Noname manuscript No.
(will be inserted by the editor)

Construction of a class of forward performance processes
in stochastic factor models and an extension of Widder’s
theorem

Levon Avanesyan ! - Mykhaylo Shkolnikov ! -
Ronnie Sircar !

Received: date / Accepted: date

Abstract We consider the problem of optimal portfolio selection under forward in-
vestment performance criteria in an incomplete market. Given multiple traded assets,
the prices of which depend on multiple observable stochastic factors, we construct
a large class of forward performance processes, as well as the corresponding opti-
mal portfolios, with power-utility initial data and for stock-factor correlation matri-
ces with eigenvalue equality (EVE) structure, which we introduce here. This is done
by solving the associated non-linear parabolic partial differential equations (PDEs)
posed in the “wrong” time direction. Along the way we establish on domains an
explicit form of the generalized Widder’s theorem of Nadtochiy and Tehranchi [27,
Theorem 3.12] and rely hereby on the Laplace inversion in time of the solutions to
suitable linear parabolic PDEs posed in the “right” time direction.

Keywords Factor models - Forward performance processes - Generalized Widder’s
theorem - Hamilton-Jacobi-Bellman equations - Ill-posed partial differential
equations - Incomplete markets - Merton problem - Optimal portfolio selection -
Positive eigenfunctions - Time-consistency

Mathematics Subject Classification (2010) 35K55 - 91G10 - 35J15 - 60H10
JEL Classification C02 - G11

M. Shkolnikov was partially supported by the NSF grant DMS-1506290.

L. Avanesyan
levon.avanesyan23 @gmail.com

M. Shkolnikov
mykhaylo@princeton.edu

R. Sircar

sircar @princeton.edu

! Department of Operations Research and Financial Engineering, Princeton University, Princeton,
NJ 08544, USA



2 L. Avanesyan, M. Shkolnikov, R. Sircar

1 Introduction

In this paper we study the optimal portfolio selection problem under forward in-
vestment criteria of power-utility form in incomplete markets, specifically stochastic
factor models with a stock-factor correlation structure named EVE, which we intro-
duce here. Our setup is that of a continuous-time market model with multiple stocks
whose returns and volatilities are functions of multiple observable stochastic factors
following jointly a diffusion process. The incompleteness arises hereby from the im-
perfect correlation between the Brownian motions driving the stock prices and the
factors. The factors themselves can model various market inputs, including stochas-
tic interest rates, stochastic volatility and major macroeconomic indicators, such as
inflation, GDP growth or the unemployment rate.

The optimal portfolio problem in continuous time was originally considered by
Merton in his pioneering work [19], [20], and is commonly referred to as the Mer-
ton problem. In this framework an investor looks to maximize her expected terminal
utility from wealth acquired in the investment process within a geometric Brown-
ian motion market model. Good compilations of classical results can be found in the
books by Duffie [5], and Karatzas and Shreve [16]. As fundamental as this setup is,
it has two important drawbacks. First, the investor must decide on her terminal utility
function before entering the market, and thereby cannot adapt it to changes in market
conditions. Second, before settling on an investment strategy, the investor must firmly
set her time horizon. That is, the portfolio derived in this framework is optimal only
for one specific utility function over one time horizon.

External factors such as the economic cycle, natural disasters, and the political
climate can lead to dynamic changes in one’s preferences. This would change the ter-
minal utility function, thereby affecting the optimal portfolio allocation. Moreover,
the investor might want to alter the terminal time itself. In order to solve portfo-
lio optimization problems with an uncertain investment horizon, forward investment
performance criteria were introduced and developed by Musiela and Zariphopoulou
[22, 23], as well as Henderson and Hobson [12]. Instead of looking to optimize the
expectation of a deterministic utility function at a single terminal point in time, this
approach looks to maximize the expectation of a stochastic utility function at every
single point in time. Forward performance processes (FPPs), as defined in Musiela
and Zariphopoulou [24], capture the time evolutions of such stochastic utility func-
tions.

A comprehensive description of all FPPs remains a challenging open problem.
Much work towards this goal has been carried out throughout the last ten years, see
Berrier et al. [2], El Karoui and Mrad [6, 7], Henderson and Hobson [12], Musiela and
Zariphopoulou [26], and Zitkovi¢ [33] for some important results. In [26], Musiela
and Zariphopoulou proposed a construction of FPPs by means of solutions to a
stochastic partial differential equation (SPDE). To find all the FPPs characterized
by the SPDE, one would have to find all forward volatility processes, along with
initial utility functions, for which the SPDE has a classical solution. The case of
zero forward volatility yields time-monotone FPPs, and was extensively discussed in
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Musiela and Zariphopoulou [24, 25], as well as more recently in Killblad et al. [13]
in the presence of model uncertainty.

We consider factor-driven market models and FPPs into which the randomness
enters only through the underlying stochastic factors. Assuming such a form, with
a compatible forward volatility process, the SPDE mentioned above reduces to an
HIB equation set in the “wrong” time direction. In a complete market one can use
the Fenchel-Legendre transform to linearize the HIB equation, and arrive at a lin-
ear second-order parabolic PDE set in the “wrong” time direction (see Nadtochiy
and Tehranchi [27]). In an incomplete market no such linearizing transformation is
available in general. To the best of our knowledge, the only exception is the special
case of power utility in a one-factor market model, where a linearization is possi-
ble through a distortion transformation, as discovered in Zariphopoulou [32] for the
Merton problem, and used for the construction of FPPs in Nadtochiy and Tehranchi
[27], Nadtochiy and Zariphopoulou [28], and Shkolnikov et al. [30]. Construction
and representation of FPPs in multi-factor incomplete market models have recently
been addressed in Shkolnikov et al. [30] and Liang and Zariphopoulou [18]. The for-
mer deals with a two-factor case, and provides asymptotic results for different time
scales. The latter allows for an arbitrary number of factors and trading constraints,
and gives backward stochastic differential equation (BSDE) representations of FPPs.
All of these papers assume power-type (or homothetic) utility structure, as we will do
also in this paper.

We introduce a new class of multi-factor market models, which we will call EVE
correlation models (see Definition 2.3). In this framework we reduce the fully non-
linear HJB equation to a linear second-order parabolic PDE. Thereby, we obtain ex-
plicit characterizations of FPPs in such models. Our analysis also applies to the Mer-
ton problem, whose value function solves the same HJB equation posed in the “right”
time direction.

In one-factor market models, Nadtochiy and Tehranchi [27, Theorem 3.12] exhib-
ited a characterization of all positive solutions to the linear parabolic equations posed
in the “wrong” time direction, that arise in the construction of FPPs of power-utility
type. Their theorem constitutes a generalization of the celebrated Widder’s theorem
(see Widder [31]), which describes all positive solutions of the heat equation set in
the “wrong” time direction. The generalized Widder’s theorem reveals that positive
solutions of a linear second-order parabolic equation set in the “wrong” time direction
must be linear combinations of exponentially scaled positive eigenfunctions for the
corresponding elliptic operator according to a positive finite Borel measure. More-
over, each solution is uniquely identified with a pairing of the eigenfunctions and the
measure.

In our first main theorem (Theorem 2.11) we give a new version of [27, Theo-
rem 3.12] on domains in the multi-stock multi-factor EVE setup with an initial utility
function of power type to describe a new class of FPPs. Note that generalized Wid-
der’s theorems do not provide a way to construct the pairings of the eigenfunctions
and the measure. Our second set of results (see Theorem 2.14 and Remark 2.15) ad-
dresses this issue: in Theorem 2.14 we give the Laplace transform of the measure in
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terms of the solution to a linear parabolic equation set in the “right” time direction,
and we provide a method (see Remark 2.15) of finding the only possible correspond-
ing eigenfunctions as well. Thus, we indeed obtain a large explicit class of FPPs.

The rest of the paper is structured as follows. In Section 2 we state our main
results, postponing their proofs to later sections. In Section 3 we introduce relevant
facts about FPPs and subsequently prove Theorem 2.11. In Section 4 we show The-
orem 2.14, summarize some results from the theory of linear elliptic operators, and
use them to establish Propositions 2.17, 2.19, 2.21 and 2.22. In Section 5 we discuss
the Merton problem within the framework of our market model. Lastly, in Section 6
we discuss EVE correlation models and construct explicit FPPs in affine multi-stock
multi-factor market models of EVE type.

