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Abstract

We study the stochastic effect of resource exploration in dynamic Cournot models of ex-
haustible resources, such as oil. We first treat the case of a monopolist who may undertake
costly exploration to replenish his diminishing reserves. We then consider a stochastic game be-
tween such an exhaustible producer and a “green” producer that has access to an inexhaustible
but relatively expensive source, such as solar power. The effort control variable is taken to be
either continuous or discrete (switching control). In both settings, we assume that new discover-
ies occur according to a jump process with intensity given by the exploration effort. This leads
to a study of systems of nonlinear first order delay ODEs. We derive asymptotic expansions for
the case of a small exploration success rate and present some numerical investigations.

Keywords: Cournot games, exploration control, stochastic differential games, exhaustible re-
sources

JEL Codes: C73, L13, L71

1 Introduction

We initiate a study of the effect of exploration in dynamic Cournot games. In the model studied in
[HHS10], players competed in a dynamic non-co-operative game as their reserves of an exhaustible
resource depleted, but there was no possibility of exploration and discovery of new reserves. Here
we incorporate controllable exploration with costs associated with discovery efforts. For an intro-
duction to games and oligopolies, we refer to [Gib92, Viv01]; for an entry into differential games,
we recommend [BO99, DJLS00, Fri71]; and for stochastic control problems [Dav93]. However, the
combination of dynamic games and control of jump processes is novel here to our knowledge, and
we attempt, as best as we can, to give a self-contained exposition.

The full two or N -player nonzero sum differential game analyzed in [HHS10] is characterized
by systems of nonlinear HJB partial differential equations which are extremely difficult to resolve
numerically. Here, we concentrate mainly on reduced versions of the full exploration game which
allows us to deal with ordinary differential equations or variational inequalities. First, we study
the full monopoly problem and then the game between a producer of energy from an inexhaustible
(or renewable) but costly resource, such as solar power, and a producer of energy from a cheap
but ultimately exhaustible resource, such as oil, whose reserves may be temporarily replenished by
costly exploration. Our goal is to understand the effect of the possibility of finding new reserves
on extraction strategies and market prices.
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We work throughout in a Cournot framework in which producers choose quantities of energy
to produce and receive profit based on a single market price determined through aggregate supply.
For simplicity of exposition and specific calculations and numerics, we consider a linear inverse-
demand curve. In contrast to the Cournot game where the strategic variable is quantity, one may
also consider a Bertrand version where producers set prices and supply as much as demanded by
the market. Such a dynamic price-setting stochastic Bertrand model, more suitable for describing
consumer goods markets, is studied in [LS11a]; see also [Viv01] for a textbook treatment of various
oligopoly models.

In the simplest static (or one-period) Cournot problem, given the aggregate production quantity
Q ∈ [0, 1], the market price is given by the (inverse-demand) function P (Q) = 1 − Q. When there
is one player with marginal cost of production s1 ∈ [0, 1), he chooses his optimal quantity q1 ≥ 0
to maximize his monopoly profit function

Π1 = q1(1 − q1) − s1q1.

The optimal quantity and profit are given by

q∗1 =
1

2
(1 − s1), Π∗

1 =
1

4
(1 − s1)

2.

When there are two players with costs (s1, s2) ∈ [0, 1]2 and non-negative production quantities
(q1, q2), the aggregate quantity is Q = q1 + q2 and each player’s profit function is

Πi = qi(1 − qi − qj) − siqi, i = 1, 2; j 6= i.

In a Nash equilibrium (q∗1 , q
∗
2) ∈ [0, 1]2 for the duopoly, each player maximizes profit as a best

response to the other player’s equilibrium strategy:

Π∗
i = max

qi≥0
qi(1 − qi − q∗j ) − siqi, i = 1, 2; j 6= i.

For costs s1, s2 < 1
2 , it is easy to see that both players have positive equilibrium productions

q∗i =
1

3
(1 − 2si + sj), Π∗

i =
1

9
(1 − 2si + sj)

2, i = 1, 2; j 6= i.

However, if player j’s cost is too high relative to player i’s, specifically sj > 1
2(1 + si), then he is

blockaded from production, meaning his equilibrium quantity is zero. In this case, player i has a
monopoly and the Nash equilibrium is given by

q∗i =
1

2
(1 − si), q∗j = 0, Π∗

i =
1

4
(1 − s1)

2, Π∗
j = 0.

A full characterization of the static N -player game for a wide class of general inverse-demand
functions is given in [HHS10, Section 2], and for Bertrand games in [LS11a, Section 2]; a comparison
between Cournot and Bertrand in terms of the number of blockaded players is in [LS11b]. Here, to
highlight the essential effects of exploration in a transparent way, we stay with the linear inverse-
demand function and the one- or two-firm cases.

In the single-agent case, the literature on joint exploration and production decisions was started
in the late 1970s. Let us especially highlight the seminal paper of Pindyck [Pin78] that considered
a deterministic model of exploring for a non-renewable resource (that is, one which is gone when
used up, but of which new discoveries can occur). He assumed exploration to be incremental
and represented as a deterministic reserve addition. Pindyck showed that the resulting resource
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shadow price, corresponding to the marginal value of additional reserves, will first decrease and then
increase as reserves run low. This generalized the original result of Hotelling [Hot31] for exhaustible
resources without discovery that resource price grows at the intertemporal discount rate. A series of
works extended Pindyck’s model for the case of stochastic discoveries. If exploration is punctuated
by large discoveries, it is best represented as a point process [DP80, AC82, Son85, HWCK94]. This
is the point of view we take in this paper. In particular, the model of [DP80, AC82] essentially
matches our monopoly setup with continuous effort in Section 2.3, except that we interpret value
of production q as revenue P (q) · q, whereas the existing works simply interpret it as utility of
consumption u(q).

