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Abstract. We study Kolmogorov forward equations (KFE) and Zakai equations for diffusion5
processes with a fast mean-reverting stochastic volatility component. In the case of the KFE, a6
parabolic PDE in divergence form, we perform a matched asymptotic expansion up to first order in7
the small mean-reversion time. The solutions are expressed in terms of suitable PDEs with coefficients8
averaged over the ergodic distribution, in the spirit of extensive earlier work on the backward equation9
(see J.-P. Fouque et al, CUP, 2011 ). We then construct a sequence of approximations to the Zakai10
equation, a parabolic stochastic PDE (SPDE), and verify numerically for the first two terms weak11
convergence order half and order one, respectively, in the mean-reversion parameter. To this end, we12
give a novel numerical scheme for the original two-dimensional SPDE, which is robust in the small13
parameter regime, and compare derived functionals of marginals against those approximated by the14
solution of a sequence of homogenised one-dimensional SPDEs.15
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1. Introduction. In this work, we consider processes of the form19

(1.1)

dXt = µ(Xt, Yt) dt+ σ(Yt)
(
ρx dW

x
t +

√
1− ρ2x dW

x,1
t

)
, X0 = x0,

dYt =
κ

ϵ
(m− Yt) dt+

g(Yt)√
ϵ

(
ρy dW

y
t +

√
1− ρ2y dW

y,1
t

)
, Y0 = y0,

20

where (W x,W y,W x,1,W y,1) is a four-dimensional standard Brownian motion, W x21

and W y have correlation ρ ∈ (−1, 1), while W x,1,W y,1 are independent of each other22

and of (W x,W y); x0, y0,m ∈ R, ρx, ρy ∈ (−1, 1), ϵ, κ > 0 are all constant; µ : R×R →23

R and σ, g : R → R+ given functions. For ease of notation, we introduce ρxy = ρxρyρ.24

We will study the marginal distribution of (Xt, Yt) at t, and the distribution of25

(Xt, Yt) conditional on the natural filtration Fx,y
t ofW = (W x,W y) at time t, which is26

the reason for writing the Brownian driver in the decomposed way above. Specifically,27

we are interested in the setting of small ϵ, a characteristic, dimensionless reversion time28

of the Y -process to its mean m, and will derive equations for asymptotic expansions of29

the probability density function (PDF) and the conditional PDF. The former leads us30

to derive matched asymptotic expansions of the corresponding Kolmogorov forward31

equation (KFE, or Fokker–Planck equation), a two-dimensional parabolic PDE in32

divergence form, while the latter leads to expansions of a Zakai-type equation, a33

parabolic stochastic PDE (SPDE).34

Models of the form (1.1) are used abundantly in financial engineering, where X35

describes the log price of a financial asset and σ(Yt) is its instantaneous (stochastic)36

volatility at time t. The presence of multiple time scales in market data has been doc-37

umented extensively in the literature; see, e.g., [11, 10], and especially the monograph38

[12] and the references therein. For higher order expansions with a refined boundary39
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2 S.D. HOWISON, C. REISINGER, R. SIRCAR, AND Z. WANG

layer analysis close to expiry we refer to [19] and [8], also [5] for a convergence analy-40

sis. The expansion at the level of the underlying stochastic processes is analysed in41

[13] (see also the earlier discussion in the conclusions of [19]). Among more recent42

works, [2] performs joint asymptotic expansions of optimal investment models with43

fast volatility and small transaction costs, and [7] demonstrates a multiscale analysis44

of portfolio optimisation strategies under fast and slow volatilities.45

The above Kolmogorov backward equations (KBE) are in non-divergence form and46

typically have regular (i.e., continuous) terminal data, while the Kolmogorov forward47

equations (KFE) studied here are in divergence form with Dirac delta initial data.48

Specifically, we will consider the model where µ is constant, and g = ν
√
2 for constant49

ν, that is where Y an Ornstein–Uhlenbeck process, with unique ergodic distribution50

N (m, ν2).1 In this case, the KFE is51

(1.2)

∂tp
ϵ =

1

ϵ

(
ν2∂yyp

ϵ − κ∂y((m− y)pϵ)
)
+

(1
2
σ2

(
y
)
∂xxp

ϵ − µ∂xp
ϵ
)

+
1√
ϵ
ρxyν

√
2∂y(g(y)∂xp

ϵ),

pϵ(0, x, y) = δ(x− x0)⊗ δ(y − y0).

52

Apart from being of interest in its own right, the analysis of the forward PDE53

serves as preparation for that of the Zakai SPDE54

(1.3)

duϵ =
1

ϵ

(
ν2∂yyu

ϵ − κ∂y((m− y)uϵ)
)
dt+

(1
2
σ2

(
y
)
∂xxu

ϵ − µ∂xu
ϵ
)
dt

+
1√
ϵ
ρxyν

√
2∂y(g(y)∂xu

ϵ) dt+ ρxσ(y)∂xu
ϵ dW x

t + ρy

√
2ν√
ϵ
∂yu

ϵ dW y
t ,

uϵ(0, x, y) = δ(x− x0)⊗ δ(y − y0).

55

There are at least two motivations for studying (1.3). First, by general filtering56

theory (see, e.g., [1, Section 3.5]), the solution uϵ is the density (if it exists) of the57

conditional law of (Xt, Yt) given observation of (W x,W y) up to time t. Second, it is58

the limit empirical measure of a large number N of independent realisations of (1.1),59

with independent (idiosyncratic) noise terms W x,i
t ,W y,i

t , for i = 1, . . . , N , replacing60

W x,1
t ,W y,1

t , but all with the same common noise W x
t ,W

y
t (see, e.g., [20]).61

This limiting equation has been used to describe the behaviour of large pools of62

defaultable financial entities, where the process X is replaced by one absorbed at 0 (a63

‘default boundary’), and the absorption of mass is interpreted as a loss to the financial64

system. The case of constant σ is analysed in [4] and applications to credit derivative65

markets are given. For a (nonlinear) SPDE model for a large pool limit of a default66

intensity-based credit model see e.g. [14]. More recently, an extension of the basic67

model in [4] to stochastic volatilities is given in [16, 17]. See also [21, 22] for different68

applications involving filtering of hidden Markov models with fast mean-reverting69

states.70

We will focus particularly on the regime of small ϵ, as motivated by the empirical71

evidence cited above. In practical applications, one is predominantly interested in the72

behaviour ofX, and in Y only in as much as it affects the dynamics ofX. For instance,73

in credit risk, it is the firm log value process X which directly affects loss distributions.74

It is therefore desirable to derive simplified homogenised equations which allow for75

1The factor
√
2 is chosen to ensure the ergodic distribution has a more standard normal form,

consistent with the literature (see [9, 12]).

This manuscript is for review purposes only.



TWO-SCALE EVOLUTION EQUATIONS 3

more efficient analytical or numerical solutions by reducing the dimensionality of76

the PDE or SPDE. The numerical approximation of the original two-dimensional77

KFE or Zakai SPDE, especially, is more costly computationally than that of the one-78

dimensional analogue with deterministic (e.g., constant) volatility. This is exacerbated79

by the presence of multiple scales, which may require a fine time mesh and fine spatial80

mesh in the second dimension for the stable resolution of the fast component for small81

parameter ϵ.82

By expansion in ϵ, we will approximate pϵ and uϵ by sequences of KFEs and83

Zakai SPDEs, respectively, which have the advantageous feature that the fast varying84

volatility is replaced by its ergodic average in the differential operator, and, in the85

case of the SPDE, the driving noise term. Moreover, if only functionals of X (and not86

Y ) are required, these can be computed by the solution of one-dimensional (S)PDEs,87

leading to an effective dimension reduction and complexity advantage.88

In the context of (1.1), [18] consider the case of µ(Xt, Yt) = r − σ2(Yt)/2, for89

constant r.2 Under certain recurrence properties of the diffusion Y , and for ρxy = 0,90

it is shown that as ϵ → 0, the stopped version of X converges in distribution to a91

process X∗ which satisfies92

(1.4) dX∗
t = (r − ⟨σ2⟩/2) dt+

√
⟨σ2⟩

(
ρdW x

t +
√
1− ρ2 dW x,1

t

)
, X0 = x0,93

where ⟨σ2⟩ is the expectation of σ2(·) under the invariant distribution of Y .94

Moreover, weak limits of uϵ are shown to satisfy the SPDE95

(1.5) du∗ =
(1
2
⟨σ2⟩∂xxu∗ − (r − ⟨σ2⟩/2) ∂xu∗

)
dt+ ρx⟨σ⟩∂xu∗ dW x

t ,96

where ⟨σ⟩ is the expectation of σ(·) under the invariant distribution of Y .97

We note that [18] allow for more general g in (1.1) than for the Ornstein–98

Uhlenbeck (O–U) process considered here. On the other hand, we want to avoid the99

assumption ρxy = 0, as the correlation between volatility and stock is an important100

parameter influencing the dynamic behaviour of stock price models. In particular, it101

is used to match the implied volatility skew in derivatives markets, while a realistic102

dependence of increments of the two processes is key for successful hedging. To deal103

with this dependence, we make more specific assumptions on the volatility process,104

and restrict ourselves to O–U processes, which will allow a decomposition of Y such105

that the SPDE is driven purely by the slow component, while fast-mean-reverting106

term appears explicitly in the coefficients. This helps with the construction of cor-107

rection terms for a higher order expansion of the SPDE. However the function σ is108

general up to technical restrictions.109

The main contributions and outline of the present paper are the following:110

• a matched asymptotic expansion solution of the KFE (1.2) for small ϵ, iden-111

tifying the boundary layer for small t and deriving the expansion up to order112

1 for general t (Section 2);113

• the heuristic derivation of a one-dimensional SPDE for a first-order correction114

to (1.5) in ϵ (Section 3);115

• numerical verification of the SPDE expansion orders (in Section 5) by novel116

numerical schemes for (1.3) and related SPDEs, with a proof of unconditional117

stability independent of ϵ (Section 4).118

2. Perturbation analysis of the KFE.119

2In fact, [18] allow that r and other (constant) model parameters are sampled randomly.
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4 S.D. HOWISON, C. REISINGER, R. SIRCAR, AND Z. WANG

