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Abstract

We study a deterministic mean field game on finite and infinite time horizons arising in
models of optimal exploitation of exhaustible resources. The main characteristic of our game
is an absorption constraint on the players’ state process. As a result of the state constraint
the optimal time of absorption becomes part of the equilibrium. Using Pontyagin’s maximum
principle, we prove the existence and uniqueness of equilibria and solve the infinite horizon
models in closed form. As players may drop out of the game over time, equilibrium production
rates need not be monotone nor smooth.
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1 Introduction

This paper establishes existence and uniqueness of equilibrium results for a deterministic mean field
game (MFG) arising in models of optimal exploitation of exhaustible resources. MFGs provide
a convenient tool for analyzing complex strategic interactions among many players when each
individual player has only a small impact on the behavior of other players. In a standard mean field
game each player solves a control problem in which an individual player’s payoff functional and the
dynamics of the controlled state process depend on the empirical distribution of the other players’
actions or states. The existence of Nash equilibria in MFGs can be established by solving either a
coupled system of two partial differential equations (PDEs), a backward Hamilton-Jacobi-Bellman
equation determining the players’ utility, and a forward Kolmogorov equation determining the
evolution of the distribution of states or actions, or by solving a system of McKean-Vlasov forward-
backward SDEs where the forward component describes the state dynamics and the backward
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component describes the dynamics of the adjoint variable. We refer to the monograph [1] for
further background.

In the economics literature MFGs are often called anonymous games. First introduced by Rosenthal
[29] and Jovanovic and Rosenthal [26], anonymous games have received renewed attention among
economists in the last two decades; see [2, 12, 23] and references therein. Huang, Malhamé and
Caines [24] and Lasry and Lions [27] independently introduced MFGs into the engineering and
mathematical literature. Ever since, MFGs have become an important driver of mathematical
innovation, especially in the areas of PDEs and backward stochastic equations. Complementing
the theoretical work on MFGs, there is a by now substantial literature where anonymous and mean
field games have been successfully applied to an array economic and engineering problems, ranging
from network security and traffic networks [18, 30] and systemic risk management [8], to portfolio
liquidation [13, 14, 16, 25] and oil and energy production in competitive markets [9, 10, 19, 20, 21].

Oligopoly models of markets with a small number of competitive players that compete on the
amount of output they produce go back to the classical work of Cournot [11] in 1838. These
have typically been static (or one-period) models, where the existence and construction of a Nash
equilibrium have been extensively studied. Dynamic Cournot models for energy production in a
competitive market have been proposed and analyzed by many authors in recent years; we refer
to [28] for a survey on energy production models. In these models market participants are often
endowed with limited amounts of exhaustible resources such as oil, coal or natural gas that they
choose to extract for sale. The models may lead to continuous time single player control problems
[4], finite player nonzero-sum differential games [22], or continuum mean field games [9, 10]. In
the context of nonzero-sum dynamic games between finitely many players the computation of a
solution is a challenging problem, typically involving coupled systems of nonlinear PDEs, with one
value function per player, and existence theory is sparse. MFGs allow one to handle certain types
of competition in the continuum limit of an infinity of small players by solving either systems of
PDEs or forward-backward SDEs.

One of the key characteristics of games with exhaustible resources is that resources may run out
and change the structure of the game. In stochastic games absorption constraints are challenging
to incorporate and the literature on stochastic games with absorption is sparse.1 Specific stochastic
MFGs with absorption have recently been considered by Campi and coauthors in [5, 6, 7]. Graber
and Bensoussan [19] consider a modification of the model of Chan and Sircar [9] with absorption
but restrict their state dynamics to a bounded domain. While the restriction to bounded domains
simplifies the mathematical analysis it seems undesirable from an economic perspective. The sit-
uation is much simpler for deterministic MFGs. As shown in the recent work by Bonnans et al
[3] the existence MFG equilibria can be established under rather general mixed state-control and
terminal state constraints.

We consider a deterministic MFG of optimal exploitation in which players with zero resources drop
out of the game. Both finite and the infinite horizon models are studied. As we will see there can

1In models of optimal exploitation absorption constraints are often ignored, assuming that resource levels fluctuate
randomly and recover as soon as they reach positive levels again. Likewise, in models of optimal portfolio liquidation
non-negativity constraints on the stock holding are usually ignored as well.
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be very different equilibrium strategies depending on whether a terminal time is imposed or not. In
our model only positive controls are allowed. As a result, we can rephrase the single/representative
player model underlying our MFG as a standard convex control problem with state constraints.
Due to the state constraint the terminal value of the adjoint process is unknown and part of the
solution.2 It thus seems natural to consider the Hamiltonian of the representative player model
only up a candidate optimal exploitation time in terms of which a candidate terminal condition
for the adjoint process can be obtained. A straightforward verification argument shows that the
candidate exhaustion time and hence the candidate terminal condition are indeed optimal.