Finally, if the total size of reserves is unknown, its dynamics can be described via a stochastic
differential equation with controlled volatility and drift [Pin80]. If the global resource is finite,
like in the case of hydrocarbons, over the long term total possible discoveries are bounded and
exploration becomes harder as time goes on, see [Pin78]. In this paper, again as in [DP80], we
make the simpler assumption that exploration can go on forever, which is akin to unbounded
technological R&D and knowledge accumulation. This implies that the controlled reserves process
(X∗

t ) in our model is recurrent on (a subset of) R+ and moreover that zero is recurrent for (X∗
t )

(i.e. the resource is intermittently exhausted and then re-discovered again).
On a broader scale, there is enormous economics literature (we refer e.g. to the textbooks

[Con99, DJLS00]) on management of exhaustible and non-renewable resources that is partitioned
according to main applications (mineral and hydrocarbon deposits on local and global scales, search
for alternative “green” technologies, R&D innovation, etc.), key sources of uncertainty (fluctuat-
ing reserve levels, random demand shocks, timing of innovations, etc.) and their probabilistic
representation (unknown parameters, single event innovation, repeated discoveries, etc).

In Section 2, we start with a single player, or monopolist. A key issue is the start-up cost of
exploration which in this case, we look at in two ways: on/off or switching control (Section 2.1),
and continuous exploration effort (Section 2.3). In Section 3, we consider a two-player game with
continuous exploration control. As is widely appreciated, nonzero-sum stochastic games are much
more involved due to the strong coupling induced by the best-response requirements of Nash equi-
librium, and we are able to make some progress analytically (Section 3.2) and numerically (Section
3.3). In Section 3.4, we describe how Hotelling’s classical rule for depletion of exhaustible resources
is modified in the context of a Cournot game with exploration. Throughout, we maintain discrete
fixed discovery sizes to focus on essential effect of exploration. The numerical implementations can
easily be extended to random jump sizes.

2 Monopoly Exploration and Production Model

Consider a firm in charge of an exhaustible resource, such as oil, precious metal or coal. The main
operations of the firm are summarized by two activities: production and exploration. Production of
the resource generates revenue but lowers remaining stocks. Conversely, exploration will likely lead
to discoveries and so boost reserves, but is costly. That is, we assume that exploration is uncertain,
so that replenishment of the resource occurs stochastically. For example, in practical hydrocarbon
exploration efforts, firms will spend significant exploration funds but actual new discoveries occur
infrequently and unpredictably.

Let Xt denote the firm’s reserves at date t. We assume that (Xt) decreases at a (controlled)
production rate qt ≥ 0, and increases through jumps thanks to discrete new discoveries. Exploration
successes are represented by a counting process (Nt) whose jumps mark the discovery times. Each
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discovery increases reserves by a fixed amount δ > 0, and so we have the dynamics:

dXt = −qt 1{Xt>0} dt + δ dNt.

To make discoveries, exploration effort is needed, with its level indicated by at ≥ 0. The intensity of
the point process (Nt) is λat, and its costs are captured via C(at) for some positive non-decreasing
convex function C(·).

Below, we will consider two main cases:

1. Discrete effort levels. For simplicity we focus on binary effort at ∈ {0, 1}. Thus, either no
exploration is undertaken, or a fixed effort (normalized to be 1) is applied. We also assume
that to start or stop exploration, a fixed cost K > 0 must be paid each time.

2. Continuous effort level, at ∈ R+. In that case, we assume that C(a) is strictly convex for a
large enough, which guarantees that optimal effort levels are finite.

At each date t, the firm sets the quantity qt, that is the rate of production (or extraction) of the
resource, and the market price is a decreasing function of the supply. To simplify, we assume a
linear price (or inverse-demand) function P = P (q) = 1 − q. The revenue is simply price times
quantity q · P (q). Future revenue/costs are discounted in time by constant discount factor r > 0
and the objective (specified precisely in (1) and (17)) is to maximize total expected discounted net
revenues over the infinite horizon. We also assume for simplicity that the cost of extraction is zero;
in Section 3 where an oil producer competes with an energy producer with a clean inexhaustible
but expensive technology (for instance solar power), the latter will have a nonzero production cost.

The controlled dynamics of the reserves can be described in terms of a piecewise deterministic
process (PDP). Indeed, between discoveries, no new information is coming in and reserves decrease
continuously according to the production schedule. At discovery dates, reserves increase via an
instantaneous jump; the intensity of discoveries is a function of current reserves through the optimal
exploration control. Accordingly, the corresponding theory of PDPs [Dav93] can be brought to bear
in the single-agent case, and we refer to [Son85, LY92, FD99, CR00] for the abstract theory, in
particular proofs of the existence and smoothness of solutions to the resulting first order integro-
differential Bellman equation and its correspondence with the solution of the stochastic control
problem.

2.1 Switching Exploration Control

In the discrete exploration control case, at ∈ {0, 1}, the firm sequentially alternates between ex-
pending discovery effort to replenish supplies and doing nothing. Exploration effort costs C ≡ C(1)
dollars per unit time, while a switch to start or stop exploring consumes 0 ≤ K < C/r dollars.

A natural admissibility condition is that (at) has (P-a.s.) a finite number of switches on any
finite horizon. This requirement makes sure that there is no chattering (infinitely fast switching
between exploration regimes). With positive switching cost K > 0, any inadmissible strategy will
have infinite costs and hence be clearly sub-optimal. The admissibility condition on (qt) is that the
corresponding reserves process remains non-negative, which is simply that qt = 0 when all reserves
are exhausted.

