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Abstract

The problem of portfolio optimization when stochastic factors drive returns and
volatilities has been studied in previous works by the authors. In particular, they
proposed asymptotic approximations for value functions and optimal strategies in the
regime where these factors are running on both slow and fast timescales. However,
the rigorous justification of the accuracy of these approximations has been limited to
power utilities and a single factor. In this paper, we provide an accurate analysis for
cases with general utility functions and two timescale factors by constructing sub-
and super-solutions to the fully nonlinear problem so that their difference is at the
desired level of accuracy. This approach will be valuable in various related stochastic
control problems.
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1 Introduction

The study of the portfolio optimization problem in continuous time has a long history
dating back to [14, 15]. Specifically, an agent aims to maximize her expected utility of the
terminal wealth when the investment is divided between risky assets and a riskless asset,
with particular types of utility functions. In Merton’s seminal work, the risky assets are
assumed to follow the Black-Scholes model, where the expected returns and volatilities
are constant. Since then, the problem has been studied extensively in various settings
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and levels of generality, including considering transaction costs [4, 10], stochastic volatility
models for risky assets (see, for instance [9], and references therein), and various trading
constraints (see [16] for a survey).

In this paper, we consider the portfolio optimization problem in a stochastic environ-
ment, where both the expected return µ and volatility σ of a stock price S are driven by
two factors Yt and Zt evidenced in empirical study [8]:

dSt
St

= µ(Yt, Zt) dt+ σ(Yt, Zt) dWt.

Here W is a standard Brownian motion. The two factors are characterized by the small
parameters ε and δ, the fast timescale being represented by ε, and the slow timescale by
1/δ. Along this direction, results have been developed in [9] about asymptotic expansions of
the optimal trading strategy and the maximized utility when the utility function is general,
as both ε and δ tend to zero.

However, the accuracy of approximation was rigorously justified only in the cases with
power utilities and one stochastic factor, when a distortion transformation of Hopf-Cole type
introduced in [17] enables a reduction to a linear PDE problem. This is only possible in the
case of multiple factors in special cases; see [1]. After that, several attempts have been made
to partially justify these expansions in more general cases, e.g., in [5, 12, 6]; see also [11] for
a comprehensive review. The technique of sub- and super-solutions to prove the accuracy
of asymptotic approximations is used in [2] for a model of power utility maximization with
two nearly correlated factors corresponding to a regular perturbation problem, and in [3] for
optimal investment under stochastic volatility and transaction costs. The contribution of
this paper is to rigorously justify the heuristic expansion provided in [9]. The methodology
presented here can be adapted to the derivation of accuracy results in various contexts,
as in [7] for instance, where fast mean-reversion is shown in data and the corresponding
control problem appears as a Ricatti equation with fast mean-reverting random coefficients.
Proof of accuracy of an approximate solution to this singular perturbation problem was
obtained by constructing sub- and super-solutions.

We shall construct two functions close to the value function of the problem. These two
functions act as lower and upper bounds, namely sub- and super- solutions of this problem.
By requiring certain properties for each function and, most importantly, by constructing
their difference to reach the desired order, one can show that the asymptotic approximations
derived in [9] are rigorous under general utility. The requirement for the sub-solution is
rather relaxed, and we shall work with a particular zeroth-order strategy. Since the super-
solution acts as an upper bound of the problem, we need to ensure the property holds for
all admissible strategies.

The rest of this paper is organized as follows. In Section 2, we first introduce the
Merton problem in a multiscale stochastic environment and the associated Hamilton-Jacobi-
Bellman (HJB) equation, and we describe the main result of the paper, Theorem 2.1. In
Section 2.1, we briefly explain our approach which consists in constructing sub- and super-
solutions so that their difference is at the desired level. The asymptotic approximations
derived in [9] are reviewed in Section 2.2. Section 2.3 summarizes standing assumptions
in this paper and some preliminary estimates which facilitate the asymptotic analysis in
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Section 3. Section 3 is dedicated to the construction of the sub- and super-solutions, thus
completing the proof of Theorem 2.1. We make concluding remarks in Section 4.

2 Merton Problem under Multiscale Stochastic Envi-

ronment

We consider the utility maximization problem on the finite horizon [0, T ] with general
terminal utility U , where the (single) underlying asset St is driven by two factors: one fast
mean-reverting Yt, and one slowly varying Zt:

dSt = µ(Yt, Zt)St dt+ σ(Yt, Zt)St dWt, (2.1)

dYt =
1

ε
b(Yt) dt+

1√
ε
a(Yt) dW Y

t , (2.2)

dZt = δc(Zt) dt+
√
δg(Zt) dWZ

t , (2.3)

Here W,W Y ,WZ are standard Brownian motions on a filtered probability space (Ω,F ,P)
that are correlated:

d
〈
W,W Y

〉
t

= ρ1 dt, d
〈
W,WZ

〉
t

= ρ2 dt, d
〈
W Y ,WZ

〉
t

= ρ12 dt,

where |ρ1| < 1, |ρ2| < 1, |ρ12| < 1 and 1+2ρ1ρ2ρ12−ρ21−ρ22−ρ212 > 0 to ensure the positive
definiteness of the covariance matrix of (W,W Y ,WZ). The time scales of Yt and Zt are
described by the small positive parameters ε and δ respectively. We shall assume that the
process Yt is ergodic and has a unique invariant distribution Φ which is independent of
ε as its infinitesimal generator is of the form ε−1Ly. Further assumptions on the model
parameters µ, σ, b, a, c, g will be list in Section 2.3. In particular, they will imply that the
system (2.1)-(2.3) has a unique strong solution.

Let Xπ
t be a wealth process with πt being the dollar amount invested in the underlying

asset at time t and the remaining held in a money market earning interest at rate r. Under
the self-financing assumption, and without loss of generality, assuming r = 0, the wealth
process follows:

dXπ
t = πt[µ(Yt, Zt) dt+ σ(Yt, Zt) dWt]. (2.4)

We are interested in the utility maximization of the terminal wealth:

sup
π

E[U(Xπ
T )],

for all admissible strategies π (see Definition 2.4), and where U(·) is a general utility
function satisfying Assumption 2.3.

Restricting the problem to Markovian strategies of the form π(t, x, y, z), we denote by
V ε,δ(t, x, y, z) the value function

V ε,δ(t, x, y, z) := sup
π

Et[U(Xπ
T )], Et[·] = E[·|Xπ

t = x, Yt = y, Zt = z]. (2.5)
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As described in [9], the Hamilton-Jacobi-Bellman (HJB) PDE associated to this problem
is,

sup
π
Qπ[V ε,δ](t, x, y, z) = 0, V ε,δ(T, x, y, z) = U(x), (2.6)

where Qπ = ∂t +Lπ and Lπ is the infinitesimal generator of (Xπ
t , Yt, Zt) for any Markovian

strategy π(t, x, y, z). Specifically,

Qπ = ∂t +
1

ε
Ly +

√
δ

ε
Myz + δLz +

1

2
π2σ(y, z)2∂xx (2.7)

+ π

[
µ(y, z)∂x +

1√
ε
ρ1a(y)σ(y, z)∂xy +

√
δρ2g(z)σ(y, z)∂xz

]
,

where

Ly = b(y)∂y +
1

2
a2(y)∂yy, Lz = c(z)∂z +

1

2
g2(z)∂zz, Myz = ρ12a(y)g(z)∂yz.