2 Main results
2.1 Model

Consider an investor with initial capital Xop = x > 0 aiming to invest in a market
with n > 1 stocks, the prices of which follow a process S, and a riskless bank ac-
count with zero interest rate. The stock prices depend on an observable k-dimensional
stochastic factor process Y taking values in D C R*, and are driven by a dy -dimensional
standard Brownian motion W. The factor process Y is itself driven by a dg-dimensional
standard Brownian motion B, whose correlation with W is given by a matrix corr(W,B) =
(pi j)fvjV:’d]B := p, where p;; € [—1, 1]. Without loss of generality we assume that dy >
n (see [14, Remark 0.2.6]). The investor’s filtration (.%);>¢ is generated by a pair
(S,Y) of processes satisfying

ds dw :
?:#Z(Yl)dt+zcjl(yl)dvv/a izlvza"'anv
t j=1

ay, = a(Y,)dt + x(Y;) " dB,,
Bi=p W, +ATW",

where the superscript 7 denotes transposition and W+ is a d;, 1 -dimensional stan-
dard Brownian motion independent of W. We write u for (t1, a,...,i,) " and o for

dy,
(o)) throughout.

Remark 2.1 1t is straightforward to show that the positive semidefiniteness of the
correlation matrix of the Brownian motion (W, B) implies that the singular values of
p are in [0, 1].

For the convenience of the reader we summarize the dimensions of all the quan-
tities we have introduced thus far

#(')_nXL 6(')—dW><I’l7 VVI_dWXL (X()-k)(l, K(')_dek7
B, —dpx1, p—dwxdp, A—dy.xds, W'—dyixl.
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Note that there is no loss of generality in using the representation (2.3) for the stan-
dard Brownian motion B, since we can let A be the square root of the positive semidef-
inite matrix Iz, — p"p (recall that the singular values of p belong to [0,1]), and
dy 1 = dp.

Assumption 2.1 The functions u: D — R", ¢ : D — RW>*" are continuous, and
the stochastic differential equation (SDE) (2.2) possesses a unique weak solution.
Moreover; the columns of p belong to the range of left-multiplication by ¢ (y) for all
yeD.

Remark 2.2 The last condition in Assumption 2.1 holds only if the column rank of
p is less than or equal to the column rank of &, and implies c(y)o(y) 'p = p
for all y € D, where o(y)~! is the Moore-Penrose pseudoinverse of ¢ (y). Indeed,
o(y)o(y)~'o(y) = 6(y), so that the columns of &(y) (and consequently the vectors
in their span, that is, the range of the left-multiplication by ¢(y)) are invariant under
the left-multiplication by o (y)o(y) .

Our main result is for a particular class of multi-factor models, which we define
next.

Definition 2.3 We will call a market model an eigenvalue equality (EVE) correlation
model if for some p € [0, 1],

p'p=ply. 24
Note that in Definition 2.3, p has to be between 0 and 1 since the singular values
of p are in [0, 1] (see Remark 2.1).

Remark 2.4 Note that for EVE correlation models, since p is a dy X dp-matrix, at
least one of the following two has to hold:

(i) dw > dp,

(i) p=0.
Finally, we remark that when dg = 1, p is a vector and p :=p " p € [0, 1], so that (2.4)
holds automatically.

The name EVE comes from the fact that the only restriction is on the eigenvalues
of the matrix pTB . For any orthonormal dp x dp matrix O, we may replace k(-) by
Ox(-) and B by B = OB in (2.2) without changing the dynamics of the pair (S,Y).
Since B is a dg-dimensional standard Brownian motion and corr(W,B) = O"p " pO
is diagonal for an appropriate choice of O, we could have assumed without loss of

generality from the very beginning that p " p is diagonal.

Section 6 is devoted to a further discussion of EVE correlation models.

2.2 Forward Performance Processes

The investor dynamically allocates her wealth in the market using a self-financing

trading strategy that at any time ¢ > 0 yields a portfolio allocation 7, = (7!, ..., ")
among the n stocks with the associated wealth process
dx”® T T
o= (om) 20 dr+ (o(m) W, XF=x, 2.5)
1
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where A (Y;) = (6(¥;) ")~ u(Y;) is the Sharpe ratio. Apart from the self-financeability,
we impose additional conditions on the trading strategies to ensure that their wealth
processes X7 are well-defined by (2.5).

Definition 2.5 An (.%);>o-progressively measurable self-financing trading strategy
is called admissible if its portfolio allocation 7 among the n stocks fulfills

t t
Vi>0: / |m o (¥,) TA(Y)|ds <o and / ’G(Ys)ﬂs|2ds<oo
0 0

with probability one. In this case, we write T € o7 .

Next we recall the definition of FPPs given in Musiela and Zariphopoulou [24].
These capture how the utility function of an investor evolves over time as she contin-
ues to invest in the financial market.

Definition 2.6 An (.%),>o-progressively measurable process U.(-) : [0,00) X (0,00) —
R is referred to as a (local) forward performance process (FPP) if

(i) with probability one, all functions x — U;(x), t > 0 are strictly concave and
increasing,

(ii) foreach € o7, the process U, (X[F), t > 0 is an (% );>0 (local) supermartingale,

(iii) there exists an optimal 7* € <« for which U; (Xt”*), t > 01is an (% );>0 (local)
martingale.

We refer to Musiela and Zariphopoulou [24, 26], and Nadtochiy and Zariphopoulou
[28] for motivation and explanation of this definition. We consider (local) FPPs of
factor-form into which the randomness enters only through the stochastic factor pro-
cess, that is,

Ux)=V(t,xY), t>0 (2.6)

for a deterministic function V : [0,e0) x (0,00) x D — R. Throughout the paper, we
look for FPPs where the initial utility function is of product form, and a power func-
tion in the wealth variable:

Uo(x) =V (0,x,Yy) = 7"

1—
f ! h(Yy) forsome y € (0,00)\{1}. 2.7

The crucial simplification arising from the structure in (2.7) lies in its propagation to
positive times. In this paper we will construct (local) FPPs of the following form.

Definition 2.7 We will say a (local) FPP U.(-) is of separable power factor form if

X
U,(x) = V([7)C,Yt) = meg(t7y})’
for some g that is continuously differentiable in ¢ (its first argument) and twice con-
tinuously differentiable in y (the second argument).

In this paper, we characterize all separable power factor form local FPPs for EVE
correlation models introduced in Definition 2.3.
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2.3 Characterizing separable power factor form FPPs

In order to describe our construction of separable power factor form FPPs, we
need to introduce some quantities related to linear elliptic operators of the second
order. Consider on C?(D) such an operator

Z aij(y w/#—Zb )y, + P(y) (2.8)
l] 1

under the following assumption.

Assumption 2.2 There exists a C3-diffeomorphism E : D — R¥ so that the functions

a(2) = ((vZ)TavE;) (27'@),
bi(2) == (V&) ) (27(z ))—l—;trace(Hess(E) ) (27'@), @9

are uniformly bounded and uniformly n-Hélder continuous over R¥ and the matrices
a(z):= (ﬁij(z)){‘(,j:l are non-degenerate uniformly in z € RX. That is, with the notation

b() = (b1():b2(:),- ., i () " and for some 1 € (0, 1),

(i) supscz ()] supcg Q)] sup. ez [PC2)| < o
_ - )
(ii) ||a||n7Rk7 ||b||n,Rk7 ”P”rl,]Rk < eo, where ”f”n,]Rk = SUP, 7 eRK, 747 ‘fﬁ?_zf‘(r]z >|,

and

(iii) inf cpe |, vla(z)v > 0.

Remark 2.8 Assumption 2.2 entails that the domain D is C3-diffeomorphic to R* and
that the operator .# on D can be obtained as a pushforward under a C-diffeomorphism
of a uniformly elliptic operator

k k
Z Orizy + Y bi(2)0; +P(2) (2.10)

l\)\'—*

on R¥ with uniformly bounded and uniformly n-Holder continuous coefficients. For
a star-shaped domain D, it is well-known (see, e.g., [8, Subsection 10.1]) that one
can find C*-diffeomorphisms Z~! mapping R¥ onto D. However, whether a locally
uniformly elliptic operator . with locally bounded and locally n-Holder continuous
coefficients is a pushforward under £~ of an operator .Z with coefficients satisfying
the conditions (i)-(iii) of Assumption 2. 2 needs to be checked on a case-by-case basis.
As an example consider an operator 5 LYK (1 =) 8),[y, + P(y) on (0, 1)k with
constants ¢;,¢; € (4,00) and a bounded n-Holder continuous potential P. Then, for
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the C-diffeomorphism Z : (0,1)F — Rk, y s (tan(my; — 7/2))%_, it is elementary
to verify that the coefficients of the resulting

ﬂzy," 1=y

s(my; —m/2)*

ﬂzyf‘ 1 —y;)¢ sin(my; — 7/2)
cos(my; — m/2)3

ez

1
T2

yj=arctanz;

L
5

9, —|—P((arctanz,-)f:1>

y;=arctanz;
fulfill the conditions (i)-(iii) of Assumption 2.2.