Given strategies (qt, at), and denoting ∆at = at − at−, the total expected revenue for the firm
is then

E





∫ ∞

0
e−rt{(1 − qt)qt − C(at)} dt −

∑

{t:∆at 6=0}

e−rtK



 . (1)
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To study the stochastic control problem of maximizing (1), we adopt the usual dynamic pro-
gramming approach of analyzing the corresponding value functions assuming that both (qt) and
(at) are Markov feedback controls: qt = q(Xt) and at = a(Xt). Let (Xt) be the reserves process
starting at X0 = x. Since a ∈ {0, 1}, we can write

dXt = −q(Xt)1{Xt>0} dt + a(Xt)δ dNt, (2)

where now (Nt) is a standard Poisson process with intensity λ > 0. The state variables in the
problem are the initial reserves x and the initial exploration mode a0. Due to switching costs, the
current mode has an effect on the subsequent strategy. When all resources are exhausted, the firm
optimizes between either (i) expending effort and waiting for a new discovery, while producing zero,
or (ii) quitting and receiving a zero terminal payoff.

For future reference, we recall that the production model without exploration can be solved
explicitly. Denote by

w0(x) = sup
q

∫ ∞

0
e−rt(1 − qt)qt1{Xt>0} dt with X0 = x, (3)

the corresponding value function, where now λ = 0. Then w0(x) solves the Hamilton-Jacobi ODE

1

4

(

1 − w′
0(x)

)2 − rw0(x) = 0, (4)

with initial condition w0(0) = 0.
The following recipe provides a closed-form expression for w0.

Lemma 2.1. The solution to the ODE

(α − v′)2 = κv on {x > 0}, v(0) = v0,

where α, κ > 0 and v0 ≥ 0, is

v(x) =
α2

κ
(1 + W(θ(x)))2 ,

where

θ(x) = βeβe−κx/(2α), β = −1 +

√
κv0

α
,

and W is the Lambert-W function defined as the inverse function of xex, restricted to the range
[−1,∞) and the domain [−e−1,∞).

Proof. This follows easily from the substitutions v = α2

κ (1 + u)2, y = e−κx/(2α) and that W′(y) =
W(y)/ (y (1 + W(y))).

Applying Lemma 2.1 to (4) implies that

w0(x) =
1

4r
[1 + W(−e−2rx−1)]2. (5)
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2.1.1 Quasi-Variational Inequality

Denote by v(x) (resp. w(x)) the value function of the producer, conditional on starting in the
exploration (resp. no exploration) mode and initial resource of size x. Applying standard dynamic
programming arguments [ØS05], it follows that the pair (v,w) satisfy a first-order coupled system
of variational inequalities when x > 0, which is given in (9) below.

When x = 0, and the exploration regime is 1, the agent cannot produce but continues to explore.
Alternatively, he has the option to quit permanently. Let τ be the next time of exploration success.
Then a Bellman principle argument gives v(0) = max(0, E[−

∫ τ
0 e−rtC dt+e−rτv(δ)]) and, using the

exponential interarrival times for (Nt), τ ∼ Exp(λ), we obtain that

v(0) = max

(

0,
−C + λv(δ)

λ + r

)

. (6)

When x = 0 and the exploration regime is 0, the player can either permanently quit or begin
exploring after paying K. Hence,

w(0) = max(0, v(0) − K). (7)

We summarize in the following proposition, where we employ the following convenient notation
for the non-local (or delay) term coming from the jump process:

∆v(x) := v(x + δ) − v(x). (8)

Proposition 2.1. The pair (v,w) is the smallest solution of

max

(

1

4
(1 − v′(x))2 − C + λ∆v(x) − rv(x), w(x) − K − v(x)

)

= 0, (9)

max

(

1

4
(1 − w′(x))2 − rw(x), v(x) − K − w(x)

)

= 0,

subject to boundary conditions (6) and (7). In particular, the optimal policy is given in feedback

form as q∗v = 1−v′(x)
2 and q∗w = 1−w′(x)

2 . Moreover, v(·), w(·) ∈ C1(R+) \ D where

D = {x ∈ R+ : w(x) − K − v(x) = (1 − v′(x))2/4 − C + λ∆v(x) − rv(x)

or v(x) − K − w(x) = (1 − w′(x))2/4 − rw(x)} ∪ {0}. (10)

The proof is given in the Appendix.

2.1.2 Analysis of Switching Regions

The key to analysis of (9) is the study of the corresponding switching regions, which keep track of
the maximizers in each max-term. When reserves are low (x small), the marginal cost of additional
reserves is high and therefore exploration is valuable. When reserves are large, the threat of
exhaustion is weak and the value of exploration is small. Finally, when reserves are very low and
exploration is expensive, it may be cheaper to quit permanently rather than to expend efforts on
exploration. Therefore, we conjecture that there exist three thresholds 0 ≤ xQ ≤ xon ≤ xsat (“Q”
for quit, “on” for start exploration, “sat” for saturation), such that

v(x) − K = w(x) for x ∈ [xQ, xon], w(x) > v(x) − K for x ∈ [0, xQ) ∪ (xon,∞),

w(x) − K = v(x) for x ∈ [xsat,∞), v(x) > w(x) − K for x < xsat.
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We do not attempt a proof about the shape of the switching regions. However, standard theory
implies that the variational inequality in (9) has a unique viscosity solution. Therefore, identifying
one plausible solution structure, borne out by numerical computations in Section 2.2, goes a long
way to giving a practical solution.

We refer to [0, xsat) as the continuation region for v (exploring), and [0, xQ) ∪ (xon,∞) as the
continuation region for w (no exploration). As we discuss below, usually (that is for moderate
values of K and C), xQ = 0 and there is only one continuation region for w.