Our focus in solving the MFG is hence on the equilibrium exhaustion time. The key observation is
that the representative player’s best response function is independent of the mean field equilibrium.
More precisely, we prove that the dynamics of the amount of resource extracted by an individual
player up to any given time by using a strategy that would be optimal if the optimal exhaustion time
was equal to that given time is independent of the equilibrium mean production rate. Moreover, we
show that the dynamics follows an ODE that depends only the initial distribution of the resource
levels and the risk free interest rate. The ODE can be solved in closed form. The solution is strictly
monotone and the optimal exhaustion time is given by the inverse function. In the infinite horizon
case where the equilibrium mean production rate converges to zero as time increases to infinity,
this allows us to fully describe the unique MFG equilibrium in terms of the said ODE. In the finite
horizon case the equilibrium mean production rate at the terminal time is unknown. This results
in an additional fixed point problem that can easily be solved. Thus we provide among the very
few explicit solutions to MFGs outside the linear-quadratic framework.

The approach taken in this paper is very different from - and complements - recent work of Bonnans
et al [3]. They establish an abstract existence of solutions result for a general class of finite-time
MFGs of controls with mixed state-control and terminal state constraints. Short of some technical
assumptions such as their boundedness assumption on the initial states, their model contains ours
as a special case. Their analysis is based on a sophisticated, yet abstract fixed point argument
which makes it difficult to solve MFGs in closed form.3 By contrast, our analysis is based on an
explicit representation of the equilibrium absorption time. This approach is new and does not
require sophisticated mathematical methods. Another notable difference is that we first analyze
the infinite horizon model and then use that solution to solve the finite horizon case. In [3] only the
finite horizon case is considered; using their approach we expect the solution to our infinite horizon
model to be obtained by first introducing a discount factor into their model and then taking the
limit as the time horizon tends to infinity.

To illustrate our main ideas we first consider in Section 2 the benchmark case of a single monopolist
oil producer. We fully characterize optimal exploitation strategies. In particular, we prove that
full exploitation may not be optimal in finite horizon problems. The MFG of optimal extraction is

2This is again very similar to portfolio liquidation models where the terminal condition of the adjoint process is
unknown, due to the liquidation constraint; see [14, 15] for details.

3As it is often (though not always; see, e.g. the recent work of Fu et al. [17]) the case with MFGs of control
Bonnans et al. introduce an auxiliary mapping that allows them “to write the equilibrium problem in a reduced form
which is then tractable with a fixed point argument. After reformulation, the equilibrium problem is posed on the
set of Borel probability measures on the space of state-costate trajectories”.
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analyzed in Section 3. We first determine the equilibrium time of exploitation as a function of the
competitors’ strategies and own initial resources. Subsequently, we determine the equilibrium ex-
ploitation times and strategies. We illustrate by two simple examples that equilibrium exploitation
rates do need not be monotone, nor smooth.

2 The Monopoly Case

As a motivation for our general analysis we illustrate in this section our main ideas in the framework
of monopolist oil producer. We fix a time horizon T ∈ (0,∞] and denote the monopolist’s resource
at time 0 by x0. The monopolist extracts the resource according to a measurable rate function
(control) q : [0, T ]→ [0,∞). A control is called admissible if the corresponding state process

Xq
t := x0 −

∫ t

0
qu du

is non-negative on [0, T ]. Since only non-negative controls are admissible, the non-negativity of the
state process is equivalent to the terminal state constraint Xq

T ≥ 0.

Following [9, 10], we assume that the price function p : [0, T ]→ (−∞, 1] when the production rate
q is employed is given by p = 1 − q. For a given constant discount rate r > 0 the monopolist’s
discounted revenue is then given by

J(q) :=
∫ T

0
e−rtqt(1− qt) dt

and the value function is given by

u(x0) := sup
q≥0,Xq

T≥0
J(q). (2.1)

The Hamiltonian associated with our control problem is given by

H(x, q, y) = q(1− q)− yq

where y is the adjoint variable. The end-point Lagrangian is given by

L(yT , ψ) = ψyT

for some Lagrange multiplier ψ ∈ R. Since the constraints on the controls and states are convex
and our cost function is strictly concave, Pontryagin’s maximum principle asserts that the unique
optimal solution q∗ is given by

q∗t = arg max
q̄≥0

H(x, q̄, Yt) = 1
2(1− Yt)+ (2.2)

where the adjoint process Y satisfies the costate equation

−Ẏt = −rYt + ∂xH(X∗t , q∗t , Yt) for a.a. t ∈ [0, T ]
YT = ∂yTL(Y ∗T , ψ∗)

(2.3)

4



for some ψ∗ ≥ 0. In our setting the costate equation reduces to

−Ẏt = −rYt, YT = ψ∗

and solving the optimization problem reduces to finding the terminal value of the adjoint process.

Determining the terminal value of the adjoint process is equivalent to determining the value of the
process at an arbitrary time t ∈ [0, T ]. The canonical choice of time is the (candidate) optimal
exhaustion time. To determine this time, for a given admissible control q, we denote by

τq = τq(x0) := inf {t ∈ [0, T ] : Xq
t = 0}

the time of depletion of the resource under the control q. We put τq = +∞ if Xq
T > 0 denote by

τ∗ = τq∗

the time of depletion under the candidate optimal control q∗. To determine the value Yτ∗ we
distinguish three cases depending on whether full exploitation occurs strictly before time T , exactly
at the terminal time or whether full exploitation is not optimal.