Remark 2.9 Whenever D = R¥ (as for instance in [27, Section 3.1]) it is standard in
the literature to assume that the conditions (i)-(iii) of Assumption 2.2 hold for af(-),
b(-), P(-). This implies the set of conditions in Assumption 2.2 by taking Z to be the
identity map. Moreover, in this case, the SDE (2.2) admits a unique weak solution
(see [15, Chapter 5, Remarks 4.17 and 4.30]).

We define the Holder space C>"(D) C C?(D) as the subspace consisting of func-
tions whose second-order partial derivatives are 1-Holder continuous (in the same
sense as in condition (ii) of Assumption 2.2) on compact subsets of D. Next, we in-
troduce the sets of positive eigenfunctions for the operator .Z, which correspond to
eigenvalues { € R, and are normalized at some fixed yo € D

Co(D)={w e C®M(D): w() >0, y(0) = 1, (£~ )y =0}.

Moreover, we let S ¢ (D) be the spectrum of £ associated with positive eigenfunc-
tions:

Sy(D) = {C €R: Cy_((D) # 0}.

In subsection 4.2, we provide some well-known results about the structure of the
eigenfunction spaces C »_ (D) and the set of eigenvalues S (D). In particular, Propo-
sition 4.4 yields that in our setup S (D) is a half-line.

Finally, we call a functional ¥ : S (D) x D — (0,0) such that ¥'({,-) € C¢_¢(D)
for all § € S (D), a selection of positive eigenfunctions, and recall the definition of
Bochner integrability in this setting.

Definition 2.10 Given a positive finite Borel measure v on S (D), we refer to a
selection of positive eigenfunctions ¥ : S » (D) x D — (0,0) as v-Bochner integrable
if, for all compact K C D, fS,g(D) (S, )k v(dE) < oo, where || f||x = supyek [£(V)]-

In preparation for our main result we define

a(-)=x(-)"x(), b()=a()+Ix()'p'A(), P()= %l(-)Tl(~)7 (2.11)
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Theorem 2.11 Consider an EVE correlation model (2.1)-(2.3) with a correlation
matrix p satisfying Assumption 2.1. Suppose the second-order linear elliptic operator
£ in (2.8) with coefficients provided in (2.11) satisfies Assumption 2.2. Then, given
a function h: D — (0,0), there exists a local FPP of separable power factor form

with the initial condition
XY
1 (Yo)?
-y

Uo (x) =

if and only if there exists a positive finite Borel measure v on'S ¢ (D) and a v-Bochner
integrable selection of positive eigenfunctions V' : S (D) x D — (0,0) such that

h(y) = / P(C,3) V(dE). @.12)
S#(D)

Furthermore, each local FPP of separable power factor form is uniquely identified
by such a pairing (¥, V), and is given by

1-y q
Uy(x) = 7> (/ e "tW(S 1) V(dC)> : (2.13)
S« (D)
Any ©t* that solves

. Js,me ¢S (Vy¥)(£, %) v(dE)
o(Y)m =5 A(Y:) +gpx(Y:) T o e CPC L) V(D)

(2.14)

is an associated optimal portfolio.

Remark 2.12 We note that the equation (2.14) for optimal portfolios 7% does not
involve the initial wealth x. This is a consequence of the local FPP being of separable
power factor form. In the setting of the Merton problem, the same statement is true
(and well-known) for terminal utility functions of power form.

Remark 2.13 A solution to the optimal portfolio equation (2.14) can be obtained as
follows. Since o(-)~! = (6(-)"o(-))'o(-)", one can write A(-) = (o(-) ") (")
as 6(-)(o(-)"o(-))'u(-). In addition, by Assumption 2.1 and the Borel selection
result of [4, Theorem 6.9.6], one can find a measurable ¢ : D — R"*% satisfying
o(-)g(-) = p, which renders

Jsymy€ " (Vy¥)(E,Y) v(dE)
Js iy P (E Y v(dE)
2.15)

-1
(o) o)) n(X)+as(x)x(x)

a solution of (2.14).

The above theorem shows that for given admissible initial conditions, one can
construct separable factor-form FPPs in EVE correlation models with general factor
domains D C R¥, while also providing necessary and sufficient conditions for such
admissibility. In particular, an investor with risk-aversion y and dependence h(Yp) of
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her current utility function on the initial value of the factor process, can extrapolate
the future values of her utility function according to (2.13) and acquire a portfolio
fulfilling (2.14) (e.g. the portfolio in (2.15)), provided # is of the form (2.12). It is
therefore crucial to understand which functions # admit the representation (2.12) and
to be able to determine the pairings (¥, v) for such.

Note that condition (iii) in Assumption 2.2 and the invertibility of the Jacobian
matrix of = yield that x(y) has full column rank k at each point y, and thus k < dp.
If p # 0, this combined with the observations in Remarks 2.2 and 2.4, implies the
dimensional relationship k < dg < n < dy in our model (2.1)-(2.3).

To the best of our knowledge, the only other paper addressing explicitly FPPs in
multi-factor models is Liang and Zariphopoulou [18]. In the models they consider,
the factors are exponentially ergodic and live on the full space D = R¥, and the fol-
lowing dimensional relationship holds: n < dy = dp = k. In addition, the form of the
SPDE in [18] (compare [18, equation (10)] to e.g. [27, equation (3)]) implies that
ool = I, , and thereby n = dyw . Moreover, in [18], p = corr(W,B) = I, and thus
their model fits into the EVE framework with p = 1. The main difference of the setup
in [18] from ours is the possibility of constraints on the set of admissible portfolios.
Without constraints, it is possible to linearize the semi-linear PDE in [18, equation
(13)] through the exact same steps as in the proof of our Proposition 3.3 below. For
general constraints this is not possible. The authors circumvent this issue by rep-
resenting FPPs as functions of the solutions to appropriate infinite-horizon BSDEs
instead.

Another major difference from our results is in the set of allowable initial condi-
tions from which FPPs can be constructed. In the absence of constraints, the results in
[18] require the measure v (in the terminology of our Theorem 2.11) to be a multiple
of a Dirac mass on an element of the set of eigenvalues S ¢ (R*), thereby restricting
the function 4 to be a positive eigenfunction of the elliptic operator .Z’. Our Theo-
rem 2.11 characterizes all admissible initial conditions through the equation (2.12).
In addition, our factors live on general domains D C R¥ and are not required to be
ergodic.

2.4 Finding selections of positive eigenfunctions ¥ and measures v

The next set of results addresses the problem of solving the equation (2.12) for
the pairing (¥, v), when it exists. The equation (2.12) stems from a new variant of the
generalized Widder’s theorem of Nadtochiy and Tehranchi [27, Theorem 3.12] (see
Theorem 3.4 below) and, thus, our results can be viewed as yielding explicit versions
of such theorems. The following theorem is also of independent interest, as it relates
the pairing (W, V) arising in the positive solution of a linear second-order parabolic
PDE posed in the “wrong” time direction to the solution of the same PDE posed in
the “right” time direction.

Theorem 2.14 Let . satisfy Assumption 2.2 and let h € C>" (D) be a positive func-
tion such that

(t,y)—E {h(Z,) Loy |Z0 = y} is locally bounded on [0,€] X D (2.16)
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Sor the weak solution Z of the SDE associated with £y := £ — P(y) and € > 0, where
T is the first exit time of Z from D. Then, there is a positive classical solution of

du+ ZLu =0 pointwise on [—€,0] x D, with u(0,-) =h. (2.17)

For a positive finite Borel measure v on S (D) and a v-Bochner integrable selection
of positive eigenfunctions ¥ : S ¢ (D) x D — (0,00), the function h can be expressed
as sz(D) ¥ (L,-)v(dE) if and only if the problem (2.17) has a unique positive clas-
sical solution u, so that for every y € D, the function u(-,y) on (—¢,0] is the Laplace
transform of the measure W (&,y) v(d{), that is,

)= [ ORIV, 1€ (-e0) 2.18)
S¢ (D)
In this case, it holds, in particular,
u(t,yo) :/ e Sv(dl), 1e(—e,0]. (2.19)
S¢ (D)

Remark 2.15 Theorem 2.14 reveals that, whenever a pairing (¥, V) exists, it can be
inferred by finding the measure v through a one-dimensional Laplace inversion of
u(,yo) (recall that the values of the Laplace transform on a non-trivial interval de-
termine the underlying positive finite Borel measure, see e.g. [3, Section 30]) and
then the functions ¥(-,y), y € D\{yo} from u(-,y), y € D\{yo} through additional
one-dimensional Laplace inversions.

