposition below we obtain that if the smaller one of the processes is constant,
then the larger one has to be constant as well.

Proposition 4.5. Let 0 < p < q < 1 be continuous processes and At, Dt > 0 be contin-
uous semimartingales such that (19) holds, and let U·(·), as given in (18), be an FPP.
Then, qt = q0, P− a.s. for all t > 0 if pt = p0, P− a.s. for all t > 0.

Proof. Since At, Dt are strictly positive semimartingales, then there exist F-adapted pro-
cesses a, a⊥, d, d⊥, α, δ such that

dAt = αtAtdt+ atAt · dWt + a⊥t At · dW⊥
t ,

dDt = δtDtdt+ dtDt · dWt + d⊥t Dt · dW⊥
t .

Let us again consider the null-portfolio π0 := 0. As previously, we know that Uπ0

t (x) =
Atx

pt +Dtx
qt is a supermartingale. Applying Itô’s formula we get

dUπ0

t (x) = log(x)
(
Atx

ptdpt +Dtx
qtdqt

)
+
(
αtAtx

pt + δtDtx
qt
)
dt

+
(
atAtx

pt + dtDtx
qt
)
· dWt +

(
a⊥t Atx

pt + d⊥t Dtx
qt
)
· dW⊥

t .

For Uπ0

t to be a supermartingale it is necessary that the finite variation term is non-
increasing in time. Now, let us assume that pt = p0, P − a.s., then dpt = 0. Thus, the
above-mentioned necessary condition is equivalent to

log(x)

∫ t

s

Drx
qrdqr +

∫ t

s

αrArx
p0 + δrDrx

qrdr ≤ 0, ∀0 < s < t.

From Lemma 4.3 we get that dqr < 0, qr < q0, and thus for x < 1 a further necessary
condition would be

log(x)xq0
∫ t

0

Drdqr +

∫ t

0

αrArx
p0 + δrDrx

qrdr ≤ 0, ∀t > 0.

Note that since 0 < q0 < 1, applying L’Hôpital’s rule, we get that log(x)xq0 tends to −∞
as x goes to 0. Thus, taking x to 0, we obtain that the above expression can assume
positive values, unless qr = q0, P− a.s. for all r ∈ [0, t]. �

This shows that if the person is confident about their relative risk aversion when they
are very poor, then, in order to be a consistent investor, they have to be sure about their
relative risk aversion when they are extremely rich as well. Alternatively, if the more
risk averse of the two investing partners is sure of their risk aversion coefficient, then to
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construct a dynamically consistent investment criterion for a joint investment vehicle, the
less risk averse investor must be sure of their risk aversion coefficient also.

4.2. Constant power two-power mixture FPPs. Having examined the case of ran-
dom powers in two-power mixture FPPs we now choose to consider a constant power
scenario and characterize the processes A and D. We will focus on the case when A and
D are strictly positive continuous semimartingales.

Proposition 4.6. Let A,D > 0 be continuous semimartingales adapted to F, and let p, q
be constants such that 0 < p < q < 1. If the process

Ut(x) = Atx
p +Dtx

q(21)

is an FPP, then Atx
p and Dtx

q are FPPs as well, and the optimal portfolios corresponding
to all three FPPs solve the same linear system.

Please see the proof in Appendix B. Proposition 4.6 combined with Theorems 2.1
and 2.3 provides a complete characterization of two-power mixture forward performance
processes whose coefficients are strictly positive semimartingales and powers are constants
in the interval (0,1).

The result can be interpreted from the lens of investment pools. Imagine we have two
investors with different risk aversions, and whose preferences develop as power forward
performance processes. Now, imagine that neither of them has the ability to invest in the
market on the individual basis, but there is a way to invest through a joint investment
vehicle. Thus, the two-power mixture FPPs are characterizing the joint utility the in-
vestors derive from their invested capital’s performance. Proposition 4.6 shows that the
investors will be just as happy investing together as if they had the opportunity to invest
apart only if their choices would have been the same anyways. From the proof we can
see that the drift of U·(·), as defined in (21), will always be non-positive as long as the
components are FPPs themselves

− pq(1− p)(1− q)AtDt(X
π∗
t )p+q

p(1− p)At(Xπ∗
t )p + q(1− q)Dt(Xπ∗

t )q

∣∣∣∣ 1

1− p
(λt + at)−

1

1− q
(λt + dt)

∣∣∣∣2 ≤ 0.

That is, there is no cost to pooling resources together only if the investors have identical
individual optimal strategies.

4.3. Non-FPP forward strategies. One of the defining properties that makes forward
performance processes useful is that they guarantee existence of a dominating strategy
by making the utility random field a martingale at such a strategy and a supermartingale
for all other admissible strategies. As we have observed in Proposition 4.6, when dealing
with pooled resources, in most of the cases the joint utility random field cannot be a mar-
tingale. Does this mean that there is no dominating strategy? That is, if two investors’
ideal strategies do not perfectly align, should they always pass up on the investment
opportunity? Or maybe there is a strategy that will not keep the joint utility at a prior
level, however could be close to optimal. We believe that in some cases π∗ given by (27)
could be a good approximation.