2.1. Set-up and preliminaries. We derive an expansion for the transition120

density function of a stochastic volatility process (X,Y ) satisfying (1.1) with g = ν
√
2121

for constant ν, as the dimensionless parameter ϵ → 0+. We assume for simplicity that122

σ is bounded away from zero, such that the process X takes values on all of R (as123

does the O–U process Y ).124

The transition density pϵ(t0, x0, y0; t, x, y) of (X,Y ) satisfies the forward Kol-125

mogorov equation (in the variables t, x, y)126

(2.1) ∂tp
ϵ −

(
1

ϵ
L∗
0 +

1√
ϵ
L∗
1 + L∗

2

)
pϵ = 0,127

with the initial condition128

(2.2) pϵ(t0, x0, y0; t0, x, y) = δ(x− x0)⊗ δ(y − y0).129

Here the operators Li and their adjoints L∗
i are defined by130

L0 · = ν2∂yy · +κ(m− y)∂y · , L∗
0 · = ν2∂yy · −κ∂y ((m− y) · ) ,(2.3)131

L1 · = ρxyν
√
2σ(y)∂xy · , L∗

1 · = ρxyν
√
2∂x∂y (σ(y) · ) ,(2.4)132

L2 · =
1

2
σ2(y)∂xx · +µ(x, y)∂x · , L∗

2 · =
1

2
σ2(y)∂xx · − ∂x (µ(x, y) · ) .(2.5)133

134

We set t0 = 0 for simplicity. We denote by ΦY the probability density function135

(PDF) of the ergodic distribution of Y ,136

(2.6) ΦY (y) =
1√

2πν2/κ
e−κ(y−m)2/2ν2

.137

We shall frequently average functions of y with respect to the measure ΦY (y) dy and138

we use the notation ⟨ · ⟩ = ⟨ · ,ΦY ⟩ for this average, where we denote by ⟨ · , · ⟩ the139

usual inner product on L2(R).140

In what follows we shall repeatedly seek solutions of equations of the form141

(2.7) − L∗
0 u(y) = h(y), −∞ < y < ∞,142

for some given h, that are integrable on R. We note immediately that143

−L∗
0 Φ

Y = 0, −L∗
0

(
ΦY (y)

∫ y ds

ΦY (s)

)
= 0,144

so that these functions span the null space of L∗
0. However, integration by parts shows145

that, as y → ∞,146 ∫ y ds

ΦY (s)
= constant×

∫ y

eκ(s−m)2/2ν2

ds147

∼ constant× eκ(y−m)2/2ν2

y −m

(
1 +O(1/y2)

)
,148

149

and hence the function ΦY (y)
∫ y

ds/ΦY (s) is not integrable. We shall use this fact150

to eliminate this solution at several points below.151

The null space of −L0 is spanned by 1 and eκ(y−m)2/2ν2

, the latter of these being152

irrelevant because of its growth at infinity (it is not even integrable against ΦY (y)).153
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TWO-SCALE EVOLUTION EQUATIONS 5

It follows from the Fredholm Alternative that integrable solutions of (2.7) only exist154

when the right-hand side satisfies the solvability condition of being orthogonal to155

(relevant, ie bounded) solutions of the homogeneous adjoint equation. That is, from156

⟨1, h⟩ = ⟨1,−L∗
0 u⟩ = ⟨−L0 1, u⟩ = ⟨0, u⟩ = 0,157158

the necessary condition for existence of a solution of (2.7) is ⟨1, h⟩ =
∫∞
−∞ h(y) dy = 0.159

When this is satisfied, the solution is given by160

u(y) = −ΦY (y)

∫ y H(s)

ΦY (s)
ds+ cΦY (y),161

where the constant c is arbitrary (the second solution of the homogeneous equation162

is ruled out as noted above), and where H(·) =
∫ ·

h(s) ds is an antiderivative of h.163

2.2. Outer region: t ≫ O(ϵ). Turning to the evolution of the transition density164

function, over timescales much longer than the mean reversion time ϵ, the volatility165

is effectively sampled from its ergodic distribution, as is already seen from (1.4), and166

will determine the first term of the asymptotic expansion.167

We expand168

pϵ(0, x0, y0; t, x, y) ∼ p0(t, x, y) +
√
ϵp1(t, x, y) + ϵp2(t, x, y) + ϵ3/2p3(t, x, y) + · · · ,169

where here and henceforth we suppress the dependence on x0 and y0 unless it is170

needed.171

Before proceeding, we note that, as pϵ is a probability density,
∫∫

R2 p
ϵ dxdy = 1172

for all t, and that similarly
∫∫

R2 p0 dxdy = 1 for all t (because of the initial condition),173

whereas
∫∫

R2 pi dxdy = 0 for i > 0. Moreover, the marginal densities174

pϵXt
(t, x) =

∫ ∞

−∞
pϵ(t, x, y) dy, pϵYt

(t, y) =

∫ ∞

−∞
pϵ(t, x, y) dx175

each have their own expansions176

pϵXt
(t, x) ∼ pXt,0 +

√
ϵpXt,1 + · · · , pϵYt

(t, y) ∼ pYt,0 +
√
ϵpYt,1 + · · · ,177

and the first term in each expansion integrates in x (resp. in y) to 1 while the re-178

mainder integrate to zero, because each such integral is the double integral of a term179

in the original expansion of pϵ. Note, however, that it is possible for any truncated180

version of any of the expansions to fail to be a probability density by virtue of being181

negative somewhere; this is in practice invariably the case in the far tails of the dis-182

tributions where a separate (large-deviations/ray-theory) expansion would be needed183

to accurately capture the behaviour.184

Now substituting into (2.1) and equating coefficients of powers of ϵ leads imme-185

diately to:186

At O(1/ϵ): −L∗
0 p0 = 0;(2.8)187

At O(1/
√
ϵ): −L∗

0 p1 = L∗
1 p0;(2.9)188

At O(1): −L∗
0 p2 = −∂tp0 + L∗

2 p0 + L∗
1 p1;(2.10)189

At O(
√
ϵ): −L∗

0 p3 = −∂tp1 + L∗
2 p1 + L∗

1 p2;(2.11)190191

the pattern in the last two of these repeats at still higher orders.192
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6 S.D. HOWISON, C. REISINGER, R. SIRCAR, AND Z. WANG

Lowest order O(1/ϵ). We have the leading order solution193

p0(t, x, y) = f0(t, x)Φ
Y (y) + g0(t, x)Φ

Y (y)

∫ y

−∞

ds

ΦY (s)
,194

where f0 and g0 are unknown at this stage; however, because pϵ is a probability195

density, and must be integrable in both x and y, we have g0(t, x) = 0, because the196

function that it multiplies is not integrable. We shall see later that
∫∞
−∞ f0(t, x) dx = 1197

and all other pi then integrate to zero over R2.198

We note immediately that we cannot satisfy the initial condition (2.2); a separate199

boundary-layer analysis, given in Subsection 2.3, is needed to resolve this.200

At O(1/
√
ϵ). From (2.9), we have201

−L∗
0 p1 = L∗

1 p0 = ρxyν
√
2 (∂xf0(t, x)) ∂y

(
σ(y)ΦY (y)

)
.(2.12)202203

As the y dependence on the right-hand side integrates to zero, this equation does have204

an integrable solution, and it is205

(2.13) p1(t, x, y) = −ρxyν
√
2 (∂xf0(t, x)) Σ(y)Φ

Y (y) + f1(t, x)Φ
Y (y),206

where Σ(y) =
∫ y

−∞ σ(s) ds (if σ is not integrable at −∞, we simply integrate from207

(say) zero and amend f1(t, x) accordingly). Here f1(t, s) is again unknown; the other208

solution of the homogeneous equation has been eliminated as above.209

At O(1). Now we have210

−L∗
0p2 = −∂tp0 + L∗

2p0 + L∗
1p1211

= −ΦY (y)