The lower switching boundary xon determines the maximum level of reserves at which it is
optimal to restart exploration. Two cases can occur. First, we (usually) have w(0) = v(0) − K.
For z ≥ 0 such that v(z) ≥ K, denote by

w(x; z) =
1

4r
[1 + W(beb−2r(x−z))]2, b = −1 +

√

4r(v(z) − K), x ≥ z,

the unique solution to w′(x; z) = 1 − 2
√

rw(x; z) (where ′ = d
dx), with w(z; z) = v(z) − K, see

Lemma 2.1.

Proposition 2.2. Suppose v(0) ≥ K. Then xon > 0 and the switching region must contain an
interval around zero. Moreover, w′(xon) = v′(xon) match and there is a smooth fit at xon.

Proof. Since w′(0; 0) = 1− 2
√

r(v(0) − K) < 1, and w(x; z) is continuous in both of its arguments,
we see that w(ǫ + ǫ′; ǫ) < v(ǫ) − K for ǫ and ǫ′ small enough. However, by (9), we must have
w(x) ≥ v(x)−K for all x; therefore it must be the case that w(x) = v(x)−K for x small enough.
Therefore, xon > 0.

As shown above, v′(0) = 1 > w′(0; 0) and as x increases from zero, eventually a level xon is
reached where

w′(xon;xon) = 1 − 2
√

r(v(xon) − K) = v′(xon). (11)

With this xon we then have w(x) = w(x;xon) for x > xon and w(x) = v(x) − K for x ≤ xon.
Since w(0) = v(0) − K > 0 = w0(0) and v′(x) > w′(x;x) on [0, xon), the full interval [0, xon) must
be a switching region for w, so that xQ = 0 in this case. In (11) we obtain that the derivatives
w′(xon) = v′(xon) match and therefore a smooth fit at xon.

In the second case, if w(0) = 0, then for x very small it is not optimal to switch from w to v
since the fixed outlay K outweighs the gains of making discoveries before exhaustion. As a result,
there is an additional interval [0, xQ] where w(x) > v(x) − K.

Proposition 2.3. If v(0) < K, then

w(x) =











w0(x) for x < xQ;

v(x) − K xQ ≤ x < xon;

w(x;xon) x ≥ xon,

where xQ > 0 is found by solving v(xQ) − K = w0(xQ).

In other words, starting exploration is only optimal on (xQ, xon].

Proof. We still have that v′(0) = 1 > w′(0), so that the gap between v and w will be initially
increasing. By (9), for x small enough, w solves the ODE defining (5) and since w0(0) = 0
we have that w(x) = w0(x) in the neighborhood of zero. Then xQ > 0 is determined from
v(xQ) − K = w0(xQ).
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Note that possibly xon = xQ, in which case w(x) = w0(x) for all x and starting exploration is
never optimal. This will occur if K is too large relative to the benefit of exploration. In such a
case, the producer explores for a while, until Xt ≥ xsat at which time exploration is permanently
shutdown and all remaining reserves are exhausted.

Since (Xt) increases through jumps only, exploration is always terminated at jump-time, when-
ever (Xt) enters the region [xsat,∞). In contrast, exploration starting date can be anticipated,
since the hitting time of [0, xon] is predictable. These different behaviors at the switching boundary
are the reason for the following result.

Proposition 2.4. There is no smooth fit at xsat, so that v′(xsat−) < v′(xsat+) = w′(xsat).

Proof. It is clear that v′(xsat−) ≤ v′(xsat+); if this were not the case, then it would be sub-optimal
to stop exploration at level xsat since waiting infinitesimally would reduce the gap between w and
v.

Towards a contradiction, suppose that v′(xsat) = w′(xsat). Then v is differentiable everywhere.
In fact, based on the ansatz of the shape of the switching regions and the delay ODE satisfied
by v(x) on (0, xsat), the derivative U(x) := v′(x) is itself continuously differentiable on x > 0 and
satisfies

−U ′(x)(1 − U(x))/2 + λ(U(x + δ) − U(x)) − rU(x) = 0, U(0) = 1. (12)

Making use of the fact that U(x) = w′(x) for x ≥ xsat and that w is concave (i.e. w′(x+δ)−w′(x) <
0) we find that

U ′(xsat) =
−2rU(xsat) + 2λ(U(xsat + δ) − U(xsat)))

1 − U(xsat)
<

−2rw′(xsat)

1 − w′(xsat)
= w′′(xsat).

By continuity of U ′ and w′′ it follows that U ′ < w′′ in a neighborhood of xsat. Let x′ = sup{x <
xsat : U(x) = w′(x)}; by above x′ < xsat. If x′ > 0, then

U ′(x′) =
−2rU(x′) + 2λ(U(x′ + δ) − U(x′)))

1 − U(x′)

≤ −2rw′(x′) + 2λ(w′(x′ + δ) − w′(x′))

1 − w′(x′)
< w′′(x′)

since w′(x) > 0 for all x. This is a contradiction; thus x′ = 0 and U(x) < w′(x) for all x < xsat

(the above analysis also implies that U is convex). In other words, v is always more concave than
w. However, this contradicts the result U(xon) = w′(xon) shown above.

2.1.3 Optimal Strategy and Controlled Reserves Process

To summarize, when v(0) > K we look for critical thresholds xsat > xon such that































1

4
(1 − v′(x))2 − C + λ[v(x + δ) − v(x)] − rv(x) = 0 x ≤ xsat

1

4
(1 − w′(x))2 − rw(x) = 0 x ≥ xon

v(x) = w(x) − K x > xsat

and w(xon) = v(xon) − K.

(13)

The optimal exploration strategy is to start exploring whenever the supply drops below xon and
to stop whenever it increases beyond xsat. The gap [xsat, xon] is due to the discrete switching costs
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which create a hysteresis band: for x ∈ [xsat, xon] it is optimal to maintain the current exploration
strategy. In total, there are four free variables in (13): the location of xon and xsat, the level v(0),
and the level w(xsat). The four constraints are: w(xon) = v(xon) − K, w(xsat) = v(xsat) + K,
w′(xon) = v′(xon) and v′(0) = 1. It appears difficult to state any closed-form algebraic equations
linking the free variables above with these constraints. We will see this structure of solution is
borne out by numerical computations in Section 2.2.