We stress the fact that, in general, it is not known if the PDE (2.6) admits a classical
solution.

The formal asymptotic expansion in the regime where (ε, δ) are both small, performed
in [9, Section 4], shows that V ε,δ ≈ v(0) +

√
εv(1,0) +

√
δv(0,1) where v(0), v(1,0) and v(0,1) are

functions of (t, x, z) given here in Section 2.2. The main result of this paper is to justify
this asymptotic expansion, i.e., to prove the following theorem.

Theorem 2.1. Under Assumptions 2.3–2.5, the following accuracy estimate for V ε,δ de-
fined in (2.5) holds:∣∣∣V ε,δ −

(
v(0) +

√
εv(1,0) +

√
δv(0,1)

)∣∣∣ (t, x, y, z) ≤ O(ε+ δ), (2.8)

for fixed (t, x, y, z) ∈ [0, T ] × R+ × R2 and sufficiently small (ε, δ), where v(0), v(1,0) and
v(0,1) will be given in Section 2.2.

Additionally, the strategy π(0) given by (3.2) is asymptotically optimal in the sense:∣∣∣V ε,δ(t, x, y, z)− Et[U(Xπ(0)

T )]
∣∣∣ ≤ O(ε+ δ).

2.1 Methodology

The method for proving Theorem 2.1 is to construct two functions V ±(t, x, y, z) as sub-
and super-solutions, whose asymptotic expanded terms of the orders up to O(

√
ε +
√
δ)

coincide with v(0)+
√
εv(1,0)+

√
δv(0,1). Specifically, we aim to find a function V − for the sub-

solution such that, for all (x, y, z) and sufficiently small (ε, δ), the following requirements
are satisfied:

(R1) The function value V −(T, x, y, z) is dominated by U(x);

(R2) The process V −(t,Xπ(0)

t , Yt, Zt) along a zero-order strategy, denoted by π(0), is a
submartingale.
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Thus, by the definition of V ε,δ(t, x, y, z), (R1) and (R2), one can obtain:

V ε,δ(t, x, y, z) ≥ Et[U(Xπ(0)

T )] ≥ Et[V −(T,Xπ(0)

T , YT , ZT )] ≥ V −(t, x, y, z). (2.9)

Then, we aim to find a function V + for the super-solution such that, for all (x, y, z) and
sufficiently small (ε, δ), the following requirements are satisfied:

(R3) The function value V +(T, x, y, z) dominates U(x);

(R4) Q̂[V +](t, x, y, z) := supπQ
π[V +](t, x, y, z) exists and is non-positive;

(R5) The Itô integrals
∫ t
0
V +
x πσ(Ys, Zs) dWs,

∫ t
0
V +
y

1√
ε
a(Ys) dW Y

s and
∫ t
0
V +
z

√
δg(Zs) dWZ

s

are true martingales, for any admissible π.

Then, as in the argument used for (2.9), one can deduce:

Et[U(Xπ
T )] ≤ Et[V +(T,Xπ

T , YT , ZT )]

= V +(t, x, y, z) + Et
[∫ T

t

Qπ[V +](s,Xπ
s , Ys, Zs) ds

]
+ Et

[∫ T

t

V +
x πσ(Ys, Zs) dWs

]
+ Et

[∫ T

t

V +
y

1√
ε
a(Ys) dW Y

s

]
+ Et

[∫ T

t

V +
z

√
δg(Zs) dWZ

s

]
≤ V +(t, x, y, z) + Et

[∫ T

t

Q̂[V +](s,Xπ
s , Ys, Zs) ds

]
≤ V +(t, x, y, z). (2.10)

Taking the supremum over all admissible π on both sides of (2.10) gives V ε,δ(t, x, y, z) ≤
V +(t, x, y, z). Combining (2.9) and (2.10) gives

v(0) +
√
εv(1,0) +

√
δv(0,1) + o(

√
ε+
√
δ) = V −(t, x, y, z) ≤ V ε,δ(t, x, y, z) ≤ V +(t, x, y, z)

= v(0) +
√
εv(1,0) +

√
δv(0,1) + o(

√
ε+
√
δ).

In fact, the next order terms after v(0) +
√
εv(1,0) +

√
δv(0,1) in the construction of V ± are

O(ε+ δ). Therefore o(
√
ε+
√
δ) can be replaced by O(ε+ δ) and (2.8) follows.

Our choice of V ± takes the following form:

V ± = v(0) +
√
εv(1,0) +

√
δv(0,1) + εw(2,0) + ε3/2w(3,0) + ε

√
δw(2,1) (2.11)

± (2T − t)(εNA + δNB +
√
εδNC)± ε2F ± ε3/2

√
δH ± εδG,

where (NA, NB, NC) are functions of (t, x, z), and (F,G,H) are functions of (t, x, y, z).
The intuition for such form is the following: (a) functions w(2,0), w(3,0), w(2,1) are added to
eliminate terms of O(1),O(

√
ε) and O(

√
δ) when applying the operator Qπ to V ±; (b)

(NA, NB, NC) and (F,G,H) helps to fulfill (R2) and (R4); (c) the coefficient 2T − t is for
(R1) and (R3). In Section 3, we shall show how these functions are determined and why
they can be chosen as functions of particular variables such that the requirements (R1)–
(R5) are satisfied. In the rest of this section, we briefly review the existing derivations of
v(0), v(1,0), v(0,1), the definition of w(2,0), w(3,0), w(2,1), the standing assumptions in this paper,
and some preliminary estimates.
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2.2 Multiscale asymptotic expansions

Generally, closed-form solutions are barely available for HJB equations. In our setup, we
do not even know if V ε,δ solves (2.6) in the viscosity sense. In [9], a first-order expansion of
V ε,δ around small (ε, δ) is formally derived via singular and regular perturbation techniques.
Since the formulas of these terms and the equations they satisfy play an important role
in proving our main theorem, we summarize them below for readers’ convenience. For
detailed derivations, we refer the readers to [9, Section 4] and [6, Sections 2 and 3].

The combined expansion in slow and fast scales of V ε,δ is of the following form:

V ε,δ = v(0) +
√
εv(1,0) +

√
δv(0,1) + εv(2,0) + δv(0,2) +

√
εδv(1,1) + · · · ,

where the superscript of v corresponds to the powers in
√
ε and

√
δ and where v(0,0) has

been rewritten as v(0). To precisely give the equations which identify these terms, we
introduce the following notations, following [9]. Denote by 〈·〉 the average with respect to
the ε-independent invariant distribution Φ of Y : 〈g〉 =

∫
g(y) Φ(dy), and by M(t, x;λ) the

solution to the classical Merton PDE where µ and σ are constants:

Mt −
1

2
λ2
M2

x

Mxx

= 0, M(T, x;λ) = U(x), λ = µ/σ (Sharpe ratio).

We define the associate risk-tolerance function

R(t, x;λ) := − Mx(t, x;λ)

Mxx(t, x;λ)
,

and the differential operators:

Dk(λ) = R(t, x;λ)k∂kx , k = 1, 2, · · · ; Lt,x(λ) = ∂t +
1

2
λ2D2(λ) + λ2D1(λ).