(
∂tf0(t, x)−

1

2
σ2(y)∂xxf0(t, x) + ∂x (µ(x, y)f0(t, x))

)
212

− 2ρ2xyν
2 (∂xxf0(t, x)) ∂y

(
σ(y)Σ(y)ΦY (y)

)
+ ρxyν

√
2 (∂xf1(t, x)) ∂y

(
σ(y)ΦY (y)

)
.213214

The terms in the last line satisfy the solvability condition (as, indeed, does any func-215

tion that is the result of applying L∗
1 to a function of y which vanishes at ±∞) and216

so we need that the terms in the middle line integrate to zero. This leads directly to217

∂tf0 =
1

2
⟨σ2(·)⟩∂xxf0 − ∂x (⟨µ(x, ·)⟩f0) = ⟨L∗

2⟩f0(t, x),(2.14)218
219

where we are introducing the notation ⟨L∗
i ⟩ for operators with coefficients averaged220

over the ergodic distribution. Using this to eliminate ∂tf0(t, x), we see that221

−L∗
0p2 = (L∗

2 − ⟨L∗
2⟩) p0 + L∗

1p1,222

the solution of which consists of a particular solution plus a solution f2(t, x)ϕ
Y (y) of223

the inhomogeneous equation, f2(t, x) being as yet unknown.224

As expected, p0(t, x, y) is the product of the ergodic density of Y and the density225

of X with the stochastic parameters replaced with their means, so X and Y behave226

independently at this order.227

We need an initial condition for f0(t, x). Given the apparent independence of X228

and Y at this order, we suspect that f0(t0, x) = δ(x − x0), and this is confirmed by229

the boundary-layer analysis of the next subsection.230
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TWO-SCALE EVOLUTION EQUATIONS 7

At O(
√
ϵ). Here we have231

−L∗
0 p3 = −∂tp1 + L∗

2 p1 + L∗
1 p2.232

As noted above, the final term on the right-hand side automatically satisfies the solv-233

ability condition and so we fix f1(t, x) by substituting for p1 from (2.13), integrating234

over y, and then solving235

∂tf1 − ⟨L∗
2⟩ f1 =

∫ ∞

−∞

[
L∗
2

(
−ρxyν

√
2 (∂xf0(t, x)) Σ(y)Φ

Y (y)
)]

dy

(2.15)

236

= −ρxyν
√
2

(
1

2
⟨σ2(·)Σ(·)⟩∂xx (∂xf0(t, x))− ∂x (⟨µ(x, ·)Σ(·)⟩∂xf0(t, x))

)
.237

238

As ΦY (y) comes out as a factor, we have an ergodic average as before. The ini-239

tial condition for this problem is found via the boundary-layer analysis of the next240

subsection.241

2.3. Boundary layer near t = 0. The analysis above fails when t = O(ϵ),242

because there is an initial layer in which Yt transits to its ergodic distribution. The243

large-time limit of the boundary layer solution provides the initial conditions for the244

functions fi(t, x) above, via asymptotic matching.245

To capture this behaviour, we rescale time via246

t = ϵt′.247

Then in the boundary layer the transition density, now denoted p′(0, x0, y0; t
′, x, y),248

satisfies249

(2.16)
1

ϵ
∂t′p

′ −
(
1

ϵ
L∗
0 +

1√
ϵ
L∗
1 + L∗

2

)
p′ = 0,250

with the initial condition251

(2.17) p′(0, x0, y0; 0, x, y) = δ(x− x0)⊗ δ(y − y0).252

We proceed exactly as above, expanding253

p′(0, x0, y0; t
′, x, y) ∼ p′0(t

′, x, y) +
√
ϵp′1(t

′, x, y) + ϵp′2(t
′, x, y) + ϵ3/2p′3(t

′, x, y) + · · · ,254

and again suppressing the dependence on x0 and y0 unless it is needed. Substituting255

into (2.16) and equating coefficients of powers of ϵ leads immediately to:256

At O(1/ϵ): (∂t′ − L∗
0) p

′
0 = 0;(2.18)257

At O(1/
√
ϵ): (∂t′ − L∗

0) p
′
1 = L∗

1 p
′
0;(2.19)258

At O(1): (∂t′ − L∗
0) p

′
2 = L∗

1 p
′
1 + L∗

2 p
′
0;(2.20)259

At O(
√
ϵ): (∂t′ − L∗

0) p
′
3 = L∗

1 p
′
2 + L∗

2 p
′
1;(2.21)260261

the pattern in the last two of these repeats at higher orders. The initial conditions262

for the functions p′i are263

p′0(0, x, y) = δ(x− x0)⊗ δ(y − y0), p′i(0, x, y) = 0, i = 1, 2, 3 . . . .264
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8 S.D. HOWISON, C. REISINGER, R. SIRCAR, AND Z. WANG

At O(1/ϵ). We have the degenerate (because lacking in x-derivatives) parabolic265

equation266

(∂t′ − L∗
0) p

′
0 = 0, p′0(0, x, y) = δ(x− x0)⊗ δ(y − y0).267

Now bearing in mind that for a Brownian motion W we have that (1/
√
ϵ)Wt becomes268

a Brownian motion Wt′ under the time-change t = ϵt′, we have in law269

dYt′ = κ (m− Yt′) dt
′ + ν

√
2 dWt′ ,270

the marginal density of this O–U process at time t′ is Normal with mean and variance271

m(t′; y0) = m+ (y0 −m)e−κt′ , var(t′) =
ν2

κ

(
1− e−2κt′

)
,272

respectively. It follows that273

p′0(t
′, x, y) = δ(x− x0)ϕ

Y (t′, y),274

where275

(2.22) ϕY (t′, y) =
1√

2πvar(t′)
e−(x−m(t′;y0))

2/2var(t′).276

When necessary, this is interpreted in the sense of distributions. Note immediately277

that278

lim
t′→∞

ϕY (t′, y) = ΦY (y)279

as defined above. Hence the limit of p1(t
′, x, y) as t′ → ∞ is δ(x − x0)Φ(y) and (by280

asymptotic matching) this is the initial condition for f0(t, x),281

(2.23) f0(t, x) = δ(x− x0).282

The interpretation of this result is that, at leading order, Xt stays at its initial283

value x0 while Yt forgets its initial value and transits to its ergodic distribution. In284

fact, there is a small amount of diffusion of Xt, which is resolved by introducing a285

further (spatial) inner layer of size O(
√
ϵ) around x0. With x = x0+

√
ϵξ, p′(t′, x, y) =286

(1/
√
ϵ)P ′(t′, ξ, y), at leading order we have287

∂t′P
′ −

(
1

2
σ2(y)∂ξξ + ρxyν

√
2σ(y)∂ξy + ν2∂yy

)
P ′ + κ∂y ((m− y)P ′) = 0,(2.24)288

P ′(0, ξ, y) = δ(ξ)δ(y − y0)(2.25)289290

(note the appearance of the correlation term, brought in by a combination of its291

original coefficient of 1/
√
ϵ and a further 1/

√
ϵ from the change of variable to ξ). The292

solution of this equation (not, as far as we know, available in closed form) represents293

the slow (on the t′ timescale) spreading out of the initial point mass of the marginal294

density of X, while Y transits to its ergodic distribution. We do not pursue this295

further.296

At O(1/
√
ϵ). The equation (2.19) for p′1 now becomes297

(2.26) (∂t′ − L∗
0) p

′
1 = ρxyν

√
2δ′(x− x0)∂y

(
σ(y)ϕY (t′, y)

)
.298

As t′ → ∞, ϕY (t′, y) → ΦY (y) and hence the solution of this equation has the limiting299

time-independent form300

(2.27) − ρxyν
√
2δ′(x− x0)Σ(y)Φ

Y (y) + c1(x)Φ
Y (y)301

This manuscript is for review purposes only.