Remark 1. If there is smooth fit at xon, our analysis shows that v′(x) ≤ w′(x) for all x ≥ xon, and
hence there is at most one crossing point between v(x) + K and w(x) on [xon,∞). This confirms
our ansatz about the shape of the exploration regions.

The structure of (13) implies that the optimal controlled reserves process (X∗
t ) undergoes a

cyclic behavior. Suppose that X∗
0 = 0 (and v(0) > K); then exploration is started, and once

X∗
t > 0 production begins as well. After a few more discoveries (it is possible that intermittently

X∗
t = 0 again and production is temporarily halted), we will have X∗

t > xsat and exploration
is shut down. Existing reserves are then exhausted until X∗

t = xon when exploration is restarted.
Eventually, a long interval between discoveries will again lead to X∗

t = 0. In our model the potential
future discoveries are unlimited and, therefore, this cycle perpetuates itself. Moreover, due to the
Markov controls, each cycle is independent of the others and (X∗

t ) forms a renewal process with
renewal times corresponding to X∗

t = 0 and a∗t = 1 (exhaustion with exploration). Note that the
optimal reserves process is bounded, X∗

t ∈ [0, xsat +δ], and the second w-continuation region [0, xQ)
is never reached by (X∗

t ).

2.2 Numerical Solution and Illustrations

To solve the system (9) requires dealing with a first-order nonlinear delay ODE coupled with a
first-order nonlinear ODE via two free boundaries. Fixing ∆x = δ/N and upper threshold M̄δ, we
discretize (9) via a uniform grid approximation on [0, M̄δ] with step size ∆x. The corresponding
derivatives are replaced with finite-difference operators, taking vn ≃ v(∆xn), wn ≃ w(∆xn). For
instance, the first half of (9) for 1 ≤ n ≤ (M̄ − 1)N becomes

max(Fn, Gn) = 0, where (14)






Fn :=
1

4
(1 − vn − vn−1

∆x
)2 − C + λ[vn+N − vn] − rvn,

Gn := wn − K − vn.
(15)

At the boundaries we directly apply v0 = −c+λvN

λ+r and for n > (M̄ − δ)N , vn = wn − K which
implicitly assumes that xsat < M̄ − δ. Note that to avoid oscillations in computing v′(x) (needed
to find q∗v) we apply one-sided finite-difference approximation in (15).

Repeating the same for the second half of (9) we obtain a system of 2(M̄N + 1) (quadratic)
equations in the 2(M̄N + 1) unknowns v0, . . . vM̄N , w0, . . . , wM̄N . This system can now be solved
using standard methods to obtain the unique solution (vn, wn)M̄n=0. Finally, one may recover the
free boundaries xon ≃ m∆x and xsat ≃ m̄∆x by finding the indices m = max{n : wn = vn − K}
and m̄ = min{n : Gn = 0}.

The max-operator in max(Fn, Gn) is highly nonlinear; in particular, at the optimum, where by
complementarity at least one of the terms is zero, we obtain a singularity. This presents a difficulty
in applying Jacobian-based methods on the large vector equation (14). To regularize the problem,
we apply the Fischer-Burmeister (FB) function FFB(f, g) :=

√

f2 + g2 + f + g that satisfies

max(f, g) = 0 ⇐⇒ FFB(f, g) = 0,

9
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Figure 1: Solution of the single-agent problem: v(x) (dash line) and w(x) (solid line). The parameters are
δ = 1, λ = 1, r = 0.1, C = 0.25, K = 0.2. The vertical lines indicate the switching thresholds xon = 0.17 and
xsat = 2.82.

and is smooth outside the origin (0, 0). After experimenting with solving (14) for typical parameter
ranges we find that this approach is stable and exhibits fast (super-linear) convergence in ∆x.

To illustrate our results we consider the monopoly switching exploration control with parameters
δ = 1, λ = 1, r = 0.1, C = 0.25,K = 0.2. We solve the system (14) using ∆x = 0.02 and M̄ = 6
which leads to a 602-dim. system of quadratic equations, with the solution plotted in Figure 1. Note
that the far-field limit in this case is (4r)−1 = 2.5. We also find that xQ = 0, xon = 0.17, xsat = 2.82.

Figure 2 illustrates a counterintuitive phenomenon that occurs due to lack of smooth fit at xsat.
Recall that q∗v(x) = 1

2(1 − v′(x)) and we expect production to fall as reserves decrease. However,
Figure 2 shows that due to the upward jump in v′ at xsat, for some x < xsat, x 7→ q∗v(x) is decreasing.
This occurs because the marginal value of reserves is higher in the w-regime than in the v-regime.
As (Xt) moves to the left and further away from xsat, the likelihood of imminently discontinuing
exploration decreases, so that marginal value of reserves v′(Xt) shrinks and production is ramped
up.

As an illustration of the comparative statics, we show in Figure 3 the effect of switching costs
K and exploration cost C on the optimal thresholds xon and xsat. We expect that as K increases,
the hysteresis interval [xon, xsat] becomes wider, since the firm would want to minimize switching
frequency. Similarly, if the exploration costs C decrease, exploration is more profitable and the
saturation level xsat rises. The lower threshold xon also rises, since it is not necessary to slow the
production rate q∗t as much before exploration resumes. Note that for C > 0.35, xon = 0 which
means that once exploration is stopped, it is never optimal to restart it since v(0) < K.