We denote the “square-averaged” Sharpe ratio λ(z) =
√
〈λ2(·, z)〉, and the version of Dk(λ)

that will be used in the sequel is Dk(λ) = R(t, x;λ(z))k∂kx . We shall use Dk for brevity

(omitting the argument λ). We also define the averaged Sharpe ratio: λ̂(z) = 〈λ(·, z)〉.
Now we are ready to present the formulations of v(0), v(1,0) and v(0,1).

Proposition 2.2. ([9, Section 4] and [6, Sections 2 & 3])

(i) The leading order term v(0) is defined as the classical solution to the Merton PDE

v
(0)
t −

1

2
λ
2
(z)

(
v
(0)
x

)2
v
(0)
xx

= 0, v(0)(T, x, z) = U(x).

Since it possesses a unique solution (see [6, Proposition 2.2]), we have

v(0)(t, x, z) = M(t, x;λ(z)). (2.12)
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(ii) The first order correction in the fast variable v(1,0) is defined as the solution to the
linear PDE:

Lt,x(λ(z))v(1,0) =
1

2
ρ1B(z)D2

1v
(0), v(1,0)(T, x, z) = 0,

where B(z) = 〈λ(·, z)a(·)∂yθ(·, z)〉, and θ is a solution of the Poisson equation

Lyθ(y, z) = λ2(y, z)− λ2(z). (2.13)

It is explicitly given in terms of v(0) by

v(1,0)(t, x, z) = −1

2
(T − t)ρ1B(z)D2

1v
(0)(t, x, z). (2.14)

(iii) The first order correction in the slow variable v(0,1) is defined as the solution to the
linear PDE:

Lt,x(λ(z))v(0,1) = ρ2λ̂(z)g(z)
v
(0)
x

v
(0)
xx

v(0)xz , v(0,1)(T, x, z) = 0,

and v(0,1) can be expressed in terms of v(0) by

v(0,1)(t, x, z) =
1

2
(T − t)ρ2λ̂(z)g(z)D1v

(0)
z (t, x, z)

=
1

2
(T − t)2ρ2λ̂(z)λ(z)λ

′
(z)g(z)D2

1v
(0)(t, x, z). (2.15)

(iv) The z-derivatives of the leading order term v(0) and the risk-tolerance function R
satisfy

v(0)z (t, x, z) = (T − t)λ(z)λ
′
(z)D1v

(0)(t, x, z), (2.16)

Rz(t, x;λ(z)) = (T − t)λ(z)λ
′
(z)R2Rxx(t, x;λ(z)).

(v) The term v(2,0) solves the linear PDE: Lyv(2,0) + Lt,x(λ(y, z))v(0) = 0, and so has the
form

v(2,0)(t, x, y, z) = −1

2
θ(y, z)D1v

(0) + C1(t, x, z),

where θ solves (2.13).

(vi) The term v(3,0) solves the linear PDE:

Lyv(3,0) + Lt,x(λ(y, z))v(1,0) =
1

2
ρ1λ(y, z)a(y)∂yθ(y)D2

1v
(0)

and so has the form

v(3,0)(t, x, y, z) =
1

2
(T − t)ρ1θ(y, z)B(z)(

1

2
D2 +D1)D

2
1v

(0) +
1

2
ρ1θ1(y, z)D

2
1v

(0)

+ C2(t, x, z),

where θ1(y, z) solves the Poisson equation Lyθ1(y, z) = λ(y, z)a(y)∂yθ(y, z)−B(z).
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(vii) The term v(2,1) solves the linear PDE:

Lyv(2,1) + Lt,x(λ(y, z))v(0,1) + ρ2g(z)λ(y, z)D1v
(0)
z = 0.

With (2.12) and (2.15), v(2,1) is given by

v(2,1)(t, x, y, z) = −1

2
(T − t)2θ(y, z)ρ2λ̂(z)λ(z)λ

′
(z)g(z)(

1

2
D2 +D1)D

2
1v

(0)

− ρ2(T − t)θ2(y, z)g(z)λ(z)λ
′
(z)D2

1v
(0) + C3(t, x, z),

where θ2(y, z) solves the Poisson equation Lyθ2(y, z) = λ(y, z)− λ̂(z).

In the sequel, when deriving the concrete formula of V ±, we shall choose w(2,0), w(3,0)

and w(2,1) to be the corresponding terms in the expansion of V ε,δ with Ci(t, x, z) ≡ 0,
i = 1, 2, 3. That is, we choose

w(2,0)(t, x, y, z) = −1

2
θ(y, z)D1v

(0), (2.17)

w(3,0)(t, x, y, z) =
1

2
(T − t)ρ1θ(y, z)B(z)(

D2

2
+D1)D

2
1v

(0) +
1

2
ρ1θ1(y, z)D

2
1v

(0), (2.18)

w(2,1)(t, x, y, z) = −1

2
(T − t)2θ(y, z)ρ2λ̂(z)λ(z)λ

′
(z)g(z)(

D2

2
+D1)D

2
1v

(0)

− ρ2(T − t)θ2(y, z)g(z)λ(z)λ
′
(z)D2

1v
(0). (2.19)

2.3 Model assumptions and preliminary estimates

We first make precise the regularity assumptions on the utility function U , on the risk
tolerance −U ′/U ′′, and on the inverse marginal utility (U ′)(−1). They will be satisfied by
mixtures of power utilities or sums of inverse marginal power utilities for instance, and we
refer to Appendix A in [5] for further details. The advantage of these mixtures is that the
Arrow-Pratt risk aversion (−xU ′′/U ′) is wealth dependent as opposed to constant for pure
power utilities.

Assumption 2.3. We make the following assumptions on the utility function U(x):

1. U(x) is C9(0,∞), strictly increasing, and strictly concave and satisfies the following
conditions (Inada and asymptotic elasticity):

U ′(0+) =∞, U ′(∞) = 0, AE[U ] := lim
x→∞

x
U ′(x)

U(x)
< 1.

2. Assume the risk tolerance R(x) := −U ′(x)/U ′′(x) satisfies R(0) = 0, strictly increas-
ing, R′(x) < ∞ on [0,∞), and there exists K ∈ R+, such that for x ≥ 0, and
2 ≤ i ≤ 7, ∣∣∂(i)x Ri(x)

∣∣ ≤ K.
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3. Define the inverse function of the marginal utility U ′(x) as I : R+ → R+, I(y) =
U ′(−1)(y), and assume that, for some positive α, I(y) satisfies the polynomial growth
condition:

I(y) ≤ α + κy−α.

Now, we make precise the definition of a Markovian admissible strategy.

Definition 2.4 (Admissibility). A Markovian strategy π is admissible if Xπ
t stays positive

a.s. for all t ∈ [0, T ] and

E
∫ T

0

(
π(t,Xπ

t , Yt, Zt)σ(Yt, Zt)v
(0)
x (t,Xπ

t , Zt)
)2

dt <∞, (2.20)

E
∫ T

0

(
D1v

(0)(t,Xπ
t , Zt)

)2
dt <∞. (2.21)

Next, we make the following technical assumptions on the model parameters and the
various quantities appearing in our expansion. In particular, it involves several Poisson
equations for which we assume that the solutions are bounded.