TWO-SCALE EVOLUTION EQUATIONS 9

for some function c1(x) which provides the initial condition for f1(t, x), while the302

first term in (2.27) matches automatically with the corresponding part of the solution303

p1(t, x, y) as t ↓ 0. Fortunately, we can find c1(x) without having to solve for p′1304

(which we could do, using the Green’s function which is, in effect, ϕY (t′, y)). Inte-305

grating (2.26) over y, and noting that both L∗
0 and the right-hand side integrate to306

zero, we find307

d

dt′

∫ ∞

−∞
p′1(t

′, x, y) dy = 0308

(this is essentially the orthogonality we used in the outer region) and hence the integral309

is equal to its initial value, namely zero. It follows that (2.27) must also integrate to310

zero. Bearing in mind that ΦY (y) is a probability density and so integrates to 1, we311

have312

c1(x) = −ρxyν
√
2δ′(x− x0)

∫ ∞

−∞
Σ(y)ΦY (y) dy313

= −ρxyν
√
2δ′(x− x0)⟨Σ⟩314

= f1(0, x).(2.28)315316

This is the initial condition for (2.15).317

In summary, we have that p0(t, x, y) = f0(t, x)Φ
Y (y), where ΦY is given by (2.6)318

and f0 solves (2.14) with initial datum (2.23); for µ which is constant in x, f0 is simply319

a normal density. At O(
√
ϵ), p1 is given by (2.13) with f1 satisfying (2.15) with initial320

condition (2.28). Note that p1(0, x, y) ̸= 0, confirming the need for the inner region.321

2.4. A global approximation and correction equation. As we know the322

density of the O–U process Y to be ΦY (t/ϵ, y), from (2.22), we can define an approx-323

imation globally in time as324

p0,ϵ(t, x, y) = ΦY (t/ϵ, y)f0(t, x),(2.29)325

which has the correct initial datum pϵ0(0, x, y) = δ(x − x0) ⊗ δ(y − y0), the exact326

marginal density for Yt, and is correct to leading order in ϵ in both the inner and327

outer layer. By insertion, we see directly that p0,ϵ from (2.29) satisfies328

∂tp0,ϵ −
(
1

ϵ
L∗
0 + ⟨L∗

2⟩
)
p0,ϵ = 0.(2.30)329

330

Taking the difference with (2.1), we have331

∂t(p
ϵ − p0,ϵ)−

(
1

ϵ
L∗
0 +

1√
ϵ
L∗
1 + L∗

2

)
(pϵ − p0,ϵ) =

1√
ϵ
L∗
1p0,ϵ + (⟨L∗

2⟩ − L∗
2)p0,ϵ.

(2.31)

332
333

Replacing the operator on the left-hand side in (2.31) by that in (2.30), we define a334

correction to pϵ by p0,ϵ + p1,ϵ, where335

∂tp1,ϵ −
(
1

ϵ
L∗
0 + ⟨L∗

2⟩
)
p1,ϵ =

1√
ϵ
L∗
1p0,ϵ + (⟨L∗

2⟩ − L∗
2)p0,ϵ, p1,ϵ(0, x, y) = 0.

(2.32)

336
337

This approach will be useful for the SPDE in the next section.338

This manuscript is for review purposes only.



10 S.D. HOWISON, C. REISINGER, R. SIRCAR, AND Z. WANG

3. Perturbation analysis of the Zakai SPDE.339

3.1. Set-up and preliminaries. The matched asymptotic expansion analysis340

for the KFE (1.2) shows the different ansatz needed for small times (the ‘inner layer’341

in subsection 2.3), where the process Y transits from its initial value to the stationary342

distribution, and for all times after this initial transit (the ‘outer layer’ in 2.2). These343

two expressions can be reconciled by using the analytical exact form for the marginal344

law of Y and an expansion for the effect of Y on X only (see subsection 2.4).345

For the SPDE (1.3), the presence of a fast driving process correlated to a slow346

driving process creates extra difficulties for a direct asymptotic expansion. In a formal347

expansion of the SPDE similar to that in Section 2 for the KFE, the appearance of348

O(1/
√
ϵ) terms multiplying both W y

t and the ∂x∂y terms makes it difficult to transfer349

the multiple scales expansion from the KFE to the Zakai SPDE. We note that [18]350

has to restrict the derivation of the limiting SPDE for ϵ → 0 (determining the zero351

order term) to the case ρ = 0.352

To avoid this last issue and take advantage of a global approximation, we split353

Y into a component U which has the correct instantaneous correlation with X and a354

component Y † which is independent of X. We then study the joint dynamics of X355

and Y † conditional on (W x,W y), keeping track of the dynamics of (U, Y †) and its356

law exactly, while we approximate the generator of X by an expansion.357

Specifically, we introduce a process U as the (strong) solution to358

(3.1) dUt = −κ

ϵ
Ut dt+

ν
√
2√
ϵ
ρy dW

y
t , U0 = 0.359

Then Y † := Y − U −m satisfies360

dY †
t = −κ

ϵ
Y †
t dt+

ν
√
2√
ϵ

√
1− ρ2y dW

y,1
t , Y †

0 = y0 −m,361

where W y,1 is independent of W x and W x,1, and W x,W y have correlation ρ. We set362

in the following m = 0 without loss of generality, as it simply results in a constant363

shift of the OU process; this can be accounted for in X by a horizontal translation of364

the function σ.365

We will therefore study the two-dimensional Zakai SPDE for (X,Y †), describing366

the marginal probability distribution of (Xt, Y
†
t ) conditional on the natural filtration367

Fx,y
t of W = (W x,W y),368

(3.2)

dv =
1

ϵ

(
ν2(1− ρ2y)∂yyv + κ∂y(yv)

)
dt

+
(1
2
σ2

(
y + Ut

)
∂xxv − µ∂xv

)
dt− ρxσ

(
y + Ut

)
∂xv dW

x
t

=
(1
ϵ
L̃∗
0 + L̃∗

2

)
v dt− ρxσ(y + Ut)∂xv dW

x
t ,

v(0, x, y) = δ(x− x0)⊗ δ(y − y0),

369

where, in analogy to earlier,370

L̃∗
0 · = ν2(1− ρ2y)∂yy · −κ∂y(y ·), L̃∗

2 · =
1

2
σ2

(
y + Ut

)
∂xx · −µ∂x · ,371

and where ν > 0, κ > 0, ρx ∈ (−1, 1), 0 < ϵ ≪ 1 are fixed constants, σ : R → R+372

is a real-valued function of which we will specify later any conditions needed. For373

simplicity, we consider µ ∈ R a given constant.374
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We aim to find an expansion of the solution v to the SPDE (3.2) as ϵ → 0.375

3.2. Zero order term. Following [18], and in line with the findings of Section376

2, we introduce the following SPDE akin (1.5), by averaging the coefficients over the377

stationary distribution,378

(3.3)

dvx0 =

(
1

2
⟨σ2⟩∂xxvx0 − µ∂xv

x
0

)
dt− ρx⟨σ⟩∂xvx0 dW x

t

= ⟨L∗
2⟩vx0 dt− ρx⟨σ⟩∂xvx0 dWX

t ,

vx0 (0, x) = δ(x− x0),

379

where ⟨σ⟩ and ⟨σ2⟩ are again the averages over the ergodic distribution and the380

operator ⟨L̃∗
2⟩ is defined as381

(3.4) ⟨L̃∗
2⟩ · :=

1

2
⟨σ2⟩∂xx · −µ∂x · .382

The SPDE (3.3) has the analytic solution383

vx0 (t, x) = Ψ(t, x)(3.5)384

:= f0(t, x− ρx⟨σ⟩W x
t )(3.6)385

=
1√

2π
(
⟨σ2⟩ − ρ2x⟨σ⟩2

)
t
exp

(
− (x− x0 − µt− ρx⟨σ⟩W x

t )
2

2
(
⟨σ2⟩ − ρ2x⟨σ⟩2

)
t

)
,386

where f0 has been introduced earlier as solution to (2.14).387

Now we include the initial transient of the processes Y † and U to their stationary388

distribution. The marginal density of the O–U process Y † at time t is known to be389

Φ†(t/ϵ, y) with390

(3.7) Φ†(t′, y) =
1√

2πσ2
† (t

′)
exp

(
−

(
y − µ†(t

′)
)2

2σ2
† (t

′)

)
,391

where µ†(t
′) and σ2

† (t
′) have the form392

(3.8) µ†(t
′) = y0e

−κt′/ϵ, σ2
† (t

′) =
(1− ρ2y)ν

2

κ

(
1− e−2κt′/ϵ

)
,393

and it satisfies the PDE394

∂tΦ =
1

ϵ
L̃∗
0Φ =

1

ϵ

(
ν2(1− ρ2y)∂yyΦ+ κ∂y (yΦ)

)
,395

Φ(0, y) = δ(y − y0).396397

Next, we follow the principle in Subsection 2.4 to define an approximation v0,ϵ398

for which we track U and keep the marginal density of Y † exact, but approximate the399

density of X given (Y †, U), and hence the joint density. Therefore, we consider the400

equation401

(3.9)

dv0,ϵ =
1

ϵ

(
ν2(1− ρ2y)∂yyv0,ϵ + κ∂y (yv0,ϵ)

)
dt

+

(
1

2
⟨σ2⟩∂xxv0,ϵ − ∂x(µv0,ϵ)

)
dt− ρx⟨σ⟩∂xv0,ϵ dW x

t

=

(
1

ϵ
L̃∗
0 + ⟨L̃∗

2⟩
)
v0,ϵ dt− ρx⟨σ⟩∂xv0,ϵ dW x

t .