As a by-product we obtain the following uniqueness result for linear second-
order parabolic PDEs posed in the “wrong” time direction by combining the general-
ized Widder’s theorem on domains (Theorem 3.4 below) with Theorem 2.14 and the
uniqueness of the Laplace transform ([3, Section 30]).

Corollary 2.16 For any operator £ satisfying Assumption 2.2 and positive h €
C>"(D) such that the function in (2.16) is locally bounded on a non-trivial cylin-
der [0, €] X D, there is at most one positive solution ii of the problem

Qi+ Li=0 on [0,00) x D, i(0,) = h. (2.20)

We stress that Corollary 2.16 is not an immediate consequence of the generalized
Widder’s theorem on domains (Theorem 3.4) by itself. The latter does ensure that ev-
ery pairing (¥, v) corresponds to exactly one positive solution # of (2.20). However,
it is not clear a priori whether the representation 1 = sz D) ¥(,-)v(dE) is unique
for all functions /& with the property (2.16). Theorem 2.14 and the uniqueness of the
Laplace transform ([3, Section 30]) show that this representation is, indeed, unique.

For arbitrary operators relatively little is known about the sets of positive eigen-
functions C»_¢ (D). Nevertheless, in certain situations additional information on the
sets C_¢(D) is available and can be exploited to find the selection of positive eigen-
functions ¥ for a given function & by a finite number of Laplace inversions.
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Proposition 2.17 Let . satisfy Assumption 2.2, then

¢.(D) ::inf{geR: CGSg(D)} € Sy (D). 2.21)

If, in addition, the potential P is constant and £y := £ — P is such that the cor-
responding solution of the generalized martingale problem on D (see Pinsky [29,
Section 1.13]) is recurrent, then §.(D) = —P and |C y_¢ p)(D)| = 1.

Remark 2.18 The quantity {.(D) of (2.21) is commonly referred to as the critical
eigenvalue of the operator £ on D.

The structure of the eigenspaces Cy_¢(D) can differ widely depending on the
choice of the dimension k, the restrictions on the operator ., and the domain D.
The case k = 1 corresponds to having a single factor and leads to eigenspaces of
dimension at most 2.

Proposition 2.19 Suppose £ satisfies Assumption 2.2 on a domain D C R. Then,
the number of extreme points of the convex set Co_¢ (D) is 2 for all > C.(D) and

belongs to {1,2} for { = £.(D).

Proposition 2.19 reveals that, in the setting of Theorem 2.14 with k = 1, one can
determine the pairing (¥, V) via a three-step procedure: first, one recovers v by a
one-dimensional Laplace inversion of u(-,yp); second, one finds ¥(§,y;) v(d{) by
a one-dimensional Laplace inversion of u(-,y;) for an arbitrary y; € D\{yo}; third,
for all { > {.(D) in the support of v, one solves the second-order linear ordinary
differential equation for ¥({,-) with the obtained boundary conditions at yo and y;
to end up with the selection V.

When k > 2, the variability in the dimensionality of the eigenspaces is illustrated
by the following two scenarios, in which the eigenspaces have dimensions 1 and oo,
respectively.

Definition 2.20 A potential P(-) on R¥, k > 2, is called principally radially symmet-
ric if

P=P+P,
where the functions Ry and P; are locally integrable to power d for some d > k/2,
with Py being radially symmetric (Py(y) = Po(|y|) for some F), and P; vanishing
outside of a compact set.
Proposition 2.21 Let k > 2 and consider a positive ¢ € C*"(R¥) with bounded %
and %, as well as an operator L=A +P(y) on R¥ with a locally n-Holder con-
tinuous bounded principally symmetric potential P(-). Then, £ = %g/ ¢ has the
property |Co_r(R*)| =1 for any § > C.(R¥) such that

/mt"_3go(f)2 (/msl_kgo(s)_2 ds) dr = o, (2.22)
1 t



Forward performance processes 13

where g is the unique solution of

go(r)+ k%lgf)(r) - (C—ﬁ)(r))go(r) =0 on (0,), go(r)=1+4+o0(r) as rlO0.

In the situation of Proposition 2.21, we must pick ¥({,-) as the unique element
of C z_C(Rk ). On the other hand, in the case of a multidimensional factor process
on a bounded domain D with a Lipschitz boundary, the eigenspaces are infinite-
dimensional.

Proposition 2.22 Let D C R¥, k > 2 be a bounded domain with a Lipschitz boundary
and the coefficients a(-), b(-), P(-) of £ obey (i)-(iii) in Assumption 2.2 on D. Then,
the convex C ¢ _¢ (D) has infinitely many extreme points for all § > C.(D).

Thus, one cannot assert that the number of extreme points of C_(D) is finite
in general. Therefore, the procedure of Remark 2.15 cannot always be reduced to a
finite number of one-dimensional Laplace inversions. In such cases, we propose to
determine the FPP on a finite number of grid points y € D. First, one computes the
Borel measure v by applying the inverse Laplace transform to the left-hand side of
(2.19). Next, for each y on the grid, one calculates the selection of eigenfunctions
Y(-,y) by taking the inverse Laplace transform of the left-hand side in (2.18). From
here, one can identify the value of the FPP on the grid by plugging the obtained values
into the equation (2.13).

3 Proof of Theorem 2.11 and a new Widder’s theorem

The goal of this section is to prove Theorem 2.11. Recall that we are interested in
separable power factor form local FPPs as in Definition 2.7. We start by focusing on
the function V in equation (2.6), and give a sufficient condition for V (¢,x,Y;) to be a
local FPP.

Proposition 3.1 Under Assumption 2.1, let V : [0,0) x (0,00) X D — R be continu-
ously differentiable in t (its first argument) and twice continuously differentiable in
x and y (the second and third arguments). Suppose further that V is strictly concave
and increasing in x and a classical solution of the HIB equation

X xv 2
a,v+$yvf%‘wv+ap';a il =0 on [0,00)x (0,00) x D, (3.1)

where £, is the generator of the factor process Y. Then, V (t,x,Y;) is a local FPP,
Moreover, the corresponding optimal portfolio allocations T among the n stocks are
of a feedback form and characterized by

Y,) oV (t,XT .Y, Y,) 0. V,V(t, X Y,
o(nym; = 2OV L pKI)IVVXTT) - )
XF 0.V (1, X7 ,Y,)
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Proof For the former statement, one only needs to repeat the derivation of [30, equa-

tion (1.6)] mutatis mutandis and to use 6(-)o(-)"!p = p (see Remark 2.2). For the

2
latter statement, we apply Itd’s formula to V (¢, X, ¥;) and substitute 1 W

for 9,V + .2,V to conclude that the drift coefficient of V (t,X7,Y;) is 19,V (t,X".Y;)
multiplied by

A(Y)V (t,XF Y)+pKk(Y,)V,V(, X7 Y) . 2
oV (t,X7,Y,) +X o(Y)m| - (3.3)

The process V(¢,X,Y;) is a local martingale if and only if the expression in (3.3)
vanishes, which happens if and only if (3.2) holds.

Remark 3.2 The process V(z,x,Y;) of Proposition 3.1 is a true FPP if V (¢, X, Y;) is
a true supermartingale for every @ € o7 and a true martingale for every optimal port-
folio allocation * of (3.2). In view of Fatou’s lemma, the supermartingale property
is fulfilled if infycpo )V (s,X{",Y;) is integrable for all # > 0 and 7 € &/. The mar-
tingale property is valid if the diffusion coefficients 9,V (r,X* ,Y)X* (c(¥;)x)T,
V,V(t,XF Y,)k(Y,) " of V(t,XT Y,) are dt x dP-square integrable on each [0,7] x Q.

The HJB equation (3.1) is a fully non-linear PDE and one does not expect to find
explicit formulas for its solutions in general. However, in EVE correlation market
models, for initial conditions of separable power type, the HIB equation (3.1) can be
linearized.