Assumption 2.5. 1. For any starting points (s, y, z) and fixed (ε, δ), the system of
SDEs (2.1)–(2.2)–(2.3) has a unique strong solution (St, Yt, Zt). The process Y is
ergodic and has a unique invariant distribution Φ (independent of ε).

2. The following functions are bounded with bounded derivatives:

λ(y, z), g(z), c(z), a(y), B(z), λ̂(z), λ(z), B1(z), θ(y, z), θi(y, z), 1 ≤ i ≤ 11,

where θi are solutions of the Poisson equations:

Lyθ(y, z) = λ2(y, z)− λ2(z), λ
2
(z) =

〈
λ2(·, z)

〉
,

Lyθ1(y, z) = λ(y, z)a(y)∂yθ(y, z)−B(z), B(z) = 〈λ(·, z)a(·)∂yθ(·, z)〉 ,
Lyθ2(y, z) = λ(y, z)− λ̂(z), λ̂(z) = 〈λ(·, z)〉 ,
Lyθ3(y, z) = a(y)λ(y, z)∂yθ1(y, z)−B1(z), B1(z) = 〈a(·)λ(·, z)∂yθ1(·, z)〉 ,(2.22)

Lyθ4(y, z) = θ(y, z)λ2(y, z)−
〈
θλ2
〉
, (2.23)

Lyθ5(y, z) = θ(y, z)− 〈θ〉 , (2.24)

Lyθ6(y, z) = ∂yzθ(y, z)− 〈∂yzθ(·, z)〉 , (2.25)

Lyθ7(y, z) = ∂yθ(y, z)− 〈∂yθ(·, z)〉 , (2.26)

Lyθ8(y, z) = a(y)λ(y, z)∂yθ2(y, z)− 〈a(·)λ(·, z)∂yθ2(·, z)〉 , (2.27)

Lyθ9(y, z) = a2(y) (∂yθ)
2 (y, z)−

〈
a2(·) (∂yθ)

2 (·, z)
〉
, (2.28)

Lyθ10(y, z) = a(y)∂yzθ(y, z)− 〈a(·)∂yzθ(·, z)〉 , (2.29)

Lyθ11(y, z) = a(y)∂yθ(y, z)− 〈a(·)∂yzθ(·, z)〉 . (2.30)

Moreover, λ(z) is bounded away from 0.
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With all the notations and assumption introduced, we obtain the following propositions
by lengthy but straightforward calculations. We omit the proofs here and refer to [5, 6].

Proposition 2.6. Under the above assumptions, the functions v(i,j) and w(i,j), i + j > 0
(cf. (2.14), (2.15), (2.17), (2.18) and (2.19)) satisfy

v(i,j) ≤ h(y, z)D1v
(0), with a bounded function h(y, z),

v(i,j)x ≤ h(y, z)v(0)x , with a bounded function h(y, z),

v(i,j)xx ≤ h(y, z)v(0)xx , with a bounded function h(y, z),

where h(y, z) denotes a bounded function in y and z, and may vary from case to case.
Similar inequalities hold for w(i,j). In particular, one has

Di
1D

j
2D

k
1v

(0) ≤ h(z)D1v
(0),∀i, j, k ∈ N+

with a bounded function h(z).

Proposition 2.7 (Proposition 2.6 in [6]). Under Assumption 2.3 of the general utility, the
risk-tolerance R(t, x;λ(z)) function satisfies the following: ∃Kj > 0 for 0 ≤ j ≤ 6, such
that ∀(t, x, λ(z)) ∈ [0, T )× R+ × R,∣∣Rj(t, x;λ(z))(∂(j+1)

x R(t, x;λ(z)))
∣∣ ≤ Kj.

Or equivalently, ∀1 ≤ j ≤ 7, there exists K̃j > 0, such that ∀(t, x, z) ∈ [0, T )× R+ × R,∣∣∂(j)x Rj(t, x;λ(z))
∣∣ ≤ K̃j.

Moreover, 0 ≤ R(t, x;λ(z)) ≤ K0x, and the following quantities are uniformly bounded:
RRxxz, R

2Rxxxz, Rxzz, RRxxzz and R2Rxxxzz.

3 Proof of the Main Theorem

Recall the sub- and super-solution we shall construct are of the form

V ± = v(0) +
√
εv(1,0) +

√
δv(0,1) + εw(2,0) + ε3/2w(3,0) + ε

√
δw(2,1) (3.1)

± (2T − t)(εNA + δNB +
√
εδNC)± ε2F ± ε3/2

√
δH ± εδG.

This section is dedicated to identify the terms (NA, NB, NC) which will be functions of
(t, x, z) and (F,G,H) which will be functions of (t, x, y, z) in V ±.

3.1 Sub-solution

We shall first work with the process V −(t,Xπ(0)

t , Yt, Zt) along the given zeroth order strategy
π(0):

π(0)(t, x, y, z) :=
λ(y, z)

σ(y, z)
R(t, x;λ(z)) = −λ(y, z)

σ(y, z)

v
(0)
x (t, x, z)

v
(0)
xx (t, x, z)

. (3.2)

10



Lemma 3.1. The strategy π(0) is admissible (in the sense of Definition 2.4).

Proof. From (2.4) and (3.2), we have

dXπ(0)

t = R(t,Xπ(0)

t ;λ(Zt))
[
λ2(Yt, Zt) dt+ λ(Yt, Zt) dWt

]
.

Using that 0 ≤ R(t, x;λ(z)) ≤ K0x, and the boundedness of λ, one deduces that Xπ(0)

t

is a proper exponential and stays positive. Moreover, it has pth-moments for any p ∈ N,
uniformly in t ∈ [0, T ]. Next we observe that the condition (2.20) applied to π(0) reduces
to the condition (2.21) after using the boundedness of λ. Thus it suffices to verify (2.21)
when π = π(0).

To this end, we recall the H-transform used in [13]. Let H : R × [0, T ] × R → R+ be
defined by

v(0)x (t,H(x, t, λ(z)), z) = e−x−
1
2
λ
2
(z)(T−t). (3.3)

It satisfies the heat equation

Ht +
1

2
λ
2
(z)Hxx = 0, (3.4)

with the terminal condition H(t, x, λ(z) = I(e−x)). Now define the spatial inverse function
H(−1)(y, t, λ(z)) : R+ × [0, T ] × R → R, i.e., H(H(−1)(y, t, λ(z), t, λ(z)) = y. Using (3.3)
and 0 ≤ R(t, x;λ(z)) ≤ K0x, it remains to show

E
∫ T

0

(Xπ(0)

t )2e−2H
(−1)(Xπ(0)

t ,t,λ(Zt))−λ
2
(Zt)(T−t) dt <∞. (3.5)

To further proceed, we need a lower bound for the inverse function H(−1), or equivalently
an upper bound for H since H is positive and strictly increasing. Using the fact that H
solves (3.4) with a terminal condition I(e−x) ≤ α+κeαx, λ(z) is bounded above and below
away from zero, and t ∈ [0, T ], one can deduce that, (by writing down the solution of H as
the convolution of I(e−x) with the heat kernel)

H(x, t, λ(z)) ≤ CeCx, thus H(−1)(x, t, λ(z)) ≥ 1

C
log(x/C), for a generic contant C.