402
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Moreover, equation (3.9) has the closed-form solution403

(3.10) v0,ϵ(t, x, y) = Ψ(t, x)Φ†(t/ϵ, y),404

where Ψ(t, x) is defined in (3.5), and Φ†(t, y) is defined in (3.7). Note that v0,ϵ satisfies405

the correct initial condition406

v0,ϵ(0, x, y) = δ(x− x0)⊗ δ(y − y0).407

We will later show numerically that v0,ϵ − v → 0 in a weak sense as ϵ → 0.408

3.3. Correction terms. The goal of this section is to construct successively409

better approximations. We first derive an inhomogeneous SPDE for v − v0,ϵ. Taking410

the difference between (3.2) and (3.9), we obtain411

(3.11)

d(v − v0,ϵ) =
(1
ϵ
L̃∗
0 + L̃∗

2

)
(v − v0,ϵ) dt− ρxσ(y + Ut)∂x(v − v0,ϵ) dW

x
t

− 1

2

(
⟨σ2⟩ − σ2(y + Ut)

)
∂xxv0,ϵ dt+ ρx

(
⟨σ⟩ − σ(y + Ut)

)
∂xv0,ϵ dW

x
t ,

(v − v0,ϵ)(0, x, y) = 0.

412

Intuitively, the effect of the terms in the second line in (3.11) is expected to be small413

for small ϵ, as the fast process U averages the terms involving σ(·+Ut) and σ2(·+Ut)414

over the stationary distribution of U , while the presence of the dominant term L̃∗
0415

on the left-hand side effects an additional averaging over the stationary distribution416

of Y †; the combined effect is an averaging over the stationary distribution of Y over417

timescales of order 1, so that the right-hand side, and hence the solution v− v0,ϵ, will418

be small.419

Similar to before, we define v1,ϵ as the leading order approximation to v − v0,ϵ,420

(3.12)

dv1,ϵ =
(1
ϵ
L̃∗
0 + ⟨L̃∗

2⟩
)
v1,ϵ dt− ρx⟨σ⟩∂xv1,ϵ dW x

t

− 1

2

(
⟨σ2⟩ − σ2(y + Ut)

)
∂xxv0,ϵ dt+ ρx

(
⟨σ⟩ − σ(y + Ut)

)
∂xv0,ϵ dW

x
t ,

v1,ϵ(0, x, y) = 0.

421

In this definition, coming from (3.11), which describes the exact error, we have ap-422

proximated L∗
2 by ⟨L̃∗

2⟩ and σ by ⟨σ⟩ in the first line.423

Given v0,ϵ in (3.9), and v1,ϵ in (3.12), we can recursively find higher order correc-424

tions as follows:425

(3.13)

dvn+1,ϵ =
(1
ϵ
L̃∗
0 + ⟨L̃∗

2⟩
)
vn+1,ϵ dt− ρx⟨σ⟩∂xvn+1,ϵ dW

x
t

− 1

2

(
⟨σ2⟩ − σ2(y + Ut)

)
∂xxvn,ϵ dt+ ρx

(
⟨σ⟩ − σ(y + Ut)

)
∂xvn,ϵ dW

x
t ,

vn+1,ϵ(0, x, y) = 0.

426

3.4. Approximation to the marginal density of X. One would hope that427

the expansion in subsection 3.3 allows a computationally more efficient approximation428

to the solution than solving the original two-dimensional SPDE directly numerically.429

This is not clear when considering (3.12) directly, as the solution still depends on430

x and y. If we were to drop L̃∗
0 in (3.12), justified after the initial transient, the SPDE431
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is parametrised by y, so essentially two-dimensional if the solution for all x and y is432

needed.433

However, in practical applications (see, e.g., Section 5), one is often only interested434

in the marginal law of X, characterised by the marginal density435

vx(t, x) =

∫ ∞

−∞
v(t, x, y) dy.436

Integrating (3.9) over y gives the zero order approximation437

vx0 =

∫ ∞

−∞
v0,ϵ(t, x, y) dy = Ψ(t, x),438

where Ψ(t, x) is given by (3.5).439

As for the first order term v1,ϵ, we similarly define vx1 as440

vx1 =

∫ ∞

−∞
v1,ϵ(t, x, y) dy.441

If we assume limy→±∞ v1,ϵ(t, x, y) = 0, limy→±∞ ∂yv1,ϵ(t, x, y) = 0, it follows that442 ∫ ∞

−∞
L̃∗
0v1,ϵ dy = 0.443

Moreover, from (3.10) and (3.7),444

(3.14)∫ ∞

−∞
σ2(y + Ut)∂xxv0,ϵ(t, x, y) dy =

∫ ∞

−∞
σ2(y + Ut)∂xxΨ(t, x)Φ†(t, y) dy

= ∂xxΨ(t, x)

∫ ∞

−∞
σ2(y + Ut)Φ

†
∞(y) dy + o(ϵr)

= ⟨σ2(·+ Ut)⟩†∂xxΨ(t, x) + o(ϵr), ∀r > 0,∫ ∞

−∞
σ(y + Ut)∂xv0,ϵ(t, x, y) dy =

∫ ∞

−∞
σ(y + Ut)∂xΨ(t, x)Φ†

∞(y) dy + o(ϵr)

= ⟨σ(·+ Ut)⟩†∂xΨ(t, x) + o(ϵr), ∀r > 0,

445

for fixed t > 0, and where Φ†
∞ = limt→∞ Φ†(t/ϵ, ·) = limϵ→0 Φ

†(t/ϵ, ·), the stationary446

density of Y †, ⟨·⟩† the average over that distribution, and noting from (3.7), (3.8) that447

convergence of Φ†(t/ϵ, ·) to Φ†
∞ is exponential in ϵ.448

Integrating (3.12) over y yields an SPDE for a first order approximation vx1,ϵ(t, x)449

to vx(t, x),450

(3.15)

dvx1,ϵ = ⟨L̃∗
2⟩vx1,ϵ dt− ρx⟨σ⟩∂xvx1,ϵ dW x

t

− 1

2

(
⟨σ2⟩ − ⟨σ2(·+ Ut)⟩†

)
∂xxΨ(t, x) dt

+ ρx (⟨σ⟩ − ⟨σ(·+ Ut)⟩†) ∂xΨ(t, x) dW x
t ,

vx1,ϵ(0, x) = 0.

451

4. Numerical schemes for the Zakai SPDEs. In this section, we present452

numerical schemes for the SPDEs introduced in the previous section. We will use453

these in Section 5 to test the accuracy of the expansion solutions.454
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The most challenging equation among those considered is the original SPDE (3.2),455

repeated here for convenience,456

dv =
1

ϵ

(
ν2(1− ρ2y)∂yyv + κ∂y(yv)

)
dt457

+
(1
2
σ2

(
y + Ut

)
∂xxv − µ∂xv

)
dt− ρxσ

(
y + Ut

)
∂xv dW

x
t ,(4.1)458

v(0, x, y) = δ(x− x0)⊗ δ(y − y0),459

dUt = −κ

ϵ
Ut dt+

ν
√
2√
ϵ
ρy dW

y
t , U0 = 0.(4.2)460

461

A principal difficulty in solving this two-dimensional SPDE arises from the fact that462

we seek numerical solutions which are stable and accurate uniformly across all ϵ.463

We will also be solving the SPDE (3.11) to determine the error of the zero-order464

approximation, and the SPDE (3.12) for the first order correction, by straightforward465

modifications of the scheme for (3.2).466

The zero-order marginal approximation in x, vx0 , is given in analytic form by467

Ψ in (3.5), while the correction term vx1,ϵ is given by (3.15) and can be found by a468

one-dimensional SPDE scheme.469

We apply a Milstein ADI scheme to the SPDE (4.1), and an Euler scheme to the470

SDE (4.2), taking care to maintain uniform stability and accuracy for small ϵ. We471

achieve this by a semi-implicit approximation of the Zakai SPDE and an approxima-472

tion of the SDEs on a time mesh that scales with ϵ, as detailed below.473

4.1. Simulation of the OU–process. We simulate the Ornstein–Uhlenbeck474

process (4.2) with timestep kϵ. It was found empirically in [6] that the simulated475

process using the Euler–Maruyama scheme then has a strong error independent of476

ϵ. This does not change the total computational effort significantly since the cost of477

simulating U is typically much smaller than solving the SPDE for v.478

The discrete-time approximation of (Ut) is thus generated by479

(4.3)
Ûn = Ûn−1 − κ k Ûn−1 + ν

√
2ρy

(
W y

tn −W y
tn−1

)
,

Û0 = 0,
480

where n = 1, 2, . . ., tn − tn−1 = kϵ.481

In practice, we first generate the bivariate standard normal random variables482

(Zn,x, Zn,y) with correlation ρ, where n = 1, 2, . . . , NNϵ, Nϵ = 1/ϵ, and where we483

assume for simplicity 1/ϵ ∈ Z. We generate484

Ûn = Ûn−1 −
κ

ϵ
k Ûm−1 +

ν
√
2√
ϵ
ρy
√
k
(
Zn,y − Zn−1,y

)
,485

where Û0 = 0 and n = 1, 2, . . . , NNϵ. Then we take486

(4.4) Un = ÛnNϵ
, n = 1, 2, · · · , N,487

as the approximation to the process Ut at time t = nk, i.e., at the n-th time step on488

the coarser time mesh with width k, on which we will approximate the SPDE.489

The Brownian increment of W x over a “large” timestep k is thus490

W x
nk −W x

(n−1)k =
√
kZ̃n,x :=

Nϵ∑
i=1

√
kϵZNϵ(n−1)+i,x,491
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which has the correct correlation ρ with W y. Hence, we get492