Proposition 3.3 Let p be an EVE correlation matrix as in Definition 2.3, and let
I = ; , and q = 17 +F . Then, the HIB equation (3.1) with an initial condition

V(0,x,y) = )/VX h (y)q, where h >0, has a classical solution in separable power

Sform, V(t,x,y)= }/7”‘ (t y), with g > 0 if and only if there exists a positive solution
to the linear PDE problem

du+Lu=0 on [0,00) xD, u(0,")=h (3.4)

posed in the “wrong” time direction. Hereby, £ is the linear elliptic operator of the
second order with the coefficients of (2.11). In that case, the two solutions are related
through

X7

1—y

V(t,xy) =y s—ult,y)*.

Proof Since we are looking for solutions of the HJB equation (3.1) in separable
power form, we plug in the ansatz V (z,x,y) = y’”%g(t,y) to arrive at

(Vye)k p pKVyg
2g

r
g+ Lyg+ lelg—H“lTpKVyg—kF =0, g(0,-)=n.

3.5)
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Next, we employ the distortion transformation g(¢,y) = u(¢,y)? and get the PDE

k
qui™ la,u—l— Z K K,J(qu 1ayiyju+q(q—1),,,'172(8”14)(8”14))

l/:l
r T r
+ zqzuq’z(vyu)TkTprKVyu+q(oc—i—FKTpTA) Ul 'V u+ EATMﬂ =0
3.6)

equipped with the initial condition u«(0,-) = h. Moreover, the assumed positivity of g
translates to # > 0, so that we can divide both sides of (3.6) by 1?1, In addition, we
insert the identity p 'p = plg, of Definition 2.3 to end up with

B,LH— Z k'K )ijOy iyt (OH—FKTpTl) Vyu—i—ElTlu
ij=1 2q (3.7)

1
+ z—u(q—i—qu— 1)(Vyu) "k 6Vyu = 0.
The crucial observation is now that the non-linear term in the PDE (3.7) drops out
thanks to ¢ = = +F . Hence, u is a positive solution of (3.4). The converse follows by
carrying out the transformatlons we have used in the reverse order.

Proposition 3.3 reduces the task of finding solutions of the HIB equation (3.1)
in separable power form to solving the linear PDE problem (3.4) set in the “wrong”
time direction. The latter has been studied in Widder [31] with . being the Laplace
operator on R¥ and in Nadtochiy and Tehranchi [27] for more general linear second-
order elliptic operators on R¥. We establish subsequently a variant of [27, Theorem
3.12] that allows for linear second-order elliptic operators on domains D C R¥.

Theorem 3.4 Under Assumption 2.2, a function u: {(0,y0)}U((0,00) x D) — (0,0)
is a classical solution of diu~+ Lu = 0 with u(0,y0) = 1 if and only if it admits the
representation

u(t,y) = / W ) V(). (3.8)
S (D)

where Vv is a Borel probability measure on S (D) and ¥ : S (D) x D — (0,0) is
a v-Bochner integrable selection of positive eigenfunctions. In this case, the pairing
(W, V) is uniquely determined by the function u.

Proof Letu: {(0,y0)}U((0,00) x D) — (0, 0) be a classical solution of d,u+.Zu=0
with u(0,y9) = 1. Recalling the C3-diffeomorphism Z : D — R¥ from Assumption
2.2 and taking without loss of generality Z(yo) = 0 (otherwise we compose = with
the translation by —Z(yo)) we define : {(0,0)} U ((0,00) x R¥) — (0,00), (£,2)
u(t,E71(z)). Then, du(t,y) = du(t,Z(y)), dyu(t,y) = 21;:1 8Zjﬁ(t,5(y))8yi5j(y),

and

Dy u(t,y) =
i,

i az,-/zj,ﬁ(LE(y)) A Zir (y y, Ei( i ( )ayl'iji’()’)-

1 =1
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Plugging these into the PDE for u we conclude that % is a classical solution of d;7 +
Z1 = 0 with 7(0,0) = 1, where .Z is the operator of (2.10), (2.9) on R¥. From [27,
Theorem 3.12] we infer that

a(t,2) = /S P 2)v(dL),

—(RF)

with a Borel probability measure v on Sy(Rk) and a v-Bochner integrable selection
of positive eigenfunctions ¥ : S (R¥) x RF — (0,0) for the operator .Z (note that
Y(¢,-) € C*M(R¥) by the Schauder interior estimate, e.g., [11, inequality (6.23)]).

Next, we express .Z ¥((,-) as

S Y ((vE)7avE) (2710) 2 7S )

and see that Z¥({,-) = CW(L,-) is equivalent to L¥(,Z(-)) = CP(L,E(+)).
Thus, S¢(R¥) =S« (D) and

e =a(n20) = [ P(C20) vidd),

where ¥ (-,-) :=¥(-,Z(+)) : S¢(D) x D — (0,0) is a v-Bochner integrable selection
of positive eigenfunctions for the operator . (observe that the images of compact
sets under = are compact).

Conversely, for a function u given by (3.8), it holds u(0,y¢) = 1. Moreover, defin-
ing the function u as before we find that

u(t,z) = /SZ(D) e '6 ‘P(C,E‘l(z)> v(dQ).

As above, we have that S & (D) = S(R¥) and that P'(-,-) :=¥ (-, E () : Sz(R¥) x
R¥ — (0,0) provides a v-Bochner integrable selection of positive eigenfunctions for
the operator 2. By [27, Theorem 3.12], % is a classical solution of i+ Lui=0
with 7(0,0) = 1 (here, we again assume without loss of generality that Z(y) = 0).
Since (dyu+ .Zu)(t,Z(y)) = (du+ ZLu)(t,y), the function u is a classical solution
of du+ Lu = 0. Lastly, according to [27, Theorem 3.12] the pairing (¥(,-),V) =
(¥(-,£71(-)),v) is uniquely determined by the function #(-,-) = u(-,Z~!(-)), so the
pairing (¥, v) is uniquely determined by the function u.

We now have all the ingredients needed to prove Theorem 2.11.
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Proof (Proof of Theorem 2.11) Take a function h : D — (0,0), and consider

1=y
;C_ Yg(t,y), where g>0 and g(0,y) =h(y)9.

V(t,xy) =v"

First, we will show that V(z,x,Y;) is a separable power factor form local FPP if and
only if V(¢,x,y) is a classical solution to the HIB equation (3.1). Sufficiency follows
trivially from Proposition 3.1. To prove necessity, consider a portfolio allocation 7w €
/. We apply Itd’s formula to }/7% g(t,Y;) and infer from the conditions (ii) and
(iii) in Definition 2.6 that the resulting drift coefficient must be non-positive for all
7 € &/ and equal to O for any maximizer n* € &/. Equating the maximum of the drift
coefficient over all © € &7 to 0 we end up with the PDE in (3.5) for g. Thus, V is a

classical solution to the HIB equation (3.1).

It follows by Proposition 3.3 that V (z,x,Y;) is a separable power factor form local
FPP if and only if g(z,y) = u(t,y)?, where

diu+ZLu=0 on [0,) x D with u(0,-) = h(-). 3.9)

By Theorem 3.4 each solution u of (3.9) is uniquely identified with a pairing (¥, V),
and is given by the right-hand side of (3.8). This yields the necessity and sufficiency
of the representation (2.12), as well as the identity (2.13). Finally, the characterization
(2.14) of the optimal portfolios is a direct consequence of (3.2) and (2.13).

4 Proof of Theorem 2.14 and further ramifications
4.1 Proof of Theorem 2.14
We start our analysis of the pairing (¥, v) by establishing Theorem 2.14.
Proof (Proof of Theorem 2.14) Let D' C D be a bounded subdomain with a C* bound-

ary dD' C D and y : D' — [0, 1] be a thrice continuously differentiable function with
compact support in D’. Then, Assumption 2.2 and the formulas

ai(y) = ((Vz )Tave) (2).
)(E )—l— trace(Hess(E 1)6) (E(y))7 4.1)

=
=
I

/—\
[X]

render LadyZenskaja et al. [17, Chapter IV, Theorem 5.2] applicable to the problem
duup + Lup =0 pointwise on [—€,0] x D', up|i—eoxop =0, up(0,-) =hy

(posed in the “right” time direction), yielding a unique classical solution with 1-
Holder continuous d;upy, dy,y;upy in the y variable, T_Holder continuous 0, iy, Oy Uy
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in the ¢ variable, and 1;” -Holder continuous o, uy in the 7 variable. In particular, uy

obeys the Feynman-Kac formula

uy<—ny>=ﬂz%ﬁpﬂﬂﬁ<hwxzolhy>@

Z():y:|7 (t7y)6[07£]XDI’

where Tpy is the first exit time of Z from D'.