Consequently, equation (3.5) is bounded by

E
∫ T

0

(Xπ(0)

t )p dt, p = 2− 2/C.

which is finite as we have shown that Xπ(0)

t has bounded moments of any other. Therefore,
π(0) is admissible.

For the derivations presented below, the submartingality requirement (R2) will enable
us to pin down certain formulas for (NA, NB, NC) and (F,G,H) up to some constants
(CA, CB, CC). Then with sufficiently large choices of (CA, CB, CC) and sufficiently small
(ε, δ), (R1) is fulfilled.

11



3.1.1 The submartingality requirement (R2)

To fulfill it, we first write down the operator Qπ with π = π(0) given in (3.2):

Qπ(0)

= Lt,x(λ(y, z))+
1

ε
Ly+

√
δ

ε
Myz+δLz+

1√
ε
ρ1a(y)λ(y, z)D1∂y+

√
δρ2g(z)λ(y, z)D1∂z.

In the sequel, to avoid cumbersome notations, we will systematically omit the variables
of all functions. Consider (NA, NB, NC) as functions of (t, x, z) and using the formula of
v(0), v(1,0), v(0,1), w(2,0), w(3,0), w(2,1), one has:

Qπ(0)

[V −]

= ε
(
Lt,x(λ)w(2,0) − LyF + ρ1aλD1w

(3,0)
y − Lt,x(λ)[(2T − t)NA]

)
+
√
εδ
(
−Lt,x(λ)[(2T − t)NC ]− LyH +Myzw

(2,0) + ρ1aλD1w
(2,1)
y + ρ2gλD1v

(1,0)
z

)
+ δ

(
−Lt,x(λ)[(2T − t)NB] + Lzv(0) + ρ2gλD1v

(0,1)
z − LyG

)
+ higher order terms

:= εIε +
√
εδIεδ + δIδ + h.o.t. (3.6)

Then, by Itô formula,

dV −(t,Xπ(0)

t , Yt, Zt) = Qπ(0)

[V −] dt+ V −x π
(0)σ dWt + V −y

1√
ε
a dW Y

t + V −z
√
δg dWZ

t .

Thus it suffices to show that

(R2-1) Qπ(0)
[V −] ≥ 0 for all (t, x, y, z) and sufficiently small (ε, δ);

(R2-2) The Itô integral terms are true martingales.

For the item (R2-1) we first require that Iε, Iεδ and Iδ are strictly positive. This will
enable us to determine the forms of (NA, NB, NC) up to some constants and the formulas
of (F,G,H). Precisely speaking, the form of NA is determined by the necessary conditions
〈Iε〉 > 0, and F is the solution to Iε − 〈Iε〉 = 0. NB, NC , G,H are determined in a similar
manner, and we present the detailed computations for the pair (NA, F ) as follows.

Regarding O(ε) terms in Qπ(0)
[V −], we have Iε = Lt,x(λ)w(2,0) −LyF + ρ1aλD1w

(3,0)
y −

Lt,x(λ)[(2T − t)NA], and we compute

Lt,x(λ)w(2,0) = −1

2
θ(y, z)Lt,x(λ)D1v

(0) = −1

2
θ(y, z)(λ2 − λ2)(1

2
D2 +D1)D1v

(0),

ρ1aλD1w
(3,0)
y = ρ1aλD1

(
1

2
(T − t)ρ1θyB(z)(

1

2
D2 +D1)D

2
1v

(0) +
1

2
ρ1θ1yD

2
1v

(0)

)
,

thus

〈Iε〉 =
〈
Lt,x(λ)w(2,0)

〉
+
〈
ρ1aλD1w

(3,0)
y

〉
− Lt,x(λ)[(2T − t)NA]

= −1

2

(〈
θλ2
〉
− 〈θ〉λ2

)
(
1

2
D2 +D1)D1v

(0) +
1

2
(T − t)ρ21B(z)2D1(

1

2
D2 +D1)D

2
1v

(0)

+
1

2
ρ21B1(z)D3

1v
(0) − Lt,x(λ)[(2T − t)NA], (3.7)
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where B1(z) is define in (2.22). Note that all terms in (3.7) except the last one are bounded
by a multiple of D1v

(0) by Assumption 2.5 and Proposition 2.6. Therefore, we can choose

NA = CAD1v
(0), for some constant CA. (3.8)

Then the last term in (3.7) becomes

−Lt,x(λ)[(2T − t)NA] = −(2T − t)Lt,x(λ)CAD1v
(0) + CAD1v

(0) = CAD1v
(0)

as Lt,x(λ)D1v
(0) = D1Lt,x(λ)v(0) = 0. Thus, the choice (3.8) indeed does the job of making

〈Iε〉 positive for sufficiently large CA.
We next derive the formula for F . Identifying F as the solution to Iε − 〈Iε〉 = 0, we

have

LyF = −1

2

(
θλ2 − θλ2 −

〈
θλ2
〉

+ 〈θ〉λ2
)

(
1

2
D2 +D1)D1v

(0)

+
1

2
(T − t)ρ21(aλθy −B(z))B(z)D1(

1

2
D2 +D1)D

2
1v

(0) +
1

2
ρ21(aλθ1y −B1(z))D3

1v
(0)

− (2T − t)(λ2 − λ2)(1

2
D2 +D1)CAD1v

(0),

which yields a formula for F :

F (t, x, y, z) = −1

2

(
θ4 − λ

2
θ5

)
(
1

2
D2 +D1)D1v

(0) +
1

2
(T − t)ρ21θ1B(z)D1(

1

2
D2 +D1)D

2
1v

(0)

+
1

2
ρ21θ3D

3
1v

(0) − (2T − t)θ(1

2
D2 +D1)CAD1v

(0), (3.9)

Here θ3, θ4, and θ5 solve the Poisson equations (2.22), (2.23) and (2.24), respectively. With
such choices of NA and F , we are able to let Iε = 〈Iε〉 > 0.

Regarding the O(δ) terms, with the choice of NB = CBD1v
(0), one deduces that

〈Iδ〉 = Lzv(0) + ρ2g(z)λ̂D1v
(0,1)
z +NB.

By the Vega-Gamma relations (2.16), Assumption 2.5 and Proposition 2.6, it suffices to
choose a large NB so that 〈Iδ〉 is strictly positive. For identifying G from Iδ − 〈Iδ〉 = 0 , we
first write down

LyG = ρ2g(λ− λ̂)D1v
(0,1)
z − (2T − t)(λ2 − λ2)(1

2
D2 +D1)CBD1v

(0),

and then obtain for G:

G(t, x, y, z) = ρ2gθ2(y, z)D1v
(0,1)
z − (2T − t)θ(y, z)(1

2
D2 +D1)CBD1v

(0). (3.10)

For terms of O(
√
εδ), a similar derivation yields

NC = CCD1v
(0), for sufficiently large CC ,
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and

H(t, x, y, z) = ρ2gθ2D1v
(1,0)
z − 1

2
θ6D1v

(0) − 1

2
θ7λλ

′
(T − t)RRxxD1v

(0)

− 1

2
θ7(T − t)λλ

′
(Rx − 1)D1v

(0) − ρ1θ1
1

2
(T − t)2ρ2λ̂λλ

′
gD1(

1

2
D2 +D1)D

2
1v

(0)

− ρ1ρ2θ8g(T − t)λλ′D3
1v

(0) − (2T − t)θ(1

2
D2 +D1)CcD1v

(0), (3.11)

where θ6, θ7 and θ8 solve the Poisson equations (2.25), (2.26) and (2.27), respectively.