Consider two investors with the same market-view, and whose preferences develop as
time-monotone power FPPs with power coefficients p < q. That is

U1
t (x) = A0x

pe−
p

2(1−p)
∫ t
0 |λs|

2ds, U2
t (x) = D0x

qe−
q

2(1−q)
∫ t
0 |λs|

2ds.

When faced with the market dynamics as in (1), we know that each respective investor’s
optimal allocation within the risky investment vehicles would be identical. They would
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only differ in the percentage of their wealth that their respective optimal portfolio allo-
cations within these risky assets, π1, π2 would be satisfying

σtπ
1,∗
t =

1

1− p
λt, σtπ

2,∗
t =

1

1− q
λt.

Thus, to appease both of the investors, we will be looking for strategies that have identical
risky asset allocation to the individual investors’ strategies, and should only differ in the
coefficient. That is, our admissible portfolio space will be restricted to

Avλ =

{
π ∈ Av

∣∣∣∣σtπt =
1

1− zt
λt, for some zt ∈ (0, 1) adapted to Ft

}
.

For a portfolio

σtπ
z
t =

λt
1− zt

the joint utility will take the shape

Ut
(
Xπz

t

)
= A0X

p
0E
(

p

1− z

∫ t

0

λs · dWs

)
exp

(
− p

2(1− p)

∫ t

0

(zs − p)2

(1− zs)2
|λs|2ds

)
+D0X

q
0E
(

q

1− z

∫ t

0

λs · dWs

)
exp

(
− q

2(1− q)

∫ t

0

(zs − q)2

(1− zs)2
|λs|2ds

)
.

For exposition purposes we limit ourselves to a one-stock complete market case scenario,
where the stock price develops as a geometric Brownian motion

dSt
St

= σt
(
λdt+ dWt

)
.

Let us consider a subclass of Aλ, where the coefficient is constant for all time t > 0,
zt = z ∈ (0, 1). That is, the investors come to an agreement about a constant portion
of the joint wealth to invest in the risky asset, and keep that proportion until the end of
time. In that case, the expression for the joint utility will be

Ut
(
Xπz

t

)
= A0X

p
0E
(

p

1− z
λ ·Wt

)
exp

(
− p(z − p)2λ2t

2(1− p)(1− z)2

)
+D0X

q
0E
(

q

1− z
λ ·Wt

)
exp

(
− q(z − q)2λ2t

2(1− q)(1− z)2

)
.

From here, we can calculate the explicit expression for the expectation of the forward
utility

E
[
Ut(X

πz

t )
]

= A0X
p
0 exp

(
− p(z − p)2λ2t

2(1− p)(1− z)2

)
+D0X

q
0 exp

(
− q(z − q)2λ2t

2(1−q)(1−z)2

)
.

(22)

The expression above is not a concave function of z and does not even always have a
unique optimizer. In fact, keeping p,A0 and q,D0 fixed, the optimizer in general will
change as a function of X0, t, and λ.

4.3.1. Numerical illustrations. Let us illustrate some examples of the functional shape
in (22). Below we plot all constant-proportion strategies 30 years into the future. Let
A0 = D0 = 1, we will change the values of p, q, λ,X0 and observe how that affects the
shape of the expectation.
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Figure 1. Expected joint utility throughout time for parameter values p =
0.1, q = 0.3, λ = 1, X0 = 1

• p = 0.1, q = 0.3, λ = 1, X0 = 1. As we can see in Figure 1, for the 30 year period
there seems to be a quite stable optimizer located at at around z = 0.25 for all
times t ∈ [0, 30]. Increasing X0 pushes this optimizer further toward the value
of q, with the wealth X0 > 1000 resulting in z∗ ≈ 0.3. Unsurprisingly, making
X0 go to 0 results in z∗ approaching the value of p. The initial wealth has to be
very small X0 < 0.001 for z∗ to get close enough to 0.1. In any case one general
trend that we observe is that the optimal decision always results in compromise.
That is, it is jointly beneficial for both parties to abandon their individual optimal
allocations and meet somewhere in the middle.
• p = 0.1, q = 0.3, λ = 0.5, X0 = 1. Making the investment opportunity less

lucrative by setting Sharpe to be 0.5, shifts the compromise exactly towards the
center z∗ ≈ 0.2 (see Figure 2). That is, a more risk averse investor’s opinion
matters more when there is less promise of rags-to-riches.
• p = 0.1, q = 0.3, λ = 4, X0 = 1. Changing the Sharpe ratio significantly has

changed the shape of the curve in Figure 3 so that there are two local maxima
now, one located close to p, and the other close to q respectively. The optimal
allocation is still one requiring compromise, however it is further shifted towards
the optimal allocation of the less risk averse investor. In particular, what we
see is that in the long run the more risk averse investor would have to bend to
the will of their more risk loving peer, which might result in the arrangement
crumbling. That is, when the investment opportunity is particularly lucrative,
people would become less willing to compromise over the long term. Finally, the
shape is also highly dependent on the initial wealth parameter. Setting X0 = 0.1
will result in the bump at z = 0.1 becoming the global optimum, whereas setting
X0 = 1000 would almost completely smooth this bump out. Either way we do
observe that the expected value of the joint utility decreases much more than in
the previous two cases. That is, the price of cooperation is particularly high when
the investment is lucrative.
• p = 0.1, q = 0.6, λ = 1, X0 = 1. Finally, letting the risk aversion gap increase
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Figure 2. Expected joint utility throughout time for parameter values p =
0.1, q = 0.3, λ = 0.5, X0 = 1