Z̃n,x =
√
ϵ

Nϵ∑
i=1

ZNϵ(n−1)+i,x.493

To simplify the notation, we write Zn,x instead of Z̃n,x in the following.494

4.2. Approximation of the one-dimensional SPDE. The scheme we use for495

the marginal SPDE for vx1,ϵ(t, x) from (3.15) is an adaptation of the schemes proposed496

in [23, 24]. We consider a mesh X = (xi)−I≤i<I for some integer I, hx > 0 given, and497

define an approximation V n
i,1,x to vx1,ϵ(tn, xi) by498

(4.5)(
I − ⟨σ2⟩

2

k

h2
x

Dxx + µ
k

2hx
Dx

)
V n+1
1,x

=

(
I − ρx⟨σ⟩

√
kZn,x

2hx
Dx + ρ2x⟨σ⟩2

k(Z2
n,x − 1)

2h2
x

Dxx

)
V n
1,x

− 1

2

(
⟨σ2⟩−⟨σ2(·+ Un)⟩†

)
kΨxx(nk,X )+ρx

(
⟨σ⟩ − ⟨σ(·+ Un)⟩†

)
Ψx(nk,X )

√
kZn,x

+
1

2
ρ2x

(
⟨σ⟩ − ⟨σ(·+ Ut)⟩†

)2

Ψxx(nk,X )k(Z2
n,x − 1),

499

where the operators Dx and Dxx are defined as the standard finite difference matrices500

with501

(DxV )i = Vi+1 − Vi−1, (DxxV )i = Vi+1 − 2Vi + Vi−1,502503

Un is found from (4.4), and where Ψx(nk,X ) and Ψxx(nk,X ) are the value of the504

functions applied on the mesh X, i.e., Ψx(nk,X ) is the vector of values Ψx(nk, xi),505

with Ψ from (3.5).506

The scheme is semi-implicit to ensure stability in L2 irrespective of the step507

sizes. The terms in the first line of (4.5) hence come from an implicit finite difference508

discretisation of the operator ⟨L∗
2⟩; the second line contains an Euler–Maruyama term509

for the Brownian integral, and the Milstein correction for strong first order in k; the510

last two lines use the exact expressions of Ψ and its derivatives in the inhomogeneous511

terms and a Milstein approximation to the Brownian integral.512

4.3. Approximation of the two-dimensional SPDEs.513

Original SPDE. We approximate the SPDE (3.2) with an alternating direction514

implicit (ADI) scheme of the operators L̃∗
0 and L̃∗

2, and a Milstein approximation of515

the Brownian integral.516

We use a spatial mesh with uniform spacing hx, hy > 0, and, for T > 0 fixed,517

N time steps of size k = T/N . Let V n
i,j be the approximation to v(nk, ihx, jhy),518

n = 1, . . . , N , i, j ∈ Z.519

Adapting the schemes from [25] to our setting,520

(4.6)(
I −

ν2(1− ρ2y)

ϵ

k

h2
y

Dyy −
κ

ϵ

k

2hy
DyY

)(
I − σ2(Y + Un+1)

2

k

h2
x

Dxx + µ
k

2hx
Dx

)
V n+1

=

(
I − ρxσ(Y + Un)

√
kZn,x

2hx
Dx + ρ2xσ

2(Y + Un)
k(Z2

n,x − 1)

2h2
x

Dxx

)
V n,

521
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where Un is from (4.4), and D·, D·· standard finite difference matrices defined by522

(DxV )i,j = Vi+1,j − Vi−1,j , (DyV )i,j = Vi,j+1 − Vi,j−1,523

(DxxV )i,j = Vi+1,j − 2Vi,j + Vi−1,j , (DyyV )i,j = Vi,j+1 − 2Vi,j + Vi,j−1,524

(DxyV )i,j = Vi+1,j+1 − Vi−1,j+1 − Vi+1,j−1 + Vi−1,j−1.525526

Moreover, Y is the diagonal matrix such that each element of the diagonal corresponds527

to a mesh point (xi, yj) = (ihx, jhy), ordered the same way as V , so that for instance,528

by slight abuse of notation, σ(Y + Un) is a diagonal matrix where the entry corre-529

sponding to point (ihx, jhy) is (σ(Y +Un))i,j = σ(yj +Un). V 0 is an approximation530

of the initial condition to the SPDE (3.2).531

The implicit treatment of L̃∗
2 and particularly L̃∗

0 is important for stability for all532

mesh parameters and especially for all ϵ, as demonstrated by Proposition 4.1 below.533

The ADI factorisation allows an efficient solution of the implicit scheme by a sequence534

of tridiagonal systems.535

Proposition 4.1. Provided that536

(4.7) |ρx| ≤
1
4
√
2

infy∈R σ(y)

supy∈R σ(y)
,537

the scheme (4.6) is stable in the ℓ2-norm, |V |22 :=
∑

i,j V
2
i,j. Specifically, for all ϵ > 0,538

hx, hy > 0 and k,N with kN = T , kϵy2max ≤ ν2(1− ρ2y), we have539

E|V n|22 ≤ exp

(
Tϵ y2max

ν2(1− ρ2y)

)
|V 0|22.(4.8)540

Proof. We consider the discrete-continuous Fourier pair541

V n
l,j =

∫ π

−π

Ṽ n
j (ω)eiωl dω, Ṽ n

j (ω) =
1

2π

∞∑
l=−∞

V n
l,je

−iωl.542

By insertion and standard algebraic manipulations,543 (
(I − kLy)Ṽ

n+1(ω)
)
j
=

L̃ex,n
x,j

L̃im,n
x,j

Ṽ n
j (ω),(4.9)544

545

where546 (
LyṼ

n
)
j
=

ν2(1− ρ2y)

ϵ

1

h2
y

(
Ṽ n
j+1− 2Ṽ n

j + Ṽ n
j−1

)
− κ

ϵ

1

2hy

(
yj+1Ṽ

n
j+1 − yj−1Ṽ

n
j−1

)
547

L̃ex,n
x,j = 1− i ρxσ(yj + Un)

√
k

hx
sin(ω)Zn − 2ρ2x

k

h2
x

sin2(ω/2)(Z2
n − 1),548

L̃im,n
x,j = 1 + 2σ2(yj + Un+1)

k

h2
x

sin2(ω/2) + i
k

hx
sin(ω).549

550

Multiplying the left-hand side of (4.9) by Ṽ n+1,∗
j , with ∗ denoting the complex con-551

jugate, summing over j and carrying out summation by parts,552

−
∑
j

(
LyṼ

n+1
)
j
Ṽ n+1,∗
j =

ν2(1− ρ2y)

ϵ

|Ṽ n+1
j+1 − Ṽ n+1

j |2

h2
y

+
κ

ϵ
yj Ṽ

n+1
j

(Ṽ n+1
j+1 − Ṽ n+1

j−1 )∗

2hy
.553

554
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Writing in the last term Ṽ n+1
j+1 − Ṽ n+1

j−1 = (Ṽ n+1
j+1 − Ṽ n+1

j ) + (Ṽ n+1
j − Ṽ n+1

j−1 ), shifting555

the index in the summation, apply Young’s inequality as556

1

2
(yj Ṽ

n+1
j + yj+1Ṽ

n+1
j+1 )

(Ṽ n+1
j+1 − Ṽ n+1

j )∗

hy
≥557

−
ν2(1− ρ2y)

ϵ

|Ṽ n+1
j+1 − Ṽ n+1

j |2

h2
y

−
ϵ |yj Ṽ n+1

j + yj+1Ṽ
n+1
j+1 |2

8ν2(1− ρ2y)
.558

559

Upon a further application of Young’s inequality and insertion,560

∑
j

(
(I − kLy)Ṽ

n+1
)
j
Ṽ n+1,∗
j ≥

∑
j

|Ṽ n+1
j |2 − k

∑
j

ϵ |yj Ṽ n+1
j |2

2ν2(1− ρ2y)
561

≥
(
1− k

ϵ y2max

2ν2(1− ρ2y)