The next step is to ensure that Qπ(0)
[V −] ≥ 0, i.e. the higher order terms in (3.6) are

indeed negligible and can be dominated by terms ofO(ε+δ). By straightforward but tedious
calculation, with Assumption 2.5, and Propositions 2.6 and 2.7 we can verify that all terms
higher than O(ε + δ) can be bounded f(y, z, Ci)D1v

(0), where the function f(y, z, Ci) is
bounded in (y, z) and linear in Ci, for i = A,B,C. This is because (F,G,H) contribute to
higher order terms and their formulas contain linear functions in (CA, CB, CC). On the other
hand, we have Iε = 〈Iε〉 ≥ f̃(y, z)D1v

(0) + CAD1v
(0), Iδ = 〈Iδ〉 ≥ f̃(y, z)D1v

(0) + CBD1v
(0)

and Iεδ = 〈Iεδ〉 ≥ f̃(y, z)D1v
(0) +CCD1v

(0), which are the coefficients at order ε, δ and
√
εδ.

The function f̃(y, z) is also bounded in (y, z) and may vary from case to case, but free of
(CA, CB, CC). More precisely, one has the following

Qπ(0)

[V −] ≥ ε(f̃(y, z) + CAD1v
(0)) + δ(f̃(y, z) + CBD1v

(0)) +
√
εδ(f̃(y, z) + CCD1v

(0))

+
∑
i+j>1

εiδjf(y, z, Ci)D1v
(0).

Therefore, one can first choose ε < ε′ and δ < δ′ such that the coefficients of Ci are positive,
then for Ci > C ′i, i = A,B,C, Qπ(0)

[V −] is always non-negative.
We now take care of (R2-2) . With our choice of Ni = CiD1v

(0) for i = A,B,C
and choice of (F,G,H) (cf. equations (3.9), (3.10), (3.11)), we observe that terms in
V −x π

(0)σ = λD1V
− are all of the form h(y, z)Dv(0), with D being the following operators:

D1, D
3
1, D

2
1, D1D2D

2
1, D

4
1, D1D2D1, D

2
1D2D

2
1, D

5
1, D1RRxxD1, D1(Rx − 1)D1, D

2
1∂z, D

2
1∂zD

2
1.

Under model assumptions, and with Propositions (2.6) and (2.7) we deduce that h(y, z)
is always bounded and Dv(0) can be bounded by a multiple of D1v

(0). Therefore, for∫ t
0
V −x π

(0)σ dWt being a martingale, we essentially require that
∫ t
0
D1v

(0) dWt is square in-
tegrable, which is fulfilled by Lemma 3.1 and (2.21). Repeating this argument with similar
calculation for

∫ t
0
V −y

1√
ε
a dW Y

t and
∫ t
0
V −z
√
δg dWZ

t , we claim such choices of Ni = CiD1v
(0)

and (F,G,H) satisfy (R2).

3.1.2 The requirement (R1): U(x) ≥ V −(T, x, y, z)

With our choices of Ni = CiD1v
(0) and (F,G,H), (R1) essentially requires

U(x) ≥ U(x) + εw(2,0)(T, x, y, z) + ε3/2w(3,0)(T, x, y, z)− T (εNA + δNB +
√
εδNC)(T, x, z)

− ε2F (T, x, y, z)− ε3/2
√
δH(T, x, y, z)− εδG(T, x, y, z),
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which reads as

0 ≥ ε(−1

2
θD1v

(0)) + ε3/2
1

2
ρ1θ1D

2
1v

(0) − T (εCAD1v
(0) + δCBD1v

(0) +
√
εδCCD1v

(0))

− ε2
(
−1

2
(θ4 − λ

2
θ5)(

1

2
D2 +D1)D1v

(0) +
1

2
ρ21θ3D

3
1v

(0) − Tθ(1

2
D2 +D1)CAD1v

(0)

)
− ε3/2

√
δ

(
ρ2gθ2D1v

(1,0)
z − 1

2
θ6D1v

(0) − Tθ(1

2
D2 +D1)CCD1v

(0)

)
− εδ

(
ρ2gθ2D1v

(0,1)
z − Tθ(1

2
D2 +D1)CBD1v

(0)

)
. (3.12)

Since all θi and g are bounded functions and with Proposition 2.6, we can again first choose
ε < ε′′ and δ < δ′′ such that the coefficients of Ci are negative, then for Ci > C ′′i , i = A,B,C
the above inequality hold.

Finally, combining the two upper bounded for (ε, δ) and for Ci, we conclude that the
requirements (R1)–(R2) are fulfilled for ε ≤ ε′ ∧ ε′′, δ ≤ δ′ ∧ δ′′ and for Ci ≥ C ′i ∨ C ′′i .

Remark 3.2. Observing that, under our choices of Ni and (F,G,H), terms with non-zero
terminal values in V − are either O(ε) or o(ε), one could have chosen (2T − t) for NA, and
(T − t) for (NB, NC) in the definition (2.11) of V −. This would eliminate the CB and CC
terms in (3.12), while the conclusion still holds.

3.2 Super-solution

Similar to the derivation in Section 3.1, we shall first take care of (R4). This will allow us
to derive the form of Ni in V + which are also given by

Ni = CiD1v
(0), i = A,B,C. (3.13)

With such forms, the requirement (R5) is shown as a consequence of Definition 2.4, and
(R3) will be satisfied with sufficient large choices of Ci and sufficiently small (ε, δ).

3.2.1 The existence and non-positivity of Q̂[V +] (R4)

Recall the definition of Qπ in (2.7), the first order condition gives an optimizer of Qπ[V +],
which we denote by π∗:

π∗ = −
λ(x, y)V +

x + 1√
ε
ρ1a(y)V +

xy +
√
δρ2g(z)V +

xz

σ(x, y)V +
xx

.

The requirement (R4) is equivalent to, for all (t, x, y, z) and sufficiently small (ε, δ) that:

(R4-1) Qπ∗
[V +] ≤ 0;

(R4-2) V +
xx < 0, so that π∗ is a maximizer and Q̂[V +] := supπQ

π[V +] = Qπ∗
[V +].
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To this end, let π = π∗ in the operator Qπ and apply it to V + (cf. (3.1)):

Qπ∗
[V +]

= V +
t + Ly(w(2,0) +

√
εw(3,0) +

√
δw(2,1) + εF + δG+

√
εδH)

+
√
δMyz

(√
εw(2,0) + εw(3,0) +

√
εδw(2,1) + ε3/2F + ε

√
δH +

√
εδG

)
+ δLzV +

− 1

2v
(0)
xx

[
λv(0)x +

√
ε(λv(1,0)x + ρ1aw

(2,0)
xy ) +

√
δ(λv(0,1)x + ρ2gv

(0)
xz ) (3.14)

+ δ(λ(2T − t)(NB)x + ρ2gv
(0,1)
xz ) + ε(λ(w(2,0) + (2T − t)NA)x + ρ1aw

(3,0)
xy )

+
√
εδ(λ(2T − t)(NC)x + ρ1aw

(2,1)
xy + ρ2gv

(1,0)
xz ) + h.o.t.