Using the described construction for a sequence of subdomains D’ and functions
v increasing to D and 1p, respectively, we arrive at the monotone limit

u(—t,y) =E [ejg P B(Z) Vapary | Z0 = y} , (t,y)€[0,e]xD

of up, which is locally bounded on [0, €] X D by assumption. Thanks to this and
the local regularity estimate [17, Chapter IV, inequality (10.5)] on every fixed set
(—€,0) x D’ (and, hence, on its closure [—¢,0] x D’) we can extract a subsequence of
up converging uniformly together with d;uyy, dy,upy, and dy,y;upy on every fixed set
[~€,0] x D'. Thus, u is a positive classical solution of the problem (2.17).

Now, consider an arbitrary positive classical solution u of the problem (2.17), and
suppose that there exist pairings (Y1), v()) and (¥, v®)) such that for all y € D

mw:/’ wmwdwme:/’ PO (¢ ) v 7).
S (D) Sg(D)

In view of [29, Chapter 4, Theorem 3.2 and Exercise 4.16] (see also Section 4.2
for more details), the elements of S (D) are bounded below, so that the functions
al) (t,y) = fS](D) e bt 'f’(i)(g,y) v(® (d&), i =1, 2 are finite on [0,c) x D. By Theo-

rem 3.4, each 2\ is a classical solution of
o) + 2 =0 on {(0,y0)}U((0,) x D). (4.2)
Moreover, each

V(1) = u(t,y) for (¢,y) € [—€,0] x D,
T aW(e,y) for (t,y) € (0,00) x D

is a positive classical solution of the PDE d,v!) + 2v()) = 0 on [—¢,0) x D. Indeed,
on the sets [—€,0] x D and (0,00) x D this PDE holds by construction, whereas

9,u(0,y) = Lim o (t,y) = ~lim 2 (t,y) = —2i"(0,y), yeD
t I3

by the interior Schauder estimate of [27, Theorem 6.2].

vl (1—¢y)
v (—e,y0)”
i =1, 2, which solve the PDE (4.2) on [0, ) x D. By Theorem 3.4, there exist pairings

Shifting the time by £ and renormalizing v\¥), i = 1, 2 we get ¥ (1, y) :=
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(PO, VD), i =1,2 such that ¥ (1,y) = f5_ e PD(,y)VI(E), i=1,2.Tn
particular, for (z,y) € (0, )><Dandz_1 2,
()
[ ST = e =
_ Jso e S p(L,y) vi)(dg)
v (—¢€,y0) '

4.3)
Plugging in first y = yo, then y € D\ {yo }, and relying on the uniqueness of the Laplace
transform ([3, Section 30]) we read off v()(d{) = o egs v(i) (d¢) and PO = @),
i=1,2, from (4.3). Hence, for (#,y) € (—€,0] x D and l = 1, 2,
u(t,y) = v (t,y) = v (—g,30) 7 (1 4 €,)

_V(i)_ e (t+¢)

S0er) [ SBOE @)
= [ ey,

S (D)

In particular, we get from the latter equation:
[ esgnviag = [ el v,
S (D) Se(D )

Just like above, plugging in y = yo, then ye D\ {yo}, and utilizing the uniqueness of
the Laplace transform we obtain v(!)(d¢) = v(?)(d¢) =: v(d{) and ¥V = ¢ =
Y. Combining this with equation (4.4) we get that any positive classical solution to
the problem (2.17) must be as given in (2.18). This yields uniqueness as desired, and
in the special case of y = yg, we obtain (2.19).

4.2 Preliminaries on positive eigenfunctions

As a preparation for the proofs of Propositions 2.17, 2.19, 2.21 and 2.22, we
recall some facts about the sets S (D) and Cy_¢(D), § € S (D) from the positive
harmonic function theory. Throughout the subsection we let . satisfy Assumption
2.2 and infer from (4.1) that .Z is then locally uniformly elliptic with locally bounded
and locally n-Holder continuous coefficients.

Definition 4.1 (Green’s measure) Consider the solution Z of the generalized mar-
tingale problem on D associated with %) = £ — P(y) (see [29, Section 1.13]). If

D’HEU o P@)s 1, (7,)dr | Z

0

=y| <o (4.5)

for all bounded subdomains D’ C D with D’ C D and y € D, then the positive Borel
measure defined by (4.5) is called the Green’s measure for .Z on D. The density
G(y,z) of the Green’s measure, if it exists, is referred to as the Green’s function.
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By [29, Chapter 4, Theorem 3.1 and Exercise 4.16] for the operators . — (,
{ € R, we have the next proposition.

Proposition 4.2 If { € R is such that the Green’s function exists for £ — {, then
Cy (D) #0.

We proceed to the corresponding classification of the operators . — {, { € R.

Definition 4.3 An operator .£ — { on D is described as

(i) subcritical if it possesses a Green’s function,
(ii) critical if it is not subcritical, but C»_¢ (D) # 0,
(iii) and supercritical if it is neither critical nor subcritical.

Thus, we are interested in the values of § for which £ — { is subcritical or critical,
that is, § € S (D). As it turns out, S & (D) is a half-line under Assumption 2.2.

Proposition 4.4 (Pinsky [29], Chapter 4, Theorem 3.2 and Exercise 4.16) There
exists a critical eigenvalue {. = (D) € R such that £ — ¢ is subcritical for > £,
supercritical for § < &, and either critical or subcritical for § = ..

When the potential P is non-positive, more information about the classification of
the operator . is available.

Proposition 4.5 (Pinsky [29], Chapter 4, Theorem 3.3 and Exercise 4.16) For an
operator £ with P < 0 one of the following holds:

(i) P<0,P#0, and £ is subcritical,
(ii) P =0, the solution of the generalized martingale problem on D associated with
L is transient, and & is subcritical,
(iii) P =0, the solution of the generalized martingale problem on D associated with
< is recurrent, and £ is critical.

Remark 4.6 When 7y > 1, the potential term in (2.11) is non-positive. This, put to-
gether with Proposition 4.5, yields 0 € S ». Thus, [0,00) C S & by Proposition 4.4.

4.3 Proofs of Propositions 2.17, 2.19, 2.21 and 2.22

At this point, we can read off Propositions 2.17, 2.19 and 2.21 from appropriate
results in [21] and [29].

Proof (Proof of Proposition 2.17) By Propositions 4.2 and 4.4,
inf{c eR: (e gf(D)} = {.(D) € Sy(D).
If P is constant and the solution of the generalized martingale problem on D for & — P

is recurrent, then . — P is critical by Proposition 4.5, and hence, {.(D) = —P. In this
case, [29, Chapter 4, Theorem 3.4 and Exercise 4.16] yield |C»_¢ (p)(D)| = 1.
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Proof (Proof of Proposition 2.19) It suffices to put together Proposition 4.4 with [29,
Chapter 4, Remark 2 on p. 149, Theorem 3.4 and Exercise 4.16].

Proof (Proof of Proposition 2.21) Note that, for any ¢ > {.(R) and f € C 'o_¢,0one
has ¢ f € Cy ¢ Therefore, it is enough to prove |C§;§\ =1, { > {.(R¥), which is
readily obtained by combining Proposition 4.4 with Murata [21, Theorem 5.3].

Remark 4.7 The condition (2.22), on . and {, needs to be verified on a case-by-case
basis. For example, consider a locally n-Hdolder continuous non-positive bounded
radially symmetric potential Py with Py(r) = cr=2, r > 1 for some ¢ < 0. Take .Z =
%(A + Py)¢ for some ¢ as in Proposition 2.21 and { = 0. Then,

2—k+4/ (k=2)2 —4c 2—k—1/ (k=2)2—4c
go(r)=cir 2 +cor 2 =

for some c1,cr € R. By [21, Theorem 4.6(iii) and Theorem 2.4(ii)] the operator A + Py
is subcritical, so that ¢; # 0 by [21, Theorem 3.1(ii)]. Thus, (2.22) holds.

In the context of Proposition 2.22, the structure of the sets C»_¢(D), § > C.(D)
has been described in [1, Theorems 6.1 and 6.3], which we briefly recall for the
convenience of the reader.

Definition 4.8 (Minimal eigenfunction) A function f € Cy_¢(D) is referred to as
minimal if f < f implies f = f forall f € Cy_¢(D).

Proposition 4.9 (Ancona [1], Theorems 6.1 and 6.3) In the setting of Proposition
2.22, every minimal element f € Cy_¢(D) has the property lim,_,, f(z) > 0 for
exactly one point y € dD and is uniquely determined by y. In addition, for every
fe Cg_C(D), there exists a unique Borel probability measure & on dD such that

0= ReE. @6
aD
where f is the minimal eigenfunction associated with y.
Proposition 2.22 is a direct consequence of Proposition 4.9.