If full exploitation occurs strictly before time T the optimization problem is equivalent to one on
[0, τ∗] and it follows from (2.2) that Yτ∗ = 1. If exploitation does not occur, then the terminal
state constraint is not binding and the revenue function can maximized under the integral. The
interesting case is the one where exploitation occurs exactly at time T . In this case, the terminal
state of the adjoint process depends on the initial resource level. More precisely, we have the
following:

• τ∗ < T ≤ ∞. In this case Yτ∗ = 1 to ensure that q∗ ≡ 0 in [τ∗, T ].Thus

q∗t = 1
2
(
1− e−r(τ∗−t)

)
1{t≤τ∗}

and τ∗ is determined by the identity

x0 =
∫ τ∗

0
q∗t dt = 1

2

∫ τ∗

0
(1− e−r(τ∗−t)) dt = τ∗

2 −
1
2r (1− e−rτ∗).

This gives

τ∗ = 2x0 + 1 + W(−e−1−2rx0)
r

, (2.4)

where W denotes the principal branch of the Lambert-W function, defined as the inverse
function of xex, restricted to the range [−1,∞) and the domain [−e−1,∞).4

• τ∗ = T <∞. In this case the terminal value YT of the adjoint process is determined through
the equation

x0 =
∫ T

0
q∗t dt = 1

2

∫ T

0
(1− YT e−r(T−t)) dt = T

2 −
YT
2r (1− e−rT ),

4This recovers the formula found by dynamic programming methods for the T = ∞ case in [9, Proposition 3].
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which yields

YT = r(T − 2x0)
1− e−rT , and q∗t (x0) = 1

2

(
1− r(T − 2x0)

1− e−rT e−r(T−t)
)
. (2.5)

Note that q∗T > 0 in general, and Y ≥ 0 only if x0 ≤ T/2. This shows that full exploitation
is not optimal if x0 > T/2.

• τ∗ = +∞. In this case, q∗ ≡ 1
2 is admissible and hence optimal. Moreover, Yt ≡ 0 and

necessarily x0 ≥ T/2 (and so T <∞).

In terms of the above obtained values Yτ∗(x0) the adjoint process as a function of the initial resource
is given by

Yt(x0) = Yτ∗(x0)(x0)e−r(τ∗(x0)−t), t ∈ [0, t]. (2.6)

This process along with the control q∗ defined in (2.2) satisfies the costate equation of Pontryagin’s
maximum principle. As a result, q∗ is indeed optimal.

The following theorem summarizes our findings. To keep the paper self-contained we provide a
short direct verification result for the readers’ convenience.

Theorem 2.1. The optimal control at time t ∈ [0, T ] to the control problem (2.1) with initial state
x0 > 0 is given by

q∗t (x0) = 1
2


(1− e−r(τ∗(x0)−t))1{t≤τ∗(x0)}, 0 ≤ x0 ≤ T

2 −
1
2r (1− e−rT );

1− YT (x0)e−r(T−t), T
2 −

1
2r (1− e−rT ) ≤ x0 ≤ T/2;

1, x0 ≥ T/2;

where τ∗(x0) and YT (x0) are given by (2.4) and (2.5), respectively. In particular, the value function
is given by the smooth function5

u(x0) = 1
4r


(
1 + W(−e−1−2rx0)

)2
, 0 ≤ x0 ≤ T

2 −
1−e−rT

2r ;
1− e−rT − r2(T−2x0)2

erT−1 , T
2 −

1−e−rT

2r ≤ x0 ≤ T
2 ;

1− e−rT , x0 ≥ T
2 .

Proof. For notational convenience we drop the dependence of τ∗, YT and q∗ on x0. For any admis-
sible control q with corresponding exhaustion time τ q the Hamiltonian satisfies

H(X∗t , q∗t , Yt) ≥ H(Xq
t , qt, Yt) on [0, τ∗ ∧ τ q]. (2.7)

and because Yt ≥ 1 for t ≥ τ∗ it also satisfies

H(Xq
t , qt, Yt) ≤ 0 on [τ∗, T ]. (2.8)

We now put τ̄q := τq ∧ T and and τ̄∗ := τ∗ ∧ T . and distinguish two cases.
5This corresponds to the solution to the dynamic programming equation in the T = ∞ case found in [22, Section

5].
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• τ∗ ≥ τq. It follows from (2.7) along with the fact that the Hamiltonian is non-negative along
the candidate optimal solution and because Yte−rt = Y0 for all t ∈ [0, T ] that

J(q∗)− J(q) =
∫ τ̄∗

0
e−rtq∗t (1− q∗t ) dt−

∫ τ̄q

0
e−rtqt(1− qt) dt

=
∫ τ̄q

0
e−rt(H(X∗t , q∗t , Yt)−H(Xq

t , qt, Yt) + (q∗t − qt)Yt) dt

+
∫ τ̄∗

τ̄q
e−rt(H(X∗t , q∗t , Yt) + q∗t Yt) dt

≥
∫ τ̄q

0
(q∗t − qt)Yte−rt dt+

∫ τ̄∗

τ̄q
q∗t Yte

−rt dt

= Y0

(∫ τ̄∗

0
q∗t dt−

∫ τ̄q

0
qt dt

)
= 0

where the last equality follows from the fact that Y0 = 0 if τ∗ > T while the term in parenthesis
vanishes if τ∗ ≤ T in which case both integrals eqaul x0.