Finally, we note that the numerical scheme (15) can also be interpreted as a Markov chain
approximation approach. Namely, let us approximate (Xt) with a controlled discrete-time Markov

chain (X
(S)
t ) living on S = {0,∆x, . . .}. Over one time-step ∆t, (X

(S)
t ) may move one step to

the left (with probability proportional to the production rate q) or jump N = δ/∆x steps to the
right (with probability λ∆t). Then a Bellman principle argument implies that the resulting value

10
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Figure 2: Optimal production rates: q∗v(x) (dash line) and q∗w(x) (solid line). Note the discontinuity of
q∗v(x) at xsat = 2.82 and the fact that q∗v(x) is decreasing around x = 2.

function v(S) in the exploration regime satisfies

v(S)(x) = max

(

w(S)(x) − K, sup
q≥0

E

[

e−r∆tv(S)(X
(S)
∆t ) + {q(1 − q) − C}∆t

]

)

,

with w(S) the analogue of w. Assuming that v(S)(x) > w(S)(x) − K, and after rearranging this
leads to

1 − e−r∆t

∆t
v(S)(x) = sup

q
q(1 − q) + e−r∆tq

v(S)(x − ∆x) − v(S)(x)

∆x
+ e−r∆tλ∆v(S)(x) − C,

and similarly for w(S), which essentially becomes (15) for ∆t small enough.

2.3 Continuous Exploration Control

In the model complementary to (1), the exploration control a is continuous, at ∈ R+. Such a model
has been studied in detail in [DP80, Son85]. Relative to the analysis of the previous section, this
model is both more difficult (since we now have a two-dimensional continuous control to deal with)
and simpler (since there are no longer any free boundaries).

We continue to interpret at as the effort level; higher effort increases the arrival rate of new
discoveries. The point process of discoveries (Nt) is such that

N̄t , Nt −
∫ t

0
asλds (16)

is a martingale. Higher effort also leads to higher costs C(at).

Assumption 1. The cost function C is increasing, differentiable and strictly convex with

C(0) = 0, and lim
a→∞

C′(a) = +∞.

11
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Figure 3: Switching thresholds xon and xsat as a function of switching costs K (left panel) and exploration
costs C (right panel). Other parameters are as in Figure 1.

One economic interpretation of the varying exploration effort in such models is through the
spatial distribution of resources in the ground, first described by [AC82]. Suppose that the nonre-
newable resource deposits are spatially distributed according to a Poisson random measure ν with
constant rate λ. Recall that this means that any region of area |A| contains deposits in the amount
ν(A) ∼ Poisson(λ|A|), and that deposits in non-overlapping areas are independent. Exploration
now corresponds to sweeping through areas searching for deposits, mimicking actual exploration
of, e.g., hydrocarbons in different geographical regions. Then exploration effort is the speed of the
sweep. Indeed, if the speed is constant at a units of area per unit of time, then new deposits are
discovered at rate aλ. If the speed is varying over time, the resulting discovery process (Nt) mark-
ing discover times has precisely the same distributi on as in (16). The convex costs of exploration
then refer to the fact that sweeping areas at higher speeds leads to dis-economy of scale due to
scarce exploration resources (e.g. drilling equipment, qualified workforce, etc.).

The overall objective is now written as

v(x) := sup
q,a

E

[
∫ ∞

0
e−rt{qt(1 − qt) − C(at)} dt | X0 = x

]

, (17)

and the corresponding Hamilton-Jacobi-Bellman equation for the value function v(x) is

sup
0≤q≤1

{q(1 − q) − qv′} + sup
a≥0

{aλ∆v(x) − C(a)} − rv = 0. (18)

The assumptions on C(·) ensure that there is a unique maximizer a∗ to the second supremum, which
is characterized by the first-order condition

a∗(x) = (C′)−1(λ∆v(x)). (19)

At x = 0, production must be suspended but exploration continues. Since the controls are
Markov, until the next discovery time σ1 the exploration level is constant. It follows that the
boundary condition at x = 0 is given by (cf. [Son85])

v(0) = sup
a≥0

E

[

e−rτv(δ) −
∫ τ

0
e−rtC(a) dt

]

= sup
a≥0

λav(δ) − C(a)

λa + r
. (20)

12



We remark that if C′(0) > 0 and r or C(·) are too large, it is possible that the optimizer is a∗(0) = 0
in which case it is optimal to not explore at x = 0 and v(0) = 0. Recall that a∗(x) is decreasing,
so that if a∗(0) = 0, then a∗(x) = 0 for all x and the model reduces to the classical case with no
exploration: v(x) = w0(x) given in (5).

Since (18) no longer has any free boundaries and the two controls q and a are separable, this
problem is more analytically tractable than the switching version in Section 2.1. We will use (17)
as the prototype for the game model in Section 3. Since the solution of (18) will be seen as a special
case of the more general model in Section 3 we keep the discussion of (18) brief and only make a
few remarks here about the resulting exploration control a∗.

Because v(x) is concave (this is easily verified by showing that the marginal value of additional
inventory is decreasing), we have from (19) that a∗(x) is decreasing in x. Moreover, the uniform
bound v(x) ≤ (4r)−1 implies a∗(x) ≤ ā := (C′)−1(λ(4r)−1). At the same time, if C′(0) = 0 then
a∗(x) > 0 for all x. Indeed, in this case for ǫ > 0 small enough, the cost of exploration C(ǫ) is
negligible compared to the expected gain ≃ ǫr−1∆v(x).

Remark 2. We observe that if a∗ > 0 for all x, then (X∗
t ) is an irreducible Markov chain on R+ and

therefore is recurrent on its full state space. It follows that supt X∗
t = +∞ and reserves will become

arbitrarily large infinitely often. Such behavior would appear to be unrealistic for describing non-
renewable resources, and suggests that we should take C′(0) > 0. If C′(0) > 0 then there exists a
saturation level xsat, such that a∗(x) = 0 for x > xsat, and (X∗

t ) would be positive recurrent on
[0, xsat + δ) only.