Figure 3. Expected joint utility throughout time for parameter values p =
0.1, q = 0.3, λ = 4, X0 = 1

deems long-term pooling of investment unreasonable as can be seen in Figure 4.
This shows that when pooling investment, choosing people who do not differ too
much in terms of their risk aversions would result in longer willingness to keep
investing together. That is, for the sake of keeping the collective togetherness
longer, carefully selecting the partner prior to starting any venture could play a
key role.

Having analyzed the constant-portion investing from different angles we come to a
conclusion that given an investment opportunity, one can find investment partners with
an appropriate risk aversion differential so that long-term cooperation is optimal.
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Figure 4. Expected joint utility throughout time for parameter values p =
0.1, q = 0.6, λ = 1, X0 = 1

From our prior analysis it looks like cooperation does pay off over a 30-year period
when p = 0.1, q = 0.3, λ = 1, X0 = 1. Constant portion investing results in z∗ = 0.25
for these parameter values. Now, we would like to compare constant portion investing to
two investment strategies: π∗ from (27), and πe which will be one-period expected utility
maximizing portfolio (one period conditional version of (22)). We set the investment
horizon to 30 years (periods), and rebalance the portfolios every year. We perform the
simulation 1,000 times and present in Figure 5 the average paths of the respective joint
utilities. As we can see the well-chosen constant allocation mostly dominates the other

Figure 5. Forward utility performance of constant, π∗ and πe strategies

two strategies. It however places too much emphasis on satisfying the more risk loving
investing partner. The strategy πe is even more guilty of such preferential treatment. As
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Figure 6. Portfolio allocations of the constant, π∗ and πe strategies throughout time.

we can see in Figure 6, the most fair choice of portfolio allocations into risky assets occurs
when exercising the strategy π∗. As can be seen in Figure 5, π∗ does not perform much
worse than the constant optimal portion, and hence could be the investment strategy of
choice.

4.4. Explicit two power dual example. In Zitkovič 2009 and Berrier, Rogers, and
Tehranchi 2009 maturity-independent risk measures were constructed as convex duals of
corresponding FPPs. We wrap up this section by discussing an example where we can
find the dual of a two-power mixture FPP explicitly, thereby constructing new maturity-
independent risk measures.

Consider a two-power mixture FPP with component risk aversions γ and 2γ

Ut(x) = At
x1−2γ

1− 2γ
+Dt

x1−γ

1− γ
.

From Proposition 4.6 we get that At, Dt must satisfy (25), (26), and (28). Now let’s
consider the Legendre dual of Ut(x), for y ≥ 0

Vt(y) = sup
x≥0

At
x1−2γ

1− 2γ
+Dt

x1−γ

1− γ
− xy.

Let us find the explicit expression for Vt(y). Since U(t, x) is globally concave and differ-
entiable in x, we can find the supremum by equalizing to zero the first derivative

x−2γ∗ At + x−γ∗ Dt − y = 0.

Solving the quadratic equation for x−γ∗ we finally get that

x∗ =

(
−Dt +

√
D2
t + 4Aty

2At

)− 1
γ

.

Hence, by plugging in the expression for x∗ we can obtain the explicit expression for the
dual Vt(·).
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5. Three-Power Mixture Forward Performance Construction

The main results of the previous section are concerning necessary conditions two-power
FPPs must satisfy. Lemma 4.1 and Proposition 4.6 show that we can only form two-power
mixture FPPs as positive linear combinations of power FPPs. This, however, is not a
necessary condition for general power mixture FPPs. We illustrate this point below by
constructing a three-power mixture FPP from a non-positive linear combination of power
FPPs.

Consider the process

Ut(x) =
x1−γ

1− γ
E
(
Mγ

t

)
E
(
V γ
t

)
− x1−2γ

1− 2γ
E
(
M2γ

t

)
E
(
V 2γ
t

)
+

x1−3γ

1− 3γ
E
(
M3γ

t

)
E
(
V 3γ
t

)
,

(23)

where γ ∈ (0, 1/3), and M ·
t , V

·
t are given as in equations (6), (7), with

γ0 = 2γ, Hγ0
t = H2γ

t = 0, J ·t = 0.

Plugging these into (23) we get

Ut(x) =
x1−γ

1− γ
E
(
− 1

2

∫ t

0

λs · dWs

)
e−

1−γ
8γ

∫ t
0 ‖λs‖

2ds − x1−2γ

1− 2γ
e−

1−2γ
4γ

∫ t
0 ‖λs‖

2ds

+
x1−3γ

1− 3γ
E
(

1

2

∫ t

0

λs · dWs

)
t

e−
3−9γ
8γ

∫ t
0 ‖λs‖

2ds.