Proof (Proof of Proposition 2.22) The uniqueness of the Borel probability measure
& in the representation (4.6) shows that the extreme points of C»_¢ (D) are precisely
the minimal eigenfunctions fy, y € dD. Clearly, |{f, : y € dD}| = |dD| = oo.

5 Merton problem in stochastic factor models

In this section, we consider the framework of the Merton problem, in which an
investor aims to maximize her expected terminal utility from the wealth acquired
through investment:

sup E{UT(X;F’YT)]
nes
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Thereby, the time horizon T and the utility function vr are chosen once and for all
at time zero. It is well-known (see e.g. [10, Section IV.3]) that the dynamic pro-
gramming equation for the Merton problem within the Markovian diffusion model
(2.1)-(2.3) takes the shape of the HIB equation

1AV +pKkd,V,V[>
W+ LYV -3 v =0. (5.1)

In contrast to the preceding discussion, here the HIB equation is equipped with a
terminal condition V(T,-,-) = vr and, hence, posed in the backward (“right”) time
direction. It turns out that, under Definition 2.3, we can reduce the backward problem

to a linear second-order parabolic PDE posed in the “right” time direction, provided

that the terminal utility function is of separable power form: vy (x,y) = yyﬁl:; er(y),

and that appropriate technical assumptions hold.

Theorem 5.1 Let v € (0,1). Suppose the market model (2.1)-(2.3), the correlation
matrix p, and the linear elliptic operator of the second order £ with the coefficients

a(-)=x()"xk(), b()=a()+Ik()'p'A(), P()= %M')TA(J

satisfy Assumptions 2.1, 2.3, and 2.2, respectively, where I' = I%Y and q =

I+I'p*
Suppose further that the volatility matrix x(-) of the factor process is bounded, the
weak solution Z of the SDE associated with £y = £ — P(y) remains in D, and the

terminal utility function is of separable power form Vr(x,y) = }/’”%h(y)q, with an
h € C>"(D) bounded above and below by positive constants and such that

(1,3) = VyE [l PE1 1(Z,) | 20 = 3]

is bounded on [0,T] x D. Then, the value function for the corresponding Merton
problem, V (t,x,y) = supc ., E[or(XF,Yr) | X = x, Y; =], can be written as

x=r

=y

V(t,xy)=v" u(t,y)?. (5.2)

Hereby, u is a classical solution of the linear PDE problem
du+Lu=0 on [0,T)xD, u(T,-)=h.

Moreover, every portfolio allocation ©* fulfilling

L1 Vyu(t,Y;)
o(Y)m = y(x(n) +qpr<(Y:)M) (5.3)

is optimal.
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Proof By the classical verification paradigm (see e.g. [10, Chapter IV, proof of The-
orem 3.1]), it is enough to show that for every portfolio allocation & € o the process
V(t,XF,Y;),t € [0,T] is a supermartingale, and that for every solution 7* of (5.3) the
process V(t,X™ ,Y;), ¢ € [0,T] is a martingale.

We follow the proof of Proposition 3.3 in the reverse direction and find that
g(t,y) :==u(t,y)? is a classical solution of the problem (3.5), whereas the function V
defined by (5.2) is a classical solution of the HJB equation (5.1) with V(T,-,-) = vr.
For any 7 € </, we may now apply Itd’s formula to V(z,X,Y;) and replace d,V +

2
L,V by %W to see that the drift coefficient of V (¢,X/,Y;) is the prod-
uct of 39,V (¢,X7,Y,) with the expression in (3.3) and, in particular, non-positive.
Hence, the local martingale part of V(¢,X,Y;) is bounded below by —V (0, x,y) and,
consequently, a supermartingale. Thus, V(¢,X,Y;) is a supermartingale as well.

Next, we deduce from the proof of Theorem 2.14 that u(#,y) admits the stochastic
representation

u(t,y) =E|el P& p(z, )

Zy y}

(recall that Z remains in D by assumption). In addition, our further assumptions imply
that Vyu is bounded on [0, 7] x D, and that u is bounded above and below by positive
constants on [0,7] x D. Together with the boundedness of the volatility matrix ()
of the factor process and the Sharpe ratio A(-) (see Assumption 2.2(i)) this yields
the boundedness of & (¥;)x" via (5.3). Finally, the drift coefficient of V (r,X* ,¥;)
vanishes and the quadratic variation of its local martingale part computes to

t . 2 ,J,quz B 2
/ 7T o (0w 4+ s (7)) (o 1) () V(s o)
A -

+21y2_yj XV (s 1) (01w pr(r)Vyu(s. ) ds.
(5.4)

The expectation of the latter integral is finite for all 7 € [0,T], since o (¥;)x, and

u(s,Yy) T i(Yy)Vyu(s,Yy) are bounded, while Sup;¢fo,7] E[(X")> 27] < oo thanks to
the boundedness of o (¥;)7; and A (¥;) in

X5 = xexp < [ (oom) aass [ (o0)m) aw— [ |c<xg>m:|2ds)-

We conclude that V (¢, X" ,Y;) is a true martingale.

6 Discussion of EVE assumption

This last section is devoted to a thorough investigation of Definition 2.3 that plays
a key role in the proof of Theorem 2.11. It is instructive to start with the two extreme
cases corresponding to taking p = 1 and p = 0 therein, respectively. Suppose first that
A =01in (2.3), in other words, the components of the Brownian motion B driving the
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factors are given by linear combinations of the components of the Brownian motion
W driving the stock prices. We can then reparametrize the model such that B=W,
p = Iz, and plp= 14, . Consequently, Definition 2.3 holds with p = 1. The resulting
market is complete, and we find ourselves in the framework of [27, Section 2.3]. It
is therefore not surprising that the HJB equation (3.1) can be reduced to a linear
PDE, even though the linearization in Proposition 3.3 differs from the one in [27,
Section 2.3]. On the other hand, when p = 0 in (2.3), the Brownian motions B and W
become independent, leading to an incomplete market. Nonetheless, Definition 2.3 is
still satisfied with p = 0. Thus, the linearization in Proposition 3.3 goes far beyond
the complete market setup.

More generally, Definition 2.3 can be put to use as follows. In practice, the corre-
lation matrix p can have hundreds or thousands of entries and, hence, might be dif-
ficult to estimate accurately in its entirety. However, one can attempt to obtain a less
noisy estimate by projecting an estimate for p onto the submanifold of dy x dp matri-
ces fulfilling Definition 2.3. Restricting the attention to the non-trivial case dy > dp
(see Remark 2.4), with the exception of the zero matrix, the latter matrices can be
written uniquely as rQ, where r € (0,1] and Q has orthonormal columns, thereby
forming a (1 + dwdp — dp(dp + 1)/2)-dimensional submanifold of RW >4 As it
turns out, the most tractable projection onto this submanifold is that with respect to
the Frobenius norm (also known as the Hilbert-Schmidt norm) on R <45,

6.1 Choice of r and Q

Let us equip the space R <8 with the Frobenius norm
dw dp 1/2 1/2
|Alp = Z Z aizj = (traceATA) .
i=1 j=1

For an estimate p of p, we are able to find a constant r € [0,1] and a matrix with
orthonormal columns Q that minimize the distance induced by the Frobenius norm.

Proposition 6.1 Consider the minimization problem

min |p — rQ|p such that r € [0,1], Q'Q =1,

Then, r* — Tce(@'p)!”2

1/2 T~
dBp) " and 0*=p(p'p)~'/? are the minimizers.
Proof Equivalently, consider the problem
min|p — Q% suchthat Q' Q = Iy,

for fixed r € [0, 1] and minimize over r € [0, 1] subsequently. Applying the method of
Lagrange multipliers with a dp X dp Lagrange multiplier matrix A we get

200-p)=0A+A") = 0@l,-A-AT)=2p. (6.1)
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Passing to the transpose on both sides of the last equation, taking the product of the
resulting equation with the original equation, and recalling the constraint we see

P2y —A—ATY?=4p"p «— rQ,-A-AT)=20"p)">

where (p'p)'/2 is the dp x dp square root of the matrix p ' p. Together with (6.1)
and the notation (p ' p)~'/2 for the inverse of (p ' p)'/? this yields

0=rp(p'p)"% (6.2)

Plugging the formula for Q back into the objective function we are left with the
minimization problem

r332]|5—r§(ﬁTﬁ)’l/z|i = rrgr&iﬂ}(trace(ﬁTﬁ)—2rtrace(ﬁTﬁ)1/2+r2dB>.