• The case τ∗ < τq. In this case, it follows again from (2.7) and that

J(q∗)− J(q) =
∫ τ̄∗

0
e−rt(H(X∗t , q∗t , Yt)−H(Xq

t , qt, Yt) + (q∗t − qt)Yt) dt

−
∫ τ̄q

τ̄∗
e−rt(H(Xt, qt, Yt) + qtYt) dt

≥
∫ τ̄∗

0
(q∗t − qt)Yte−rt dt−

∫ τ̄q

τ̄∗
e−rt(H(Xq

t , qt, Yt) + qtYt) dt

≥ Y0

(∫ τ̄∗

0
q∗t dt−

∫ τ̄q

0
qt dt

)
.

If τ∗ > T , then Y0 = 0. Else, Y0 ≥ 0,
∫ τ̄∗

0 q∗t dt = x0 and
∫ τ̄q

0 qt dt = x0 −Xq
τ̄q . As a result,

J(q∗)− J(q) ≥ 0.

3 The Mean Field Game

To motivate the form of demand functions that we are going to use in the continuum MFG, we
first introduce a finite market with N oil producers that compete for market share in a one-period
game. Associated to each firm i ∈ {1, . . . , N} are variables pi ∈ R and qi ∈ R+ representing the
price and quantity, respectively. In the Cournot model, players choose quantities as a strategic
variable in non-cooperative competition with the other firms, and the market determines the price
of each good. The market model is specified by linear inverse demand functions, which give prices
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as a function of quantity produced. The firms are suppliers, and so quantities are nonnegative. For
q ∈ RN+ , the price received by player i is pi = Pi(q) where

Pi(q) = 1− (qi + εq̄i) , where q̄i = 1
N − 1

∑
j 6=i

qj , i = 1, · · · , N, and 0 ≤ ε < N − 1. (3.1)

The inverse demand functions are decreasing in all of the quantities, and ε measures the strength of
interaction between players. In the linear model (3.1), some of the prices pi = Pi(q) may be negative,
meaning player i produces so much that he has to pay to have his goods taken away, but negative
prices do not arise in competitive equilibrium. Moreover, the goods are similar but differentiated,
meaning each player potentially receives a different price as there will be some residual loyalty to
obtaining the product from individual suppliers. Most crucially, the interaction is of mean field
type: pi is affected by the mean production of the other players, and players j and k (j, k 6= i) are
exchangeable as far as player i is concerned.

In the MFG version, there is a continuum of players, say oil producers, who are labeled by their
reserves at time. Initial reserves are distributed according to the probability measure µ on [0,∞).
Each producer extracts oil in continuous time at a rate qt ≥ 0, and the price received by this
producer is P (qt, Qt) = 1− qt − εQt, where Qt is the mean production rate of all the players, and
ε ≥ 0 quantifies the degree of interaction between the players. In the following, the time horizon
T ≤ ∞.

3.1 The best response function

In a first step, we consider the representative player’s best response given the aggregate produc-
tion of all the other players. Aggregate production is described by a nonnegative and absolutely
continuous function Q : [0, T ]→ [0, 1

2+ε ]. The derivative of Q exists a.e. and is denoted by Q̇.

Remark 3.1. It is in fact sufficient here to simply assume Q ≤ 1/ε which is immediately evident
to guarantee nonnegative prices. The a priori bounds 0 ≤ Q ≤ 1/(2 + ε) are motivated by the
following observation: for any candidate optimal control we have

0 ≤ q ≤ arg max
q≥0

{q(1− εQ− q)} = 1
2(1− εQ)+,

where the right-hand side is the optimal control given infinite reserves. Any aggregate production
function Q leading to a solution to the MFG therefore necessarily satisfies

0 ≤ Q ≤ 1
2(1− εQ) and so Q ≤ 1

2 + ε
.

We assume throughout that the aggregate production function satisfies the following compatibility
condition. We will see that this condition guarantees that each player fully exploits her initial
resources if T is large enough. The assumption will be satisfied in equilibrium.

Assumption 1. There exists δ > 0 such that the aggregate exploitation rate Q : [0, T ]→ [0, 1
2+ε ]

satisfies the compatibility condition

1− εQ+ ε

r
Q̇ ≥ δ > 0. (3.2)
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Remark 3.2. On finite time intervals our compatibility condition is equivalent to d
dt(e−rtQt) >

1
ε
d
dt(e−rt). Since we expect Q to be decreasing in equilibrium (production slows as resources run

out), the condition (3.2) puts a lower bound on how quickly that may occur over time.

Let us now consider a representative producer with any initial state x0 ∈ [0,∞) at time 0. As in
the case of a monopolist producer we call a control q : [0, T ]→ [0, 1] admissible if the state process

Xq
t := x0 −

∫ t

0
qu du

is always non-negative. For T <∞ or T =∞, depending on whether the finite or infinite horizon
case is considered, the value function for the representative producer with respect to a given function
Q is defined by

uQ(x0) = sup
q≥0

JQ(q), where JQ(q) :=
∫ τQq ∧T

0
e−rtqt(1− εQt − qt) dt, (3.3)

and the exhaustion time τQq = τQq (x0) is

τQq := inf {t ∈ [0, T ] | Xq
t = 0} .