Denoting e
1
2

∫ t
0 λ

T
s dWs := Zt yields

Ut(x) = Z−1t

(
x1−γ

1− γ
e−

1
8γ

∫ t
0 ‖λs‖

2ds − x1−2γ

1− 2γ
e−

1−2γ
4γ

∫ t
0 ‖λs‖

2dsZt

+
x1−3γ

1− 3γ
e(1−

3
8γ

)
∫ t
0 ‖λs‖

2dsZ2
t

)
.

Now, to show that U·(·) is indeed an FPP let us first show that it is strictly increasing
and concave in x. Taking the first and second derivatives in x yields

∂xUt(x) = Z−1t x−γ
(
e−

1
8γ

∫ t
0 ‖λs‖

2ds − e−
1−2γ
4γ

∫ t
0 ‖λs‖

2dsx−γZt + e(1−
3
8γ

)
∫ t
0 ‖λs‖

2dsx−2γZ2
t

)
,

∂2xUt(x) = − γZ−1t x−γ−1
(
e−

1
8γ

∫ t
0 ‖λs‖

2ds − 2e−
1−2γ
4γ

∫ t
0 ‖λs‖

2dsx−γZt

+ 3e(1−
3
8γ

)
∫ t
0 ‖λs‖

2dsx−2γZ2
t

)
.

Thus, we get that Ut(x) is strictly increasing and concave in x if and only if

e−
1
8γ

∫ t
0 ‖λs‖

2ds − e−
1−2γ
4γ

∫ t
0 ‖λs‖

2dsx−γZt + e(1−
3
8γ

)
∫ t
0 ‖λs‖

2dsx−2γZ2
t > 0,

e−
1
8γ

∫ t
0 ‖λs‖

2ds − 2e−
1−2γ
4γ

∫ t
0 ‖λs‖

2dsx−γZt + 3e(1−
3
8γ

)
∫ t
0 ‖λs‖

2dsx−2γZ2
t > 0.

The above expressions are both quadratic polynomials in x−γZt, with respective dis-
criminants −3e−(1−2γ)/2γ and −8e−(1−2γ)/2γ. Since both the discriminants are negative,
we obtain the desired inequalities. Thus, U·(·) is strictly increasing and concave in the
wealth parameter.

Now, let us show that (Ut(X
π
t )) is a supermartingale for all admissible π ∈ Av, and

that it is a martingale for some π∗ ∈ Av. For sake of convenience denote

At := E
(
Mγ

t

)
E
(
V γ
t

)
, Ct := E

(
M2γ

t

)
E
(
V 2γ
t

)
, Dt := E

(
M3γ

t

)
E
(
V 3γ
t

)
.
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Applying Itô’s lemma yields

dUt
(
Xπ
t

)
= − Z−1t

(
Xπ
t )1−γ

(
e−

1
8γ

∫ t
0 ‖λs‖

2ds − 2e−
1−2γ
4γ

∫ t
0 ‖λs‖

2dsZt
(
Xπ
t

)−γ
+ 3e(1−

3
8γ

)
∫ t
0 ‖λs‖

2dsZ2
t

(
Xπ
t

)−2γ)× ( 1

8γ
‖λt‖2 −

1

2
(σtπt)

>λt +
γ

2
‖σtπt‖2

)
dt

+
(
Xπ
t

)1−γ(
At − Ct

(
Xπ
t

)−γ
+Dt

(
Xπ
t

)−2γ)
(σtπt)

>dWt

− 1

2(1− γ)

(
Xπ
t

)1−γ
Atλ

>
t dWt +

1

2(1− 3γ)

(
Xπ
t

)1−3γ
Dtλ

>
t dWt.

Let us first consider the drift term. Note that it is written as a multiplication of two
quadratic polynomials in Zt(X

π
t )−γ and σtπt respectively. The former polynomial has

a negative discriminant and thus is strictly positive. The latter polynomial is strictly
convex and admits the minimizer

σtπ
∗
t =

1

2γ
λt.

Plugging it back into the drift term produces the value of 0. Thus, for all admissible π
the drift is negative, and is equal to 0 for the portfolio π∗. Therefore Ut(X

π
t ) is a local

supermartingale and Ut(X
π∗
t ) is a local martingale.

Finally, as λ is bounded and π ∈ Av, following the same steps as in the proof of
Theorem 2.3 we obtain that the local martingale term is indeed a martingale, and that
π∗ is indeed admissible. Thus, U·(·) is a true FPP, and therefore we have constructed a
three-power mixture that is not a positive linear combination of power FPPs. That is,
the necessary conditions that we have obtained for the two-power mixtures do not apply
to the more general power-mixtures.

Moreover, this example covers a class of admissible initial conditions

U0(x) =
x1−γ

1− γ
− x1−2γ

1− 2γ
+

x1−3γ

1− 3γ
s.t. γ ∈

(
0,

1

3

)
for constructing true FPPs, that is not covered by Theorems 2.1 and 2.3. That is, the
three-power mixture example shows that to construct a power mixture FPP, the measure
ν does not have to be positive. This stands in contrast to the two-power mixture case
where the measure ν has to be positive (see Lemma 4.1).