)∑
j

|Ṽ n+1
j |2.(4.10)562

563

To estimate the right-hand side of (4.9),564

E[|L̃ex,n
x,j |2|Ftn ] = 1 + ρ2xσ

2(yj + Un)
k

h2
x

sin2(ω) + 8ρ4x
k2

h4
x

sin4(ω/2)565

≤
(
1 + 2

√
2 sup
y∈R

σ2(y)
k

h2
x

sin2(ω/2)

)2

,566

|L̃im,n
x,j |2 ≥

(
1 + 2 inf

y∈R
σ2(y)

k

h2
x

sin2(ω/2)

)2

.567
568

Hence, assuming (4.7),569

E

[
|L̃ex,n

x,j |2

|L̃im,n
x,j |2

∣∣∣∣∣Ftn

]
≤ 1.570

571

On the right-hand side of (4.9), we have572

∑
j

L̃ex,n
x,j

L̃im,n
x,j

Ṽ n
j Ṽ n+1,∗

j ≤ 1

2

∑
j

∣∣∣∣∣ L̃
ex,n
x,j

L̃im,n
x,j

∣∣∣∣∣
2

|Ṽ n
j |2 + 1

2

∑
j

|Ṽ n+1
j |2.(4.11)573

574

From (4.9), (4.10) and (4.11),575 (
1− k

ϵ y2max

2ν2(1− ρ2y)

)∑
j

E[|Ṽ n+1
j |2|Ftn ] ≤

1

2

∑
j

|Ṽ n
j |2 + 1

2

∑
j

E[|Ṽ n+1
j |2|Ftn ].576

Rearranging, using Parseval’s identity, and 1− δ/2 ≥ exp(−δ) for any 0 ≤ δ ≤ 1,577

we obtain (4.8) by induction over n.578

The proof of Proposition 4.1 is more complicated than similar results in the lit-579

erature, in that580

• we seek stability with a constant independent of ϵ,581

• the coefficients depend on the fast process Y , and582

• the coefficients are variable in y.583
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18 S.D. HOWISON, C. REISINGER, R. SIRCAR, AND Z. WANG

We address this by a combination of a Fourier transform in x to take advantage of584

the constant coefficients as in a standard von Neumann stability analysis, and an585

energy-type argument for the y direction as is common in the finite element and finite586

difference literature.587

Remark 4.2. Note that (4.7) could be replaced by the simpler condition
√
2ρ2x ≤ 1588

if the term σ2(Y + Un+1) on the left-hand side of (4.6) was replaced by σ2(Y + Un).589

The need to use the crude bounds on σ comes from the fact that we cannot control590

the difference between Un+1 and Un, especially for small ϵ.591

Zero-order approximation (in ϵ). For the zero order term v0,ϵ, we denote the592

corresponding numerical solution as V0, with the scheme593

(4.12)(
I −

ν2(1− ρ2y)

ϵ

k

h2
y

Dyy −
κ

ϵ

k

2hy
DyY

)(
I − ⟨σ2⟩

2

k

h2
x

Dxx + µ
k

2hx
Dx

)
V n+1
0

=

(
I − ρx⟨σ⟩

√
kZn,x

2hx
Dx + ρ2x⟨σ⟩2

k(Z2
n,x − 1)

2h2
x

Dxx

)
V n
0 ,

594

with notation as earlier. Note that the closed-form solution to V0 is (3.10), and595

⟨σ⟩, ⟨σ2⟩ will be computed analytically for specific choices of σ(·) in the next section.596

To determine the error (in ϵ) of the zero-order approximation, we can directly597

solve the SPDE for v − v0,ϵ from (3.11). Denoting the solution as Ṽ0, we have the598

scheme599

(4.13)(
I −

ν2(1− ρ2y)

ϵ

k

h2
y

Dyy −
κ

ϵ

k

2hy
DyY

)(
I − σ2(Y + Un+1)

2

k

h2
x

Dxx + µ
k

2hx
Dx

)
Ṽ n+1
0

=

(
I − ρxσ(Y + Un)

√
kZn,x

2hx
Dx + ρ2xσ

2(Y + Un)
k(Z2

n,x − 1)

2h2
x

Dxx

)
Ṽ n+1
0

− 1

2

(
⟨σ2⟩ − σ2(Y + Ut)

)
k
(
∂xxV

n
0

)
+ ρx

(
⟨σ⟩ − σ(Y + Ut)

)(
∂xV

n
0

)√
kZn,x

+
1

2
ρ2x

(
⟨σ⟩ − σ(Y + Ut)

)2(
∂xxV

n
0

)
k(Z2

n,x − 1),

600

where we use the analytic solution (3.10) to compute ∂xV
n
0 = (∂xv0,ϵ(tn, xi, yj))i,j ,601

and similarly for ∂xxV0, and the initial condition Ṽ 0
0 = 0.602

First-order correction (in ϵ). Similarly, the scheme for the approximation of603

the first-order term (3.12), denoted by V1, is604

(4.14)(
I −

ν2(1− ρ2y)

ϵ

k

h2
y

Dyy −
κ

ϵ

k

2hy
DyY

)(
I − ⟨σ2⟩

2

k

h2
x

Dxx + µ
k

2hx
Dx

)
V n+1
1

=

(
I − ρx⟨σ⟩

√
kZn,x

2hx
Dx + ρ2x⟨σ⟩2

k(Z2
n,x − 1)

2h2
x

Dxx

)
V n
1

− 1

2

(
⟨σ2⟩ − σ2(Y + Ut)

)
k
(
∂xxV

n
0

)
+ ρx

(
⟨σ⟩ − σ(Y + Ut)

)(
∂xV

n
0

)√
kZn,x

+
1

2
ρ2x

(
⟨σ⟩ − σ(Y + Ut)

)2(
∂xxV

n
0

)
k(Z2

n,x − 1),

605

with zero initial condition, V 0
1 = 0. We also use the analytic solution for ∂xV0 and606

∂xxV0 in the scheme (4.14).607

In the computations below, we make some further specifications.608
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5. Numerical results. In this section, we illustrate the convergence of the ex-609

pansion for the model (3.2) by way of numerical tests. For illustration, we use the610

following Gaussian distribution as initial condition:611

(5.1) v(0, x, y) = Ψ
(
t0, x ;W x

t0 = 0
)
Φ†(t0, y),612

where t0 > 0 is a fixed constant, and Ψ, Φ are defined in (3.5) and (3.7), respectively.613

We choose this smooth initial condition so that when we numerically approximate v1,ϵ614

in (3.12), the approximation is stable when taking the partial derivatives of v0,ϵ.
3615

Moreover, we can still obtain a closed-form solution to v0,ϵ in (3.9),616

(5.2) v0,ϵ(T, x, y) = Ψ
(
t0 + T, x ;W x

t0 = 0
)
Φ†(t0 + T, y).617

For analytical convenience, we further specify σ(x) = exp(αx), where α > 0, such618

that exp(Y ) follows an exponential OU process. This is also a popular stochastic619

volatility model in investment banks. Then we have by direct integration620

(5.3)

⟨σ⟩ =
∫ ∞

−∞

κ

ν
√
2π

exp
(
αx− κx2

2ν2

)
dx = exp

(α2ν2

2κ

)
, ⟨σ2⟩ = exp

(4α2ν2

2κ

)
,621

and622

⟨σ(·+ Ut)⟩† = exp

(
α2ν2(1− ρ2y)

2κ
+ αUt

)
,623

⟨σ2(·+ Ut)⟩† = exp

(
4α2ν2(1− ρ2y)

2κ
+ 2αUt

)
,624

625

where ⟨·⟩ denotes as earlier the average over the ergodic distribution of Y , and ⟨·⟩†626

over that of Y † only.627

As a base case, we choose the parameters T = 1, x0 = y0 = 2, µ = 0.05,628

ρx = 0.3, ρy = 0.2, ρ = 0.5, κ = 0.2, ν = 0.5, α = 0.1, and t0 in the initial condition629

(5.1) as 0.2. We then vary ϵ and estimate the contribution of v0,ϵ and v1,ϵ to expected630

functionals of the solution. Later on, we will also test the effect of different parameters,631

in particular negative ρ, and different ratios of κ and ν.632

For the computations, we truncate the domain to [−10, 10] × [−10, 10], chosen633

large enough that the effect of truncation with zero Dirichlet boundary conditions on634

the solution was found negligible for the tested parameter values.635

To study the convergence ϵ → 0, we consider the linear functional636

(5.4) PT (v) =

∫ ∞

0

∫ ∞

−∞
v(T, x, y) dy dx, T < ∞.637

There are two motivations for this. First, convergence in distribution of P[XT ∈638