By analogy to the single player case, the Hamiltonian and the end-point Lagrangian are given by,
respectively,

H(x, q, y) = q(1− εQ− q)− qy
L(yT , ψ) = ψyT .

(3.4)

As in the single player case Pontryagin’s maximum principle asserts that a control qQ is opti-
mal control, with associated optimal state process XqQ and vanishing time τQ, if qQ satisfies the
maximum condition

qQt = arg max
q̄≥0

H(XqQ

t , q̄, Yt) = 1
2 (1− εQt − Yt)+ (3.5)

and the adjoint process satisfies

Y Q
t = Y Q

τQ
e−r(τ

Q−t), t ≥ 0 (3.6)

where value of the adjoint process at time τQ is again to be determined. We distinguish again three
different cases depending on whether full exploitation is optimal or not.

• τQ < T ≤ ∞. In this case qQ
τQ

= 0 and we infer from (3.5) that Y Q
τQ

= 1− εQτQ . Hence, from
(3.6), we have

Y Q
t = (1− εQτQ)e−r(τQ−t), t < τQ,

and the optimal strategy is

qQt (x0) = 1
2
(
1− εQt − (1− εQτQ(x0))e−r(τ

Q(x0)−t)
)
, t < τQ. (3.7)
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• τQ = T < ∞. In this case the terminal value Y Q
T of the adjoint process is obtained by the

identity
x0 =

∫ T

0
qQt (x0) dt = 1

2

∫ T

0

(
1− εQt − YT (x0)e−r(T−t)

)
dt,

which yields

Y Q
T = 1

βT

(
1
2

∫ T

0
(1− εQt) dt− x0

)
, where βT := 1− e−rT

2r (3.8)

and the optimal strategy is given by

qQt (x0) = 1
2
(
1− εQt − YT (x0)e−r(T−t)

)
, t < T.

We notice that the adjoint process is non-negative if and only if

x0 ≤ ηQ(T ), where ηQ(T ) := 1
2

∫ T

0
(1− εQt) dt. (3.9)

• T <∞ and τQ > T . In this case the strategy

qQt = 1
2 (1− εQt) .

is admissible and hence optimal and the adjoint process is identically equal to zero, Y ≡ 0.
This case occurs when x0 ≥ ηQ(T ).

Having determined the full dynamics of the adjoint process and hence the optimal control is remains
to characterize the optimal exhaustion time. To this end, it will be convenient to introduce the
function

ξQ(t) := 1
2

∫ t

0
{1− εQs − (1− εQt)e−r(t−s)} ds, (3.10)

that specifies is the amount of resource extracted up to time t by using the strategy (3.7) that
would be optimal if the exhaustion time τQ was equal to t. Its derivative is given by

ξ̇Q(t) = 1
2

{
1− εQt + ε

r
Q̇t

}
(1− e−rt). (3.11)

Assumption 1 guarantees that ξQ(∞) = ∞ and that ξ̇Q(t) > 0. As a result, the inverse (ξQ)−1 is
well-defined on [0, ξQ(T )]. Moreover, we see that

ξQ(τQ(x0)) =
∫ τQ(x0)

0
qQs (x0) ds, (3.12)

and hence that τQ(x0) is determined implicitly by the identity

ξQ(τQ(x0)) = x0, i.e. τQ(x0) = (ξQ)−1(x0) for x0 ≤ ξQ(T ).

Thus, an optimal exploitation strategy for a given initial resource level x0 and a given aggregate pro-
duction function Q that satisfies our compatibility condition can be obtained by first computing the
optimal exploitation time by inverting the function ξQ introduced in (3.10) on its range [0, ξQ(T )],
and then applying the maximum principle on [0, τQ(x0)]. The following theorem summarizes our
findings. The proof is the same as in the single player case and is hence omitted
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Theorem 3.3. Let Q : [0, T ] → [0, 1
2+ε ] be an absolutely continuous function that satisfies the

compatibility condition (3.2). Define the function ξQ : [0, T ] → [0, ξQ(T )] by (3.10), and let τQ =
(ξQ)−1.

• T =∞. For initial state x0 ∈ [0,∞), τQ(x0) <∞, and the optimal control is given by

qQt (x0) = 1
2{1− εQt − (1− εQτQ(x0))e−r(τ

Q(x0)−t)}1{t≤τQ(x0)}. (3.13)

• T <∞. The optimal control for the initial state x0 ∈ [0,∞) is given by

qQt (x0) =


1
2{1− εQt − (1− εQτQ(x0))e−r(τ

Q(x0)−t)}1{t≤τQ(x0)}, x0 ∈ [0, ξQ(T )]
1
2

(
1− εQt − YT (x0)e−r(T−t)

)
x0 ∈ [ξQ(T ), ηQ(T )],

1
2(1− εQt), else,

(3.14)
where YT (x0) and ηQ(T ) are defined in (3.8) and (3.9), respectively.

It follows from the above theorem that all the optimal production rates qQt satisfy the same ODE,
albeit on possibly different time horizons and with possibly different terminal conditions.