. . trace(p )/ . .
Consequently, the optimal r is %, that is, the average of the singular values

of p, whereas é should be picked according to (6.2).

6.2 Choice of p

If one is only interested in the parameter p from Definition 2.3, then it is most
natural to minimize [p' p — ply,| for a selection of a norm |- | on R4 9. When |- |
is the operator norm (also known as the spectral radius or the Ky Fan 1-norm),

/\T/\
—pl | = 0 —
o' p p@llggﬁl rl,

where 6; < 6, < --- < 6y, are the ordered eigenvalues of ﬁTﬁ (or, equivalently, the
ordered squared singular values of p). In this case, |p'p — ply,| is minimized by
p=(61+64,)/2. When | - | is the Frobenius norm,

d 1/2
AT . 2
P P — play| = <29i—l7| ) :
i=1
The minimizer for the latter is p = (61 + 62+ - + 64,)/dg. When |- | is the trace
norm (also known as the nuclear norm or the Ky Fan dg-norm),
T &
|p p _Pld3| = Z |91_p|a

i=1

which is smallest for the median of {6;,6,...,0,,}.
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6.3 Example: affine factor models

We conclude by illustrating the use of the EVE assumption in the framework of
affine market models with non-negative factors. In that situation, both the forward in-
vestment problem and the Merton problem can be reduced to the solution of a system
of Riccati ordinary differential equations (ODEs). Consider the affine specialization
of the factor model (2.1)-(2.3):

dy ,
3 =w(Y)dt+ Y ou(Y)dw/, i=1,2,....n
t

j=1
ay, = (M"Y, +w)dr +x(;) " dB;,
=p Wi+ATWS,
where M has non-negative off-diagonal entries, w € [0,00)%, and u(-), o(-), x(-), p
are such that

—1
20)TA0) = () o) (o)) u)=ATy,
K'(y)TK(y) = diag(L1y1,L2y2,...,kak) with Ll,Lz, . 7Lk > 07
k() 'p'Ay)=N'y.

Remark 6.2 The condition (6.7) is necessary for the process Y of (6.4) to be [O,oo)k-
valued and affine (see [9, Theorem 3.2]). Conversely, the SDE (6.4) with volatility
coefficients satisfying (6.7) has a unique weak solution, which is affine and takes
values in [0,0) (see [9, Theorem 8.1]).

Suppose now that the initial utility function for the forward investment problem or
the terminal utility function for the Merton problem is of separable power form with
h(y) = exp(H "y + ho). Under the EVE assumption, the HIB equation (3.1) arising in
the two problems can be transformed into the linear second-order parabolic PDE of
(3.4) (see the proof of Proposition 3.3), which in the setting of (6.3)-(6.8) amounts to

1 r
du+ 5 Y Liyidyyu+y" (M+N)Vyu+w' Viu+ ZyTAu =0.
i=1

Inserting the exponential-affine ansatz u(t,y) = exp(®,' y+ 6,) we obtain

r
y ¢,+@,+22L,y, ) +y (M+N)¢,+WT¢,+ZyTA:O.

=

Equating the linear and the constant terms in y to 0 leads to the following system of
Riccati ODEs

k
&+ ch’ ZM+N,,cp+ A_O i=1,2,...,k,
=

@f"‘W (p[:()
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We note that @ is completely determined by the solution @ of the system (6.9). The
latter can be solved numerically in general and, for special kinds of M and N, even
explicitly. For example, when M and N are diagonal the system (6.9) splits into k
one-dimensional Riccati ODEs

.o 1 ) . r
<15,’+§Li(<15,’)2+(Mi,'+Nii)¢,’+2—in:07 i=1,2,... k (6.11)

These ODEs can be solved by a separation of variables and subsequent integration.
For instance, when 7y € (0, 1) and the discriminants D; := (Mj; + N;)* — L,-%A,- asso-

ciated with the quadratic equations %Lizz + (M +Nij)z+ ZLin = 0 are positive for all
i, we obtain the (real) roots

. _:—Mii—Nii-i-\/ﬁi . _:_Mii_Nii_\/ﬁi
+,i L[ ) —,1 714 .
The general solution of (6.11) then becomes
) ., .o—VDit
O s e i=1,2,... k (6.12)

1— e vDit

and one can find the constants ; by setting @ to H at the terminal time (for the
Merton problem) or at time O (for the forward investment problem).

We conclude by discussing, in the latter setting and with M;; + N;; > 0 for all i,
the true FPP property of the process

X
1

-y Y
_yu(t,Y,)q:ny exp (q@lTYt —|—q®,). (6.13)

1—

V(t,x,Y) =7 Ty
By arguing as in the second paragraph of the proof of Theorem 5.1 we conclude that
V(t,XF,Y,) is a true supermartingale for each 7 € .7 It remains to see if V (¢, X7 ,¥;)
is a true martingale for some 7* € o7 as in (3.2). To this end, we consider the expec-
tation of the integral in (5.4). In view of the Cauchy-Schwarz inequality and Fubini’s
theorem, it suffices to control the expectations of the two summands in the first line
of (5.4) uniformly over s € [0,7]. The random variables entering the two summands
read in the case at hand as follows

. SEAT (pTNT s T 1 s
X® = xexp / A 4N Y,dr+/ (o)) dW,—f/ o) [2dr).
o\ 7 -y 0 2 Jo

1 2 iy
lo(v)z |’ = 7 <ATYS+ F"@JNTYS +P5122Li(q)sl)2ysl>>
i=1

k
2 . .
k(¥ V(s X)[* = u(s. Xo)? Y. Li( @)Y,

i=1

With p1,py > 1 satisfying p;' +p; ' =1, 7:=1—yand p3:= 1 —2p2 < 1, we
bound the expectation of the first summand in the first line of (5.4) using Holder’s



28 L. Avanesyan, M. Shkolnikov, R. Sircar

inequality and the supermartingale property of stochastic exponentials (see e.g. [15,
Chapter 3, discussion before Proposition 5.12]) by y**x?Y times

L

s T N P1
E IG(Ys)ﬂf|2meXp<2p17/ (O-(Yr)nr*) l(Yr)dr—pﬁps/ \G(Yr)ﬁf|2dr>]
0 0
1
s T _ s 5 23
‘E CXP<2P27/ (G(Yr)ﬁf) dWr—sz(l—m)/ o (¥,)m| dr)]
0 0
1
s T TNT s a
<E |0'(Ys)7rs*|2p1 exp<2p177/ (/\y_’_q*;;),];’ >Y,dr—p17p3/ ‘G(Y,)n:ﬂzdr)] .
0 - 0

For every i and r, the coefficient of ¥/ in the latter exponential admits the estimate

_[2A;  2gN; D! 2 ' ]
p1}’< Py qNii r_p3</\l-—|—quidS,l,‘i‘pqui(@;)Z))

Y l—-y ¥ r

[ 2y- 2q(y— 2
< Pl}’(/\i % + Niich M —Li(ch)? pqyng.) =: B,

where
D B if N; >0,
bl z—; if N <O

(note that (6.12) and M;; +Nj; > 0 imply z_; < & <z, ; <0).

if py >0,
and cl% _ ) . p3 =
z—; if p3 <0

In view of the uniform boundedness of any given moment of ¥ over s € [0,¢]
(see Filipovi¢ and Mayerhofer [9, Lemma A.1, Lemma 2.3(iv) and Theorem 3.2])
and Holder’s inequality, it suffices to control the exponential moment of fg Y,dr of
an order slightly larger (componentwise) than f§ := (B4, f2,..., ) uniformly over
s € [0,¢]. With the explicit solution

M VA .
—M;; + +/A;tan [ arctan + t, =1,2,...,k

to the system of Riccati ODEs in [9, Theorem 4.1(ii), third line of display (4.5)],
where A; = 2L;3; — Ml%, we find that the exponential moment in consideration is
bounded uniformly over s € [0,¢] as long as

7 —2arctan(M;; //A;)

t < i . 6.14
lzlilgnk VA; ( )
Similarly, the expectation of the second summand in the first line of (5.4) is less or
2
equal to %ezq@s times

1

k AP (AT q®INT o >\ |
<ZL1‘((D;)2Y;> exp 2p1V/ R b Yrdr—plyp_g/ lo(Y)mr|"dr]|
= o\ 7 l—y 0

E
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which is also bounded uniformly over s € [0,¢] as long as (6.14) holds. All in all, the
process in (6.13) is a true FPP at least until (but possibly not including) the time on
the right-hand side of (6.14).
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