I|W x,W y] for intervals I is theoretically supported by [18] (albeit for the process639

with absorption at x = 0). Second, PT models the aggregate loss in credit portfolio640

models as e.g. in [4, 3, 16, 18], and is therefore of practical interest.641

To approximate PT (v) in (5.4), we use the trapezoidal rule for the numerical642

integration.643

3If we initialised with Dirac data, further stabilisation may be needed, and the analysis in ℓ2
would not carry over; see the Fourier analysis in [15, 25] for schemes for simpler SPDEs with Dirac
initial data.
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5.1. Weak convergence of PT (v0,ϵ). We first analyse the numerical conver-644

gence of E[PT (v) − PT (v0,ϵ)], where PT is the functional from (5.4). Since PT is645

linear, we have PT (v)−PT (v0,ϵ) = PT (v− v0,ϵ). We use the scheme (4.13) to directly646

approximate v−v0,ϵ, and estimate E[PT (v−v0,ϵ)] by standard Monte Carlo sampling647

as detailed below. While simulating v− v0,ϵ from (3.11), compared to simulating v in648

(3.2) and v0,ϵ in (3.9) separately, lead to the same E[PT (v − v0,ϵ)] for hx, hy, k → 0,649

the former choice has computational savings and is hence faster by a constant factor.4650

Given M Brownian paths, the Monte Carlo estimator for E[PT (v − v0,ϵ)] is651

∆P̂0 =
1

M

M∑
i=1

PT (Ṽ
(i)
0 ),652

where Ṽ
(i)
0 is the numerical solution to v−v0,ϵ for the i-th path of (W x,W y) in (4.13).653

For each ϵ, the numerical error between ∆P̂0 and E[PT (v − v0,ϵ)] consists of654

discretisation error in h and k (bias), and Monte Carlo noise (variance). If h, k → 0,655

and M → ∞, ∆P̂0 is expected to converge to E[PT (v − v0,ϵ)], and we treat ∆P̂0 as656

the weak error in ϵ for small h, k and large M .657

Figure 1(a) shows the convergence to zero of ∆P̂0, with ϵ = 0.1 × 2−3, 0.1 ×658

2−4, . . . , 0.1 × 2−7, and error bars with 3 standard deviations. For each ϵ, we let659

hx = hy = 2−l, and k = 0.5 · 4−l, where l = 1, 2, 3, 4. We use M = 106 for l = 1, 2,660

and M = 105 for l = 3, 4, as the computational cost for finer meshes is large. For661

l = 4 with M = 105, the run time of the Matlab code is up to around 72 hours with662

36 cores in parallel (speed 2300 RPMs, RAM 768GB, Linux system). We take the663

results from l = 4 as numerical approximation to E[PT (v − v0,ϵ)], shown as the black664

solid line in the loglog plot in Figure 1(a). One can identify from the figure that the665

slope is slightly less than 1/2 (see the dashed line), and linear regression gives a slope666

of 0.4237. A plausible reason is that for l = 4 the error in h and k is not small enough667

to be neglected. We deduce empirically that the weak error E[PT (v− v0,ϵ)] is O(
√
ϵ).668

(a) ∆P̂0. (b) ∆P̂0 − P̂1.

Fig. 1. Weak convergence of ∆P̂0 and ∆P̂0 − P̂1.

4Using the same Brownian paths for v and v0,ϵ leads to a variance reduction and less paths are
needed.
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5.2. Weak convergence of first order approximation. To verify PT (v1,ϵ)669

is indeed the leading order approximation to PT (v) − PT (v0,ϵ), we further exhibit670

∆P̂0 − P̂1, which is the Monte Carlo estimator for PT (v − v0,ϵ − v1,ϵ). Note that we671

have used the same Brownian paths for ∆P̂0 and P̂1 to reduce the variance.672

Figure 1(b) shows the loglog plot of the convergence of E[∆P̂0− P̂1] to zero, with673

respect to ϵ, with the error bars being three standard deviations away. Similar to674

previous tests, here we stop at l = 5 with 1000 Monte Carlo samples, and linear675

regression yields a fitted slope of 1.0092.676

We can thus deduce empirically that PT (v1,ϵ) is the leading order approximation677

to PT (v − v0,ϵ), with PT (v − v0,ϵ − v1,ϵ) = O(ϵ).678

5.3. Convergence of E[PT (v1,ϵ)]. We now analyse E[PT (v1,ϵ)], where v1,ϵ sat-679

isfies the SPDE (3.12), and compare it to P x
T (v

x
1 ), where vx1 is the solution to the680

marginal SPDE (3.15), and P x
T (·) is defined by681

P x
T (v

x) =

∫ ∞

0

vx(T, x) dx, T < ∞.682

We expect these two values should be approximately the same.683

From the derivation of the SPDE for vx1 in Section 3.4, when we integrate over684

the y-dimension in (3.14), we replace ΦY (T, y) in the analytic solution (3.10) by685

the invariant distribution ΦY
∞(y), which yields a more concise analytical form. This686

does not change the convergence order, as for ϵ → 0, ΦY (T, y) converges to ΦY
∞(y)687

exponentially fast. Hence, to make sure PT (v1,ϵ) gives the same results as PT (v
x
1 ), we688

also use v0(T, x, y) = Ψ(T, x)ΦY
∞(y) as the analytic solution for the zero order term689

v0,ϵ in the schemes (4.13) and (4.14).690

Given M Brownian paths, we define Monte Carlo estimators for E[PT (v1,ϵ)] and691

E[PT (v
x
1 )] by692

(5.5) P̂1 =
1

M

M∑
i=1

PT (V
(i)
1 ), P̂ x

1 =
1

M

M∑
i=1

PT

(
(V x

1 )(i)
)
,693

where V1 obeys the scheme (4.14), and V x
1 the scheme (4.5).694

(a) P̂1 defined in (5.5). (b) Comparing P̂1 with P̂x
1 from (5.5).

Fig. 2. Weak convergence of P̂1 for hx = hy = 2−l, k = 0.5 · 4−l, ϵ = 0.1× 2−3, · · · , 0.1× 2−7.
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Figure 2(a) shows P̂1, with ϵ = 0.1 × 2−3, 0.1 × 2−4, . . . , 0.1 × 2−7, and the695

error bars with 3 standard deviations. Similar to Figure 1(a), for each ϵ, we let696

hx = hy = 2−l, and k = 0.5 · 4−l, where l = 1, 2, 3, 4. We use M = 106 for l = 1, 2,697

and M = 105 for l = 3, 4. We take the results from l = 4 as numerical approximation698

to E[PT (v1,ϵ)], shown as the black solid line in the loglog plot in Figure 2(a), comparing699

it to a dashed line with slope 1/2.700

We further include the approximation P̂ x
1 from the marginal SPDE (3.15), and701

compare P̂ x
1 with P̂1 in Figure 2(b). For P̂ x

1 , we use a multilevel Monte Carlo method,702

with prescribed 1% relative error (the ratio between root mean-square error and true703

value). We do not give any details on the multilevel construction here (see, e.g.,704

[24]), and only note that, unlike approximating E[PT (v)] by a standard Monte Carlo705

method, and discretising with mesh size hl = h0 × 2−l and timestep kl = k0 × 4−l,706

approximating by MLMC requires a good coupling between fine path and coarse707

path. Therefore, when we apply MLMC to estimate E[PT (v
x
1 )], the timestep is set as708

kl = k0 × ϵ× 4−l, proportional to ϵ.709

Linear regression yields that the fitted slope for P̂1 is 0.4855, and for P̂ x
1 it is710

0.4792. This is consistent with the finding from the previous section that inclusion of711

the first order term approximately cancels the error of the zero order approximation,712

which is of order
√
ϵ. Moreover, since vx1 is the solution to a one-dimensional SPDE,713

the computational cost is much lower for E[PT (v
x
1 )] with the same accuracy than for714

E[PT (v1,ϵ)], which shows the benefit of our asymptotic expansion.715

5.4. Parameter studies. Finally, we test the effect of the ratio between ν and716

κ, and of the correlation ρ. Figure 3(a) shows the effect of different ν/κ, by varying717

ν ∈ {0.05, 0.5, 2, 5}, while keeping other parameters fixed. We choose the numerical718

parameters to ensure that the relative error is below 1%. We can see from Figure 3(a)719

that |P̂ x
1 | increases as ν/κ increases. From the raw data we found approximately that720

for fixed ϵ, |P̂ x
1 (ν/κ; ϵ)| = O(ν/κ), which is consistent with the previous tests where721

ϵ varies, through the scaling relationship (ν/
√
ϵ)/(κ/ϵ) =

√
ϵ ν/κ. A point to note is722

that the values for ν = 5 are negative, whereas the others are positive.723

Figure 3(b) shows the effect of changing the parameter ρ, where we make sure to724

keep the relative error less than 5%. We can see from Figure 3(b) that |P̂ x
1 | increases725

as |ρ| increases; inspection of the raw data shows that P̂ x
1 is positive when ρ is positive,726

and vice versa. This effect is similar to the asymptotic expansion of the backward727

PDE for the stochastic volatility model [9], where the leading order correction term728

is proportional to the correlation between the two Brownian motions involved.729
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(a) P̂x
1 with different ν. (b) P̂x

1 with different ρ.

Fig. 3. Comparing P̂x
1 with regard to ν and ρ .
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