Remark 5.1. All the summands in this three-power mixture

At
1− γ

x1−γ,
Ct

1− 2γ
x1−2γ,

Dt

1− 3γ
x1−3γ

are true FPPs themselves. The coefficients of the summands do not change sign in this
construction of a three-power mixture FPP. It might be possible to obtain this observation
as a necessary condition for the general power mixture case. We leave this for future
investigation.

6. Conclusion

In this work we have considered the problem of forward optimal investment in a contin-
uous semimartingale market model adapted to a Brownian filtration. We have introduced
and constructed the broad class of power mixture forward performance processes in Theo-
rems 2.1 and 2.3. As a direct result of these theorems we established a new class of power
true FPPs in Corollaries 3.1 and 3.2, and provided a discussion of the parametrization.
For two-power mixtures we have obtained in Lemma 4.3 that the powers can only be
finite-variation processes, and if the smaller power is constant in Proposition 4.5, we
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have established that the other power should be constant too. In Proposition 4.6, we
completely characterized the two-power mixture FPPs with constant power coefficients.
Finally, in Section 5 we constructed a three-power mixture FPP that exhibits the limita-
tions of extending our obtained necessary conditions for the two-power mixtures to the
general case. Future directions could include obtaining more relaxed necessary conditions
for the general power mixture case.

Power mixture FPPs can be interpreted as the joint consistent utility derived by a pool
of investors with different risk aversions. A particular case of interest is when dealing with
pooling investment decisions of two investors whose initial utilities are of power form. In
Proposition 4.6 we have obtained that to have their joint dynamic utility develop as an
FPP, the individual investors’ preferences must evolve as power FPPs themselves and
must admit identical optimal strategies. So, in the two-investor case, there is no cost to
cooperation only when the investors would have made the same decisions anyways. This
led us to question what happens when the two investors have different optimal portfolio
allocations. In Section 4.3 we discussed the case of two investors who share the same
“market-view” but have different risk aversions. We observed that if the investor’s risk
aversions are close enough, then setting up a joint investment pool could be a reasonable
proposition. We leave the analysis of the joint investment problem when the investors do
not share the same “market-view” for future work.

What makes forward performance processes useful is the fact that we can obtain the
optimal investment strategy through the martingale-supermartingale structure of the
utility random field. A curious question for future investigation is whether such structure
is necessary to have a dominating investment strategy. That is, an interesting line of
future work could be trying to construct a large class of random fields that are strict
supermartingales for all admissible portfolios, but still admit a provably optimal strategy.

Appendix A. Proof of Theorem 2.3

Before we proceed to prove Theorem 2.3, first let us prove a useful result.

Lemma A.1. Consider a compact set I ⊂ (0,∞)/{1}, a positive finite measure ν, and
two families of stochastic processes {Xγ

t }γ∈I, {b
γ
t }γ∈I ∈ Ft such that for some T, c > 0

sup
t∈[0,T ],γ∈I

|bγt |2 <∞, E
[ ∫

I
exp

(
c

∫ T

0

|Xγ
t |2dt

)
ν(dγ)

]
<∞.

Then, for all c1 ∈ [0, c)

E
[ ∫

I
exp

(
c1

∫ T

0

|Xγ
t + bγt |2dt

)
ν(dγ)

]
<∞.

Proof. Fix a c1 ∈ [0, c). Then, by the triangle inequality

exp

(
c1

∫ T

0

|Xγ
t + bγt |2dt

)
≤ C exp

(
c1

∫ T

0

|Xγ
t |2 + c0|Xγ

t |dt
)

= C exp

(
c1

∫ T

0

(|Xγ
t |2 + c0|Xγ

t |)1{|Xγ
t |≤c0c1/(c−c1)}dt

)
× exp

(
c1

∫ T

0

(|Xγ
t |2 + c0|Xγ

t |)1{|Xγ
t |>c0c1/(c−c1)}dt

)
≤ C1e

c
∫ T
0 |X

γ
t |2dt,
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where c0, C, C1 > 0 are constants. Integrating with respect to ν(·) and taking the expec-
tations on the both sides of the inequality concludes the proof. �

Proof of Theorem 2.3. Without loss of generality let γ0 = sup I. Fix some T > 0. Let us
first show that Ut(X

π
t ) is a local FPP. For that it is enough to check that the condition

(8) in Theorem 2.1 is satisfied. Using Hölder’s inequality we get

E
[ ∫

I

(∫ t

0

(Xπ
s )2(1−γ)

(
E(Mγ

t )E(V γ
t )
)2(∣∣∣∣ 1

1− γ
Hγ
s + σsπs

∣∣∣∣2 +

∣∣∣∣ 1

1− γ
Jγs

∣∣∣∣2)ds

) 1
2

ν(dγ)

]
< ν(I)

1
2 × E

[ ∫
I

∫ t

0

(Xπ
s )2(1−γ)

(
E(Mγ

t )E(V γ
t )
)2

×
(∣∣∣∣ 1

1− γ
Hγ
s + σsπs

∣∣∣∣2+

∣∣∣∣ 1

1− γ
Jγs

∣∣∣∣2)ν(dγ)ds

] 1
2

.