]2
(3.15)

×
[
1−
√
ε
v
(1,0)
xx

v
(0)
xx

−
√
δ
v
(0,1)
xx

v
(0)
xx

− ε
((w(2,0) + (2T − t)NA)xx

v
(0)
xx

− (
v
(1,0)
xx

v
(0)
xx

)2
)

(3.16)

− δ
((2T − t)(NB)xx

v
(0)
xx

− (
v
(0,1)
xx

v
(0)
xx

)2
)
−
√
εδ
((2T − t)(NC)xx

v
(0)
xx

− 2v
(1,0)
xx v

(0,1)
xx

(v
(0)
xx )2

)
(3.17)

ε3/2R1(t, x, y, z) + ε
√
δR2(t, x, y, z) +

√
εδR3(t, x, y, z) + δ3/2R4(t, x, y, z)

]
(3.18)

= εIε + δIδ +
√
εδIεδ + h.o.t., (3.19)

where (Iε, Iδ, Iεδ) are given by

Iε = LyF + Lt,x(λ)(w(2,0) + (2T − t)NA)− 1

2v
(0)
xx

(
λv(0)x

v
(1,0)
xx

v
(0)
xx

− λv(1,0)x − ρ1aw(2,0)
xy

)2
+ ρ1aλD1w

(3,0)
y ,

Iδ = LyG+ Lt,x(λ)((2T − t)NB)− 1

2v
(0)
xx

(
λv(0)x

v
(0,1)
xx

v
(0)
xx

− λv(0,1)x − ρ2gv(0)xz

)2
+ ρ2gλD1v

(0,1)
z + Lzv(0),

Iεδ = LyH + Lt,x(λ)((2T − t)NC) +Myzw
(2,0) + ρ1aλD1w

(2,1)
y + ρ2gλD1v

(1,0)
z

− 1

v
(0)
xx

(
λv(0)x

v
(1,0)
xx

v
(0)
xx

− λv(1,0)x − ρ1aw(2,0)
xy

)(
λv(0)x

v
(0,1)
xx

v
(0)
xx

− λv(0,1)x − ρ2gv(0)xz

)
.

As in the sub-solution case, we first show that with the choice (3.13), 〈Iε〉 , 〈Iδ〉 and
〈Iεδ〉 can be strictly negative. Then by letting (F,G,H) be the solution of (Iε, Iδ, Iεδ) −
(〈Iε〉 , 〈Iδ〉 , 〈Iεδ〉) = 0, we have terms at O(ε + δ) are strictly negative. The computation
and reasoning are very similar to the sub-solution case, thus we omit here and summarize
the results.

Regarding O(ε) terms, one has

〈Iε〉 = −NA +
〈
Lt,x(λ)w(2,0)

〉
+
〈
ρ1aλD1w

(3)
y

〉
− 1

2v
(0)
xx

(
λ
2
(
v(0)x

v
(1,0)
xx

v
(0)
xx

− v(1,0)x

)2
+ ρ1B(z)

(
v(0)x

v
(1,0)
xx

v
(0)
xx

− v(1,0)x

)
(D1v

(0))x
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+
1

4
ρ21
〈
a2θ′2

〉
[(D1v

(0))x]
2

)
.

F (t,x, y, z)

= −1

2
(T − t)ρ21θ1(y, z)B(z)D1(

1

2
D2 +D1)D

2
1v

(0) − 1

2
ρ21θ3(y, z)D

3
1v

(0)

+
1

2
(θ4(y, z)− λ

2
θ5(y, z))(

1

2
D2 +D1)D1v

(0) − (2T − t)θ(y, z)(1

2
D2 +D1)CAD1v

(0)

+
1

2v
(0)
xx

(
θ(y, z)

(
v(0)x

v
(1,0)
xx

v
(0)
xx

− v(1,0)x

)2
+ ρ1θ1(y, z)

(
v(0)x

v
(1,0)
xx

v
(0)
xx

− v(1,0)x

)
(D1v

(0))x

+
1

4
ρ21θ9(y, z)[(D1v

(0))x]
2

)
,

where θ9(y, z) solves the Poisson equation (2.28).
For terms of O(δ), we have

〈Iδ〉 = Lzv(0) + ρ2g(z)λ̂D1v
(0,1)
z −NB

− 1

2v
(0)
xx

(
λ
2
(
v(0)x

v
(0,1)
xx

v
(0)
xx

− v(0,1)x

)2
− 2ρ2gλ̂

(
v(0)x

v
(0,1)
xx

v
(0)
xx

− v(0,1)x

)
v(0)xz + ρ22g

2[v(0)xz ]2
)
.

G(t,x, y, z)

= −ρ2gθ2(y, z)D1v
(0,1)
z − (2T − t)θ(y, z)(1

2
D2 +D1)CBD1v

(0)

+
1

2v
(0)
xx

(
θ(y, z)

(
v(0)x

v
(0,1)
xx

v
(0)
xx

− v(0,1)x

)2
− 2ρ2gθ2(y, z)

(
v(0)x

v
(0,1)
xx

v
(0)
xx

− v(0,1)x

)
v(0)xz

)
.

Regarding O(
√
εδ) terms, we deduce

〈Iεδ〉 =
〈
Myzw

(2,0)
〉

+ ρ1
〈
aλD1w

(2,1)
y

〉
+ ρ2g(z)λ̂D1v

(1,0)
z −NC

− 1

v
(0)
xx

(
λ
2
(
v(0)x

v
(1,0)
xx

v
(0)
xx

− v(1,0)x

)(
v(0)x

v
(0,1)
xx

v
(0)
xx

− v(0,1)x

)
− ρ2gλ̂

(
v(0)x

v
(1,0)
xx

v
(0)
xx

− v(1,0)x

)
v(0)xz

)
− 1

v
(0)
xx

(
1

2
ρ1B(z)

(
v(0)x

v
(0,1)
xx

v
(0)
xx

− v(0,1)x

)
(D1v

(0))x −
1

2
ρ1ρ2g 〈θy〉 v(0)xz (D1v

(0))x

)
.

with the first two terms calculated as〈
Myzw

(2,0)
〉

= −1

2
ρ1g
(
〈aθyz〉D1v

(0) + 〈aθy〉 (D1v
(0))z

)
,〈

aλD1w
(2,1)
y

〉
= −1

2
(T − t)2ρ2B(z)λ̂λλ

′
g(z)D1(

1

2
D2 +D1)D

2
1v

(0)

− ρ2 〈aλθ2y〉 g(z)(T − t)λλ′D3
1v

(0).