Corollary 3.4. For all x0 > 0 and all functions Q that satisfy the compatibility condition (3.2),
the optimal rate qQt (x0) satisfies the ODE

qQt (x0)− 1
r
q̇Qt (x0) = 1

2

{
1− εQt + ε

r
Q̇t

}
on (0, τQ(x0) ∧ T ). (3.15)

In the case T = +∞, the terminal condition is qQ
τQ(x0)(x0) = 0. If T < ∞, then the terminal

condition is given in terms of the YT (x0) given in (3.8) as

qQ
τQ(x0)∧T (x0) =


0 if x0 ∈ [0, ξQ(T )]
1
2 (1− εQT − YT (x0)) if x0 ∈ [ξQ(T ), ηQ(T ))]
1
2(1− εQT ) else,

(3.16)

Proof. The ODE (3.15) follows from differentiating the equation qQt = 1
2(1 − εQt − Yt)+ for the

optimal production rate, noticing that the positive part can be dropped because t ≤ τQ(x0) ∧ T ,
using the ODE for Y , and substituting back for Y in terms of Q and qQ.

Next, we consider the dynamics on the aggregate production rate under the following assumption
on the initial distribution of states.

Assumption 2. The initial distribution µ is of the form

µ(dx) = f(x) dx+
n∑
i=1

ciδxi(dx)

for a bounded non-negative function f : R+ → R+ and non-negative constants c1, ..., cn. Here δx
denotes the Dirac measure on {x}.
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From equation (3.11) we see that the mapping x0 7→ τQ(x0) is strictly increasing and so{
x0 ≥ 0 : τQ(x0) < t

}
=
{
x0 ≥ 0 : x0 < ξQ(t)

}
.

In particular, if we denote by
Sµ(x) := µ

(
(x,∞)

)
the survival function associated with the initial distribution µ, then the proportion of players with
remaining resources at time t ∈ [0, T ] is given by Sµ(ξQ(t)). This allows to obtain the dynamics of
the aggregate production rate

Lemma 3.5. For all x0 > 0 and all bounded, absolutely continuous functions Q that satisfy the
compatibility condition (3.2), the aggregate production rate

QQt :=
∫ ∞

0
qQt (x0) dµ(x0), 0 ≤ t ≤ T (3.17)

is bounded and absolutely continuous, and its density Q̇Qt satisfies the ODE

QQt −
1
r
Q̇Qt = 1

2

{
1− εQt + ε

r
Q̇t

}
Sµ(ξQ(t)) for a.a. t ∈ (0, T ). (3.18)

In the infinite horizon case, the terminal condition is limt→∞Qt = 0. If T <∞, then

QQT = 1
2(1− εQT )Sµ(ξQ(T ))− ηQ(T )

βT

(
Sµ(ξQ(T ))− Sµ(ηQ(T ))

)
+ 1
βT

∫ ηQ(T )

ξQ(T )
xµ(dx).

(3.19)

Proof. Since qQ is bounded, due to the boundedness of Q, the aggregate production rate is bounded.
Since qQt (x) = 0 for all t ∈ [τQ(x),∞) the aggregate production rate can be expressed as

QQt =
∫ ∞

0
1(ξQt ,∞)(x)qQt (x)µ(dx)

By Fubini’s theorem

QQt −Q
Q
0 =

∫ ∞
0

(qQt (x)− qQ0 (x))µ(dx)

=
∫ ∞

0

∫ t

0
q̇Qs (x) ds µ(dx)

=
∫ t

0

∫ ∞
0

q̇Qs (x)µ(dx) ds.

This shows that QQ is absolutely continuous with derivative Q̇t =
∫∞

0 q̇Qt (x)µ(dx). Using that

q̇Qt (x) = 0 for t ∈ (τQ(x), T )

12



(note that q̇Q
τQ(x)(x) may be positive) and that the mapping t 7→ ξt is strictly increasing the

aggregate marginal rate of production can equivalently be expressed as

Q̇Qt =
∫ ∞

0
1[ξQt ,∞)(x)q̇Qt (x)µ(dx) =

∫ ∞
0

1(ξQt ,∞)(x)q̇Qt (x)µ(dx) a.e.

In view of Corollary 3.4 this proves (3.18). The terminal condition on QQ is obtained from inte-
grating (3.16) with respect to µ over (0,∞). In view of Assumption 2 the ODE (3.18) can be solved
backwards in time.

Remark 3.6. Under the compatibility condition, we have ξQ(T ) ↑ ∞ as T ↑ ∞. As a result,
limT→∞Q

Q
T = 0. This shows that the infinite horizon case can indeed be viewed as a limiting case

when T ↑ ∞.

3.2 Solution to the MFG

In this section we prove the existence of a solution to the mean field game. In terms of the optimal
controls qQ we are looking for a fixed point of the mapping (3.17). We consider the infinite and the
finite horizon case separately. The main difference is that full exploitation occurs in equilibrium if
T = +∞, but may not occur if T <∞. It turns out that the infinite horizon case can be solved in
closed form. In view of Corollary 3.4 , we have the following characterization.

Corollary 3.7. Any fixed point Q∗ = QQ
∗ satisfies the dynamics

Q∗ − 1
r
Q̇∗ = Sµ ◦ ξQ

∗

2 + εSµ ◦ ξQ∗ ,

and satisfies the compatibility condition (3.2).

Proof. Setting QQ and Q in (3.18) to Q∗ and re-arranging terms leads to the above equation, which
is equivalent to

1− εQ∗ + ε

r
Q̇∗ = 2

2 + εSµ ◦ ξQ∗ . (3.20)

From this, compatibility of Q∗ easily follows.