Proving that the above expectation is finite will automatically yield that condition (8)
holds. Before that, let us first consider the process

Ũt(X
π
t ) :=

∫ t

0

∫
I
(Xπ

s )1−γE(Mγ
s )E(V γ

s )Dγ(πs)ν(dγ) ds

+

dW∑
i=1

∫ t

0

∫
I
(Xπ

s )1−γE(Mγ
s )E(V γ

s )

×
(

γ

(1− γ)γ0
Hγ0
s +

γ − γ0
(1− γ)γ0

λs + σsπs

)
i

ν(dγ) dWs, i

+

d
W⊥∑
j=1

∫ t

0

∫
I

1

1− γ
(Xπ

s )1−γE(Mγ
s )E(V γ

s )Jγs, i ν(dγ) dW⊥
s, j

=: Drift + (W -local mtg.) + (W⊥-local mtg.).

(24)

Note that for all γ ∈ I the drift terms Dγ(·) are non-positive, and Dγ(π∗) = 0. Thus,
Ũt(x) is a local FPP. To prove that this process is a true FPP, it is enough to show two
things. First, local martingale summands are indeed true martingales for all admissible
portfolios. Second, the suggested optimal portfolio is indeed admissible.

Before doing all that, let us first show that

sup
t∈[0,T ]

E
[ ∫

I

(
E(Mγ

t )E(V γ
t )
) 2v
v−1ν(dγ)

]
<∞.

For sake of notational simplicity denote q := 2v
v−1 ≥ 2. Taking p1, p2, p3, p4 ≥ 1 such that

1

p1
+

1

p2
+

1

p3
+

1

p4
= 1,
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and applying Hölder’s inequality to the product measure P× ν, we get

E
[ ∫

I

(
E(Mγ

t )E(V γ
t )
)q
ν(dγ)

]
≤ E

[ ∫
I
E
(
qp1

∫ t

0

(
Hγ
s + (1− γ)λs

)
· dWs + qp1

∫ t

0

Jγs · dW⊥
s

)
ν(dγ)

] 1
p1

× E
[ ∫

I
exp

(
qp2(γ − 1)

∫ t

0

λs · dWs +
qp2(γ − 1)

2

∫ t

0

|λs|2ds
)
ν(dγ)

] 1
p2

× E
[ ∫

I
exp

(
qp3
2γ

(
qp1γ − 1

) ∫ t

0

|Hγ
s + (1− γ)λs|2ds

)
ν(dγ)

] 1
p3

× E
[ ∫

I
exp

(
qp4
2

(
qp1 − 1

) ∫ t

0

|Jγs |2ds
)
ν(dγ)

] 1
p4

<∞,

due to Lemma A.1, and integrability conditions (9) and (10). The upper bound on the
right hand side of the inequality is an increasing function with time, hence

sup
t∈[0,T ]

E
[ ∫

I

(
E(Mγ

t )E(V γ
t )
)q
ν(dγ)

]
<∞.

Let us now show that the W and W⊥ local martingale summands in (24) are indeed
true martingales. Let us start with the stochastic integral terms with respect to W . It
is enough to show that the quadratic variation of each summand i = 1, . . . , dW , has a
finite expectation. Applying Hölder’s inequality for the measure ν(·), Fubini’s theorem
and triangle inequality we get

E
[ ∫ t

0

∣∣∣∣ ∫
I
(Xπ

s )1−γE(Mγ
s )E(V γ

s )

(
γ

(1− γ)γ0
Hγ0
s +

γ − γ0
(1− γ)γ0

λs + σsπs

)
i

ν(dγ)

∣∣∣∣2ds]
≤ T × ν(I)×

(
E
∫ t

0

∫
I

γ2

(1− γ)2γ20
(Xπ

s )2−2γ
(
E(Mγ

s )E(V γ
s )
)2∣∣Hγ0

s, i

∣∣2ν(dγ)ds

+ E
∫ t

0

∫
I

(γ − γ0)2

(1− γ)2γ20
(Xπ

s )2−2γ
(
E(Mγ

s )E(V γ
s )
)2∣∣λs, i∣∣2ν(dγ)ds

+ E
∫ t

0

∫
I
(Xπ

s )2−2γ
(
E(Mγ

s )E(V γ
s )
)2∣∣σs, i·πs∣∣2ν(dγ)ds

)
=: C ×

(
(I) + (II) + (III)

)
.
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Applying Hölder’s inequality with respect to the measure P × ν × dt to the terms (I),
(II), and (III) respectively we get the following system of inequalities