Then the function H(t, x, y, z) is identified as:

H = −1

2
ρ1gθ10(y, z)D1v

(0) +
1

2
ρ1gθ11(y, z)(D1v

(0))z
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+ ρ1
1

2
(T − t)2ρ2θ1(y, z)λ̂λλ

′
g(z)D1(

1

2
D2 +D1)D

2
1v

(0) − ρ2g(z)θ2(y, z)D1v
(1,0)
z

+ ρ1ρ2θ8(y, z)g(z)(T − t)λλ′D3
1v

(0) − (2T − t)θ(y, z)(1

2
D2 +D1)CCD1v

(0)

+
1

v
(0)
xx

(
θ(y, z)

(
v(0)x

v
(1,0)
xx

v
(0)
xx

− v(1,0)x

)(
v(0)x

v
(0,1)
xx

v
(0)
xx

− v(0,1)x

)
− ρ2gθ2(y, z)

(
v(0)x

v
(1,0)
xx

v
(0)
xx

− v(1,0)x

)
v(0)xz

)
+

1

v
(0)
xx

(
1

2
ρ1θ1(y, z)

(
v(0)x

v
(0,1)
xx

v
(0)
xx

− v(0,1)x

)
(D1v

(0))x −
1

2
ρ1ρ2gθ7(y, z)v

(0)
xz (D1v

(0))x

)
.

where θ10 and θ11 solve the Poisson equations (2.29) and (2.30) respectively.
Next, we show that all high order terms in (3.19) can be eliminated by the strictly

negative terms εIε + δIδ +
√
εδIεδ at order ε + δ by increasing Ni, thus (R4-1) is fulfilled.

To proceed further, we need the following lemmas, which are obtained by lengthy but
straightforward calculations, and thus omitted.

Lemma 3.3. Under standing assumptions, we have the following estimates:

(Dv(0))xx ≤ f(y, z)v(0)xx , (Dv(0))x ≤ f(y, z)v(0)x ,

where f(y, z) is a bounded function, and D takes the following operators:

D1, D
2
1, D

3
1, D

4
1, D2D1, D2D

2
1, D1D2D

2
1.

Lemma 3.4. Under standing assumptions, we have the following estimates (with bounded
f(y, z)):

(D1v
(0,1)
z )xx ≤ f(y, z)v(0)xx , (D1v

(0,1)
z )x ≤ f(y, z)v(0)x ,

(D1v
(1,0)
z )xx ≤ f(y, z)v(0)xx , (D1v

(1,0)
z )x ≤ f(y, z)v(0)x ,

(D1v
(0))zxx ≤ f(y, z)v(0)xx , (D1v

(0))x ≤ f(y, z)v(0)x

Lemma 3.5. Under standing assumptions, we have the following estimates (with bounded
f(y, z)):

Fx ≤ f(y, z)v(0)x , Gx ≤ f(y, z)v(0)x and Hx ≤ f(y, z)v(0)x ,

Fxx ≤ f(y, z)v(0)xx , Gxx ≤ f(y, z)v(0)xx and Hxx ≤ f(y, z)v(0)xx .

Following Lemmas 3.3–3.5 and Proposition 2.6–2.7, the terms in (3.14)–(3.15) are

bounded by a multiple of v
(0)
x , and terms in (3.16)–(3.17) are bounded by constants, both

depending linearly in Ci. Terms in (3.18) are bounded in (t, x, y, z) for any ε < ε′, δ < δ′

and Ci > C ′i, due to the boundedness of v
(i,j)
xx /v

(0)
xx , w(i,j)/v

(0)
xx , etc, and the asymptotically

behavior O(1/Ci) as Ci →∞, i = A,B,C. Other terms in (3.19) involving ∂t,Myz and Lz
can be are verified by direct differentiations. To summarize, all terms higher than O(ε+ δ)
in Qπ∗

[V +] are bounded by functions of the form εαδβf(y, z)D1v
(0), where α + β ≥ 3/2,
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and f(y, z) is bounded in (y, z) and at most linearly growth in Ci. Thus, one can first
choose small ε < ε′′ and δ < δ′′ so that the coefficient in front of Ci are negative, then by
letting Ci > C ′′i , we will have Qπ∗

[V +] ≤ 0.
Lastly, we show (R4-2), that is, V +

xx < 0. Observing that

V +
xx = v(0)xx

(
1 +
√
ε
v
(1,0)
xx

v
(0)
xx

+
√
δ
v
(0,1)
xx

v
(0)
xx

+ ε
w

(2,0)
xx

v
(0)
xx

+ ε3/2
w

(3,0)
xx

v
(0)
xx

+ ε
√
δ
w

(2,1)
xx

v
(0)
xx

+ ε2
Fxx

v
(0)
xx

+ εδ
Gxx

v
(0)
xx

+ ε3/2
√
δ
Hxx

v
(0)
xx

+ (2T − t)
(ε(NA)xx + δ(NB)xx +

√
εδ(NC)xx

v
(0)
xx

))
, (3.20)

and we recall that v
(0)
xx < 0 by the concavity of classic Merton problem. As a consequence

of Lemmas 3.3–3.5, all ratios in (3.20) are bounded in (y, z). Therefore, for given Ci,
i = A,B,C, one can choose sufficiently small ε < ε′′′ and δ < δ′′′ such that the sum in the
paraphrases stays positive, and consequently V +

xx < 0 for all (t, x, y, z).
Now by first taking Ci = max{C ′i, C ′′i }+1, then determine ε′′′ and δ′′′, and finally taking

ε < min{ε′, ε′′, ε′′′}, δ < min{δ′, δ′′, δ′′′}, (R4) is fulfilled.

3.2.2 The requirement (R3): U(x) ≤ V +(T, x, y, z)

The argument here is parallel to Section 3.1.2. So one can first choose ε < ε′′′′ and δ < δ′′′′

and then Ci > C ′′′i so that (R3) holds.
Therefore, to let both (R3) and (R4) hold, we need first take Ci = max{C ′i, C ′′i , C ′′′i }+1,

then determine ε′′′ and δ′′′ so that (3.20) is negative, and finally take ε < min{ε′, ε′′, ε′′′, ε′′′′},
δ < min{δ′, δ′′, δ′′′, δ′′′′}.

3.2.3 The martingality of Itô integral terms (R5)

Following Lemma 3.3–3.5, all functions v
(i,j)
x , w

(i,j)
x , (NA, NB, NC)x and (F,G,H)x are

bounded by f(y, z)v
(0)
x , where f(y, z) is a bounded function in (y, z). Therefore, for a

given π, the first Itô integral is a true martingale if

E
∫ T

0

(
π(t,Xπ

t , Yt, Zt)σ(Yt, Zt)v
(0)
x (t,Xπ

t , Yt, Zt)
)2

dt <∞,

which is automatically satisfied by any admissible control π by (2.20) (cf. Definition 2.4).
For the rest two to be true martingales, we need

E
∫ T

0

(
D1v

(0)(t,Xπ
t , Yt, Zt)

)2
dt <∞,

which is part of the definition of admissibility (2.21). Therefore, we obtain the desired
result.
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4 Conclusion

This paper provides the accuracy analysis of asymptotics for the portfolio optimization
problem with general utility functions and two (fast and slow) stochastic factors. This
sets up the theoretical foundation of using asymptotic expansion to derive approximations
for value functions and optimal strategies in the regime where these factors are running
on both slow and fast timescales. Specifically, we construct the sub- and super-solutions
to the fully nonlinear problem so that their difference is at the desired level of accuracy.
In the present context, the fast varying factor requires a careful treatment of the singular
perturbation for a fully nonlinear equation. Moreover, the proofs presented here can be
adapted to justify other derivations of accuracy in various contexts as in [7] for instance.
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