3 Duopoly with a Green Producer

We now return to a competitive situation and analyze the dynamic Nash equilibrium when the
firm with a depleting non-renewable resource is competing against a second producer. The other
producer has inexhaustible reserves, but higher cost of production. This corresponds to sustainable
production from “green” sources (e.g. solar energy, wind power). Thus, producer 1 faces exhaustion
and therefore needs exploration; producer 2 always has infinite resources, but also positive fixed
production costs c > 0. The two producers compete against each other through the Cournot game
equilibrium. This setup corresponds to the “axis-game” in [HHS10, Section 5.1], but with potential
for discovery by player 1. A related problem in the context of mean-field games with convex costs
of extraction, but without exploration, is analyzed in [GLL10].

The remaining reserves (Xt) of Player 1 follow, similar to (2):

dXt = −q1(Xt)1{Xt>0} dt + δ dNt, (21)

where q1 is his rate of production, and (Nt) is a controlled point process with intensity λat. Here,
Player 1 has exhaustible oil resources which he extracts at zero cost, and which is subject to
random discoveries. Player 1 stimulates discoveries via a continuous exploration effort at ∈ R+

that is subject to cost C(at), where C satisfies Assumption 1. When he runs out, he cannot produce
until there is a discovery, and so we constrain q1(0) = 0. Player 2 produces from an inexhaustible
resource (e.g. solar) which is expensive: his marginal cost of production is c > 0. His rate of
production is q2(Xt).

13



The value functions for each player are, respectively (where g stands for ‘green’):

v(x) = sup
q1,a

E

[
∫ ∞

0
e−rt

[

q1(Xt)
(

1 − q1(Xt) − q2(Xt)
)

− C(at)
]

dt | X0 = x

]

,

g(x) = sup
q2≥0

E

[
∫ ∞

0
e−rtq2(Xt)

(

(1 − q1(Xt) − q2(Xt)) − c
)

1{Xt>0} dt

+

∫ ∞

0
e−rt 1

4
(1 − c)21{Xt=0} dt | X0 = x

]

.

The second term in the definition of g expresses that player 2 has a monopoly while player 1 is
out of reserves. We also stress that q2 must be non-negative: for large enough c and x, we will see
that player 2 is blockaded in that his cost of production is so high and his competitor’s reserves
of the cheaper resource are so plentiful, that his equilibrium strategy is not to produce anything
until player 1 has run down his reserves some more. In this situation, player 1 has a temporary
monopoly while player 2 sits it out.

The ODEs for v and g are

sup
q1,a

{

(1 − q1 − q∗2)q1 − q1v
′(x) − C(a) + aλ∆v(x)

}

− rv(x) = 0,

sup
q2≥0

{(1 − q∗1 − q2 − c)q2} − q∗1g
′(x) + a∗(x)λ∆g(x) − rg(x) = 0,

where ∆v(x) is the non-local or jump term given in (8), and similarly ∆g(x), and a∗(x) =
argsupa≥0{−C(a) + aλ∆v(x)} is the optimal exploration effort.

Motivated by the discussion of Remark 2 in Section 2.3, we take power costs

C(a) =
1

β
aβ + κa, β > 1, κ ≥ 0. (22)

Note that C′(0) = κ, so κ > 0 corresponds to the existence of a finite saturation point xsat. The
optimal effort is given by

a∗(x) =
[

(λ∆v(x) − κ)+
]γ−1

,

where z+ = max(z, 0) and

γ =
β

β − 1
. (23)

If at reserve level x > 0, player 2 is not blockaded, the feedback production strategies are given
by

q∗1(x) =
1

3
(1 − 2v′(x) + c) q∗2(x) =

1

3
(1 + v′(x) − 2c), x > 0, (24)

and the ODEs become

1

9
(1 − 2v′ + c)2 +

1

γ

[

(λ∆v(x) − κ)+
]γ − rv = 0 (25)

1

9
(1 + v′ − 2c)2 − 1

3
(1 − 2v′ + c)g′ +

1

γ

[

(λ∆v(x) − κ)+
]γ−1

∆g(x) − rg = 0.

If player 2 is blockaded at some x > 0, we have q∗2 = 0 and q∗1 = 1
2(1 − v′) and so

1

4
(1 − v′)2 +

1

γ

[

(λ∆v(x) − κ)+
]γ − rv = 0, (26)

−1

2
(1 − v′)g′ +

1

γ

[

(λ∆v(x) − κ)+
]γ−1

∆g(x) − rg = 0.
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When c = 1, player 2 is never in the game, and the above model reduces to the monopoly setting
of Section 2.3.

Using the same argument as for (20), the boundary conditions are

v(0) = sup
a

aλv(δ) − C(a)

λa + r
, g(0) =

(1 − c)2/4 + λa∗(0)g(δ)

λa∗(0) + r
.

The far-field limits are

x → ∞ : v → 1

9r
(1 + c)2, g → 1

9r
(1 − 2c)2,

if c < 1/2 and v → (4r)−1, g → 0 if c > 1/2. Observe that while as before v(x) is increasing, g(x)
is decreasing since more reserves lower the game value for the green producer.

We observe that the above systems yield an independent equation for v similar to (18), and
then a first order linear delay-ODE for g in terms of v. However, the equilibrium production and
exploration strategies depend only on v, and so we will not deal with the g equation.

3.1 Case of No Exploration

We first consider the case of no exploration possibility, namely λ = 0. This resembles the axis game
considered in [HHS10], however there it was assumed player 1 becomes an inexhaustible “green”
producer upon his reserves being exhausted, whereas here he simply quits altogether. We denote

player 1’s value function by v0, and the two firms’ equilibrium strategies by (q
(0)∗
1 , q

(0)∗
2 ).