(I) ≤
(
E
∫ t

0

∫
I
(Xπ

s )2uv(1−γ)ν(dγ)ds

) 1
uv

×
(
E
∫ t

0

∫
I

(
E(Mγ

s )E(V γ
s )
) 2v
v−1ν(dγ)ds

) v−1
v

×
(
E
∫ t

0

|Hγ0
s,i|

2uv
u−1

∫
I

(
γ

(1− γ)γ0

) 2uv
u−1

ν(dγ)ds

)u−1
uv

<∞,

(II) ≤
(
E
∫ t

0

∫
I
(Xπ

s )2uv(1−γ)ν(dγ)ds

) 1
uv

×
(
E
∫ t

0

∫
I

(
E(Mγ

s )E(V γ
s )
) 2v
v−1ν(dγ)ds

) v−1
v

×
(
E
∫ t

0

|λs,i|
2uv
u−1

∫
I

(
γ − γ0

(1− γ)γ0

) 2uv
u−1

ν(dγ)ds

)u−1
uv

<∞,

(III) ≤
(
E
∫ t

0

∫
I
(Xπ

s )2v(1−γ)|σs,iπs|2vν(dγ)ds

) 1
v

×
(
E
∫ t

0

∫
I

(
E(Mγ

s )E(V γ
s )
) 2v
v−1ν(dγ)ds

) v−1
v

<∞.

This shows that all the stochastic integrals in question are in fact square integrable
martingales.

Now, let us prove that the stochastic integrals with respect to W⊥ are true martingales
as well. Similarly, let’s consider each summand j = 1, . . . , dW⊥ , and prove that their
respective quadratic variations have finite expectations. Proceeding in the exact same
way we get

E
∫ t

0

∣∣∣∣ ∫
I

1

1− γ
(Xπ

s )1−γE(Mγ
s )E(V γ

s )Jγs, i ν(dγ)

∣∣∣∣2 ds

≤ T × ν(I)× E
∫ t

0

∫
I

1

(1− γ)2
(Xπ

s )2−2γ
(
E(Mγ

s )E(V γ
s )
)2∣∣Jγs, i∣∣2ν(dγ)ds

≤
(
E
∫ t

0

∫
I
(Xπ

s )2uv(1−γ)ν(dγ)ds

) 1
uv

×
(
E
∫ t

0

∫
I

(
E(Mγ

s )E(V γ
s )
) 2v
v−1ν(dγ)ds

) v−1
v

×
(
E
∫ t

0

∫
I

∣∣∣∣ Jγs,i1− γ

∣∣∣∣ 2uvu−1

ν(dγ)ds

)u−1
uv

<∞.

This, along with (I), (II), (III) <∞, shows that

E
[ ∫

I

∫ t

0

(Xπ
s )2(1−γ)(E(Mγ

s )E(V γ
s ))2

(∣∣∣∣ 1

1− γ
Hγ
s + σsπs

∣∣∣∣2 +

∣∣∣∣ 1

1− γ
Jγs

∣∣∣∣2)ν(dγ) ds

] 1
2

<∞,

and thus condition (8) holds. Applying the stochastic Fubini Theorem (Veraar 2012,
Theorem 2.2) yields that Ut(X

π
t ) = Ũt(X

π
t ) for all π ∈ Av.
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Last but not least, let us show that π∗ is indeed admissible, that is π∗ satisfies conditions
(2) and (3). Applying Hölder’s and then Minkowski’s inequalities we get

E
∫ T

0

∫
I
(Xπ∗

t )2v(1−γ)|σtπ∗t |2vν(dγ)dt = C0E
∫ T

0

∫
I
(Xπ∗

t )2v(1−γ)|λt +Hγ0
t |2vν(dγ)dt

≤ C0

(
E
∫ T

0

∫
I
(Xπ∗

t )2uv(1−γ)ν(dγ)dt

) 1
u

×

((
E
∫ T

0

∫
I
|λt|

2uv
u−1ν(dγ)dt

)u−1
2uv

+

(
E
∫ T

0

∫
I
|Hγ0

t |
2uv
u−1ν(dγ)dt

)u−1
2uv

)2v

≤ C1

(
E
∫ T

0

∫
I
(Xπ∗

t )2uv(1−γ)ν(dγ)dt

) 1
u

,

since λ is bounded and the supremum of the corresponding moments of Hγ0
t are bounded.

Thus to verify (2) it is enough to verify (3). For the convenience of the reader, let us
write out the expression for the optimal wealth component

Xπ∗

T = X0 exp

(
1

γ0

∫ T

0

(
Hγ0
t + (1− γ0)λt

)
· dWt −

1

2γ20

∫ T

0

∣∣Hγ0
t + (1− γ0)λt

∣∣2dt
+

∫ T

0

λt · dWt +
1

2

∫ T

0

|λt|2dt
)
.

Once again, taking the selection p1, p2, p̃3 > 1 such that 1
p1

+ 1
p2

+ 1
p̃3

= 1, denoting

uv =: w, and applying Hölder’s inequality to the measure P× ν yields

E
[ ∫

I
(Xπ∗

T )2w(1−γ)ν(dγ)

]
≤ E

[ ∫
I
X

2wp1(1−γ)
0 E

(
2wp1(1− γ)

γ0

∫ T

0

(
Hγ0
t + (1− γ0)λt

)
· dWt

)
ν(dγ)

] 1
p1

× E
[ ∫

I
exp

(
wp2(1− γ)

γ20
(2wp1(1− γ)− 1)

∫ T

0

∣∣Hγ0
t + (1− γ0)λt

∣∣2dt)ν(dγ)

] 1
p2

× E
[ ∫

I
exp

(
2wp̃3(1− γ)

∫ T

0

λt · dWt + wp̃3(1− γ)

∫ T

0

|λt|2
)
ν(dγ)

] 1
p̃3

.