For any fixed point Q∗ the equations (3.11) and (3.20) yield the following ODE for ξQ∗ :

ξ̇Q
∗(t) = 1− e−rt

2 + εSµ ◦ ξQ∗ , ξQ
∗

t (0) = 0.

The key observation is that (3.21) does not depend on Q∗. We prove below that the (unique)
solution to the MFG can be defined in terms of the unique solution ξ∗ to the above ODE.

Proposition 3.8. Under Assumption 2 the ODE

ξ̇∗(t) = 1− e−rt
2 + εSµ ◦ ξ∗

, ξ∗t (0) = 0. (3.21)

13



has a unique global solution. The solution can be expressed in terms of the functions φ, ψ : [0,∞)→
[0,∞) defined by

φ(t) := rt− 1 + e−rt

r
and ψ(x) := 2x+ ε

∫ x

0
Sµ(ξ) dξ,

respectively as
ξ∗ := ψ−1 ◦ φ (3.22)

Proof. If µ is absolutely continuous with bounded density, then the mapping x 7→ 1−e−rt

2+εSµ(x) is
Lipschitz continuous. If µ has an additional jump part, then this mapping is piecewise Lipschitz
continuous and hence can be solved iteratively. The functions φ and ψ are well-defined, strictly
increasing, surjective, and satisfy

φ̇(t) = 1− e−rt and ψ′(x) = 2 + εSµ(x).

Now, a direct computation verifies that ξ∗ satisfies the desired ODE.

Remark 3.9. Note that the inverse of φ is, in terms of the principle branch of the Lambert-W
function,

φ−1(x) = x+ 1 + W(−e−1−rx)
r

.

3.2.1 Infinite horizon

We are now ready to solve the MFG in the infinite horizon case. In terms of the functions φ and
ψ, and their inverses we obtain

• ξ∗ := ψ−1 ◦ φ

• τ∗ := ξ∗−1 = φ−1 ◦ ψ

In view of (3.20) we can express the unique solution to the ODE (3.15) with terminal condition
(3.18) fully in terms of these functions as

q∗t (x0) :=
∫ τ∗(x0)

t∧τ∗(x0)

re−r(s−t)

2 + εSµ(ξ∗(s)) ds. (3.23)

The following theorem verifies that this production rate does indeed solve the MFG in the infinite
horizon case.

Theorem 3.10. The aggregate production rate

Q∗t :=
∫ ∞

0
q∗t (x0) dµ(x0)

is absolutely continuous, takes values in [0, 1
2+ε ] and satisfies the compatibility condition (3.2) as

well as the fixed point property QQ∗ = Q∗. Hence, Q∗ is the unique solution to the MFG (that is
absolutely continuous and satisfies the compatibility condition).
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Proof. Let us first verify that Q∗ satisfies the compatibility condition. The control q∗ defined in
(3.23) satisfies

q∗t (x0)− 1
r
q̇∗t (x0) = 1

2 + εSµ(ξ∗(t))1{t<τ∗(x0)}. (3.24)

By analogy to Lemma 3.5 this yields that Q∗ satisfies the ODE

Q∗t −
1
r
Q̇∗t = Sµ(ξ∗(t))

2 + εSµ(ξ∗(t)) (3.25)

with terminal condition limt→∞Q
∗
t = 0. In particular,

Q∗t =
∫ ∞
t

rSµ(ξ∗(s))e−r(s−t)
2 + εSµ(ξ∗(s)) ds. (3.26)

Using that
Sµ(ξ∗(t))

2 + εSµ(ξ∗(t)) ≤
1

2 + ε

we conclude that 0 ≤ Q∗t ≤ 1
2+ε and hence that Q∗ satisfies the compatibility condition.

To verify the fixed point property QQ∗ = Q∗ we first notice that (3.25) is equivalent to

1
2

{
1− εQ∗t + ε

r
Q̇∗t

}
= 1

2 + εSµ(ξ∗(t)) .

In view of (3.11) and because ξ∗ satisfies the ODE (3.21) we conclude that

ξ∗ = ξQ
∗ and hence τ∗ = τQ

∗
.

This shows that qQ∗ = q∗ as they solve the same ODE, and hence the fixed point propertyQQ∗ = Q∗.
An application of Theorem 3.3 verifies that Q∗ is the unique solution the MFG.

While the individual production rate q∗ may not be monotone in general as illustrated below, it is
a direct consequence of (3.26) and (3.25) that the aggregate production rate is nonincreasing.

Corollary 3.11. The aggregate production rate Q∗ is nonincreasing.

3.2.2 Finite horizon

In the finite horizon case an additional challenge emerges. While we can still solve the ODE (3.15)
using (3.20), due to the dependence of the second and third terminal conditions in (3.16) on QT
we obtain the equilibrium production rate only up to its terminal value.6 An additional fixed
point argument on the terminal value Q∗T is required to solve the game. In terms of the yet to be
determined terminal condition Q∗T we do know that

Q∗t = Q∗T e
−r(T−t) +

∫ T

t

rSµ(ξ∗(s))e−r(s−t)
2 + εSµ(ξ∗(s)) ds.