Since λt is bounded and I is compact we get

E
[ ∫

I
(Xπ∗

T )2w(1−γ)ν(dγ)

]
≤ C

(∫
I
X

2wp1(1−γ)
0 ν(dγ)

) 1
p1

× E
[ ∫

I
exp

(
wp2(1− γ)

γ20

× (2wp1(1− γ)− 1)

∫ T

0

∣∣Hγ0
t + (1− γ0)λt

∣∣2dt)ν(dγ)

] 1
p2

<∞,

due to Lemma A.1 and condition (10). Since the obtained bounds are increasing functions
in T , we get that π∗ does indeed satisfy (3). Thus π∗ ∈ Av, which shows that Ũt(x), and
therefore Ut(x), is a true FPP. �
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Appendix B. Proof of Proposition 4.6

Proof of Proposition 4.6. Just like previously, since At, Dt > 0 are continuous semi-
martingales, they can be represented in the following form

dAt = αtAtdt+ atAt · dWt + a⊥t At · dW⊥
t ,(25)

dDt = δtDtdt+ dtDt · dWt + d⊥t Dt · dW⊥
t .(26)

Taking any admissible portfolio π and applying Itô’s formula to Ut(X
π
t ) yields

dUt(X
π
t ) =

[
αtAt(X

π
t )p+δtDt(X

π
t )q+(σtπt)

>(pAt(Xπ
t )p(λt + at)+qDt(X

π
t )q(λt + dt)

)
+

1

2
|σtπt|2

(
(p2 − p)At(Xπ

t )p + (q2 − q)Dt(X
π
t )q
)]

dt

+
(
(pσtπt + at)At(X

π
t )p + (qσtπt + dt)Dt(X

π
t )q
)
· dWt

+
(
(Xπ

t )pa⊥t At + (Xπ
t )qd⊥t Dt

)
· dW⊥

t .

Since U·(·) is a forward performance process, then for all admissible π it is necessary that
the finite variation term is non-increasing in time

αtAt(X
π
t )p + δtDt(X

π
t )q + (σtπt)

>(pAt(Xπ
t )p(λt + at) + qDt(X

π
t )q(λt + dt)

)
+

1

2
|σtπt|2

(
(p2 − p)At(Xπ

t )p + (q2 − q)Dt(X
π
t )q
)
≤ 0,

and is equal to 0 for some admissible π∗. Note that the term on the left hand side of
the above inequality is strictly concave in σtπt. Thus, an optimal π∗ must be given as a
solution to

σtπ
∗
t =

pAt(X
π∗
t )p(λt + at) + qDt(X

π∗
t )q(λt + dt)

p(1− p)At(Xπ∗
t )p + q(1− q)Dt(Xπ∗

t )q
,(27)

where Xπ∗
t is the corresponding optimal wealth process. Plugging it in back into the drift

integrand must equalize it to 0

1

2

|pAt(Xπ∗
t )p(λt + at) + qDt(X

π∗
t )q(λt + dt)|2

p(1− p)At(Xπ∗
t )p + q(1− q)Dt(Xπ∗

t )q
+ αtAt(X

π∗

t )p + δtDt(X
π∗

t )q = 0.

Bringing everything to a common denominator the equation becomes

p2|λt + at|2A2
t (X

π∗

t )2p + 2pq(λt + at)
>(λt + dt)AtDt(X

∗
t )p+q + q2|λt + dt|2D2

t (X
π∗

t )2q

= −
(
2p(1− p)A2

tαt(X
π∗

t )2p + 2
(
p(1− p)δt + q(1− q)αt

)
AtDt(X

π∗

t )p+q

+ 2q(1− q)D2
t δt(X

π∗

t )2q
)
.

Matching the coefficients in front of the 2p and 2q powers of Xπ∗
t we get the following

necessary characterization for αt and δt

αt = − p2

2p(1− p)
|λt + at|2, δt = − q2

2q(1− q)
|λt + dt|2.(28)

Plugging these back into our original equation we obtain the following necessary condition(
p2q(1− q)
p(1− p)

|λt + at|2+
q2p(1− p)
q(1− q)

|λt + dt|2−2pq(λt + at)
T (λt + dt)

)
AtDt(X

∗
t )p+q= 0.

Since At, Dt > 0 and 0 < p, q < 1, we obtain that∣∣∣∣ 1

1− p
(λt + at)−

1

1− q
(λt + dt)

∣∣∣∣2 = 0.
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This yields

1

1− p
(λt + at) =

1

1− q
(λt + dt).

Note that the derived conditions on at, dt, αt, δt exactly match the characterization from
Theorem 2.1, where we choose ν to be a measure with two atoms located at {1−p, 1−q}.
Thus, we know that Atx

p and Dtx
q are forward performance processes with the optimal

portfolio given by a solution to

σtπ
∗
t =

1

1− p
(λt + at).

�
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