6In the infinite horizon game both the dynamics and the terminal conditions were defined in terms of ξ∗ and its
inverse τ∗. This is no longer the case in the finite horizon game.
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In terms of
ψQ(x0) := 1

βT

(
x0 − ξQ(T )

)
(3.27)

we obtain for any admissible process Q,

QQT = 1
2

∫ ξQ(T )+βT (1−εQT )

ξQ(T )
ψQ(x0) dµ(x0) + 1

2

∫ ∞
ξQ(T )+βT (1−εQT )

(1− εQQT ) dµ(x0)

= 1
2

∫ ∞
ξQ(T )

{ψQ(x0) ∧ (1− εQQT )} dµ(x0).

Putting
ψ∗(x0) := 1

βT
(x0 − ξ∗(T ))

we obtain for any aggregate equilibrium production rate function Q∗ that

Q∗T = 1
2

∫ ∞
ξ∗(T )
{ψ∗(x0) ∧ (1− εQ∗T )} dµ(x0).

This means that Q∗T is a fixed point of the map Γ : [0, 1
2 ]→ [0, 1

2 ] definied by

Γ(Q) = 1
2

∫ ∞
ξ∗(T )
{(ψ∗(x0) ∧ {1− εQ}) ∨ 0} dµ(x0),

where we added the nonnegative cut-off (being redundant for any fixed point) to obtain a map on
[0, 1

2 ]. Moreover, is Γ strictly decreasing and continuous. Hence, it admits a unique fixed point
Q∗ = Γ(Q∗). Since

Γ(Q∗) ≤ 1
2Sµ(ξ∗(T ))(1− εQ∗),

it follows that
Q∗ ≤ Sµ(ξ∗(T ))

2 + εSµ(ξ∗(T )) .

This is important to verify that the induced Q∗ takes indeed values in [0, 1
2+ε ]. For t ∈ [0, T ],

Q∗t = Q∗e−r(T−t) +
∫ T

t

rSµ(ξ∗(s))e−r(s−t)
2 + εSµ(ξ∗(s)) ds

≤ Sµ(ξ∗(t))
2 + εSµ(ξ∗(t))e

−r(T−t) + Sµ(ξ∗(t))
2 + εSµ(ξ∗(t))

∫ T

t
re−r(s−t) ds

= Sµ(ξ∗(t))
2 + εSµ(ξ∗(t)) .

The fact that Q∗ satisfies the compatibility condition has already been established in Corollary 3.7.
Let us summarize.

Theorem 3.12. In terms of the above definitions, the function Q∗ is absolutely continuous, takes
values in [0, 1

2+ε ], and satisfies the compatibility condition (3.2) and the fixed point property

QQ
∗ = Q∗.

Hence, Q∗ is the unique solution to the finite-time MFG (that is absolutely continuous and satisfies
the compatibility condition).
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3.3 Examples

We close this section with two examples with infinite time horizon that illustrate that equilibrium
production rates need not be monotone, nor smooth.

3.3.1 Discrete initial distribution

Let us assume that the population of producers splits into two groups within which producers are
identical. Producers in Group 1 have an initial resource x1; producers in Group 2 have an initial
resource x2. That is, the initial distribution is given by

µ = (1− p2)δx1 + p2δx2

for 0 ≤ x1 ≤ x2 < ∞ and 0 ≤ p2 ≤ 1 where p2 denotes the proportion of producers that belong
to Group 2. We refer to a representative producer in Group i as Player i where i = 1, 2. The
equilibrium production rates can be computed in closed form. The equilibrium production rate of
Player 1 is given by

q∗t (x1) = 1− e−r(τ1−t)

2 + ε
1{t≤τ1}, (3.28)

where τ1 := φ−1((2 + ε)x1), while the equilibrium production rate of Player 2 is given by

q∗t (x2) =


1− e−r(τ1−t)

2 + ε
+ e−r(τ1−t) − e−r(τ2−t)

2 + εp2
, t ≤ τ1,

1− e−r(τ2−t)

2 + εp2
1{t≤τ2}, t ≥ τ1,

where τ2 := φ−1(ε(1 − p2)x1 + (2 + εp2)x2). We notice that the equilibrium rate of Player 2 is
continuous, but not differentiable at time τ1. Figure 1 illustrates the equilibrium production rates
q∗t (xi) and resources X∗t (xi) of both players. While both Players initially produce at the same rate,
Player 1 produces at a decreasing rate while Player 2 initially produces at an increasing rate, and
then at a decreasing rate once Player 1 has run out of resources. Player 2 anticipates the fact Player
1 will eventually drop out of the market; her production rate reaches it peak at the time Player 1’s
resources have been depleted.
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Figure 1: r = .02, ε = 2, x1 = 50, x2 = 100, p2 = .5
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3.3.2 Exponential initial distribution

Figure 2 illustrates the equilibrium production rates q∗t (i) for players with initial resources xi =
1, 2, 3 for the benchmark case of an exponential initial distribution. For absolutely continuous
initial distributions players “gradually” drop out of the market so equilibrium production rates do
not display kinks. However, we still observe non-monotonicity of production rates. Players with
larger resources do again anticipate that players with lower reserves will eventually drop out of the
game. For them it is optimal to produce at higher rates once the number of and the price pressure
from their competitors decreases.

Figure 2: µ ∼ Exp(λ), r = ε = λ = 1
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