Proposition 3.1. For c ≤ 1
2 , there is no blockading and the no-exploration value function v0(x),

solution of (25) with λ = 0 and boundary condition v0(0) = 0, is given by

v0(x) =
(1 + c)2

9r
(1 + W(θ(x)))2 , (27)

where

θ(x) = − exp (−krx − 1) ∈ [−e−1, 0); k :=
9

4(1 + c)
. (28)

The equilibrium production rates are given by

q
(0)∗
1 (x) =

(1 + c)

3
(1 + W(θ(x))) , (29)

q
(0)∗
2 (x) =

1

3

(

1 − 2c − 1

2
(1 + c)W(θ(x))

)

. (30)

Proof. The solution to the ODE follows easily from Lemma 2.1. It remains to check there is no
blockading. The formulas (29)-(30) are obtained by substituting for v′0 into (24) using

v′0 =
1

2
(1 + c − 3

√
rv0) = −1

2
(1 + c)W(θ(x)).

Since q
(0)∗
2 = 1

3 (1− 2c + v′0), the duopoly production rate becomes negative only if v′0 < 2c− 1 < 0.
But it is easy to see that v0 is increasing, strictly concave with v′0(0) = 1

2 (1 + c) and v′0(∞) = 0.

Therefore q
(0)∗
2 > 0 for all x ≥ 0.

For c > 1
2 , blockading does occur for large enough x.

15



Proposition 3.2. When c > 1
2 , player 2 is blockaded for x ≥ xb, where

xb =
4

9r

(

(1 + c) log

(

1 + c

2(2c − 1)

)

− 3(1 − c)

)

. (31)

For x ∈ [0, xb], the value function v0(x) is given by (27) and the equilibrium strategies (q
(0)∗
1 , q

(0)∗
2 )

by (29)-(30), and for x ≥ xb by

v0(x) =
1

4r
(1 + W(θ(x − xb)))

2 , θ(x) = (1 − 2c)e1−2c−2rx, (32)

q
(0)∗
1 (x) =

1

2
(1 + W(θ(x − xb))) ,

q
(0)∗
2 (x) = 0.

Proof. Using the no-blockade solution (27) in the formula q
(0)∗
2 = 1

3(1−2c+v′0) shows that q
(0)∗
2 = 0

at x = xb defined by (31), and q
(0)∗
2 < 0 for x > xb. So for x ≥ xb, player 1 has a monopoly:

q
(0)∗
2 = 0 and q

(0)∗
1 = 1

2(1−v′0). It follows from these that at xb, v′0(xb) = 2c−1 and q
(0)∗
1 (xb) = 1−c,

so v0(xb) = 1
r (1 − c)2. Solving (26) with λ = 0 on {x > xb} and this boundary condition gives

(32).

3.2 Small Discovery Rate Expansion

We consider now the situation when λ is small, that is low success probability of discovery, and
derive a correction to the no exploration case of Section 3.1 in the limit λ ↓ 0. Recall from (22)
that C′(0) = κ. For analytical tractability in this section, we take κ = 0. We return to the more
realistic κ > 0 in the numerical computations in Section 3.3.

We construct an expansion
v = v0 + λγv1 + · · · , (33)

where γ was defined in (23). Then v0(x) is the value function with no discovery given in Propositions
3.1 and 3.2.

Proposition 3.3. If there is no blockading at x, we have

v1(x) = |W(θ(x))|(1 + c)2

9r2γ
(1 + W(θ(δ)))2 + k|W(θ(x))|

∫ x

0

F (η)

|W(θ(η))|(1 + W(θ(η)))
dη

F (η) =
1

γ

(

(1 + c)2

9r

(

[1 + W(µθ(η))]2 − [1 + W(θ(η))]2
)

)γ

, (34)

where µ := e−δ/(kr), γ is given by (23), and k, θ(x) are defined in (28).

Proof. Inserting (33) into (25) and collecting terms in λγ gives that the correction term v1(x) solves

q(x)v′1 + rv1 = F (x), (35)

where

F (x) =
1

γ
(∆v0(x))γ , q(x) =

4

3
q
(0)∗
1 (v′0(x)) = k−1 (1 + W(θ(x))) .

The boundary condition is v1(0) = v0(δ)γ

γr , which follows from substituting a∗(0) = (λv0(δ))
γ−1 into

(20) and matching terms in λγ . To solve (35), let

Q(x) =

∫ x

0

du

q(u)
= k

∫ x

0

du

(1 + W(θ(u)))
.

16



Making the change of variable z = W(θ(u)) and using that W′(y) = W(y)/ (y (1 + W(y))), gives
Q(x) = −1

r log |W(θ(x))|. Then the transformation v1(x) = e−rξu(ξ), where ξ = Q(x), leads
to u′ = erξF (Q−1(ξ)), with initial condition u(0) = (rγ)−1v0(δ)

γ . Solving and restoring the
transformation yields

v1(x) =
e−rQ(x)

γr
v0(δ)

γ + e−rQ(x)

∫ x

0
erQ(η)F (η)

dη

q(η)
, (36)

which leads to the formulas (34).

The expression in Proposition 3.3 can be used to find small λ approximations to the optimal
production rates q∗1 and q∗2 , and the blockade point xb. For example, when there is no blockading,

q∗1 =
1

3
(1 + c − 2v′) ≈ q

(0)∗
1 − 2

3
λγv′1,

where the first term is simply the no-exploration production rate given in (29), and the second
term can be written in terms of v0 and v1 using the ODE (35). Similarly, expanding the blockading
point

xb(γ) = xb +
λγ

γ
x1 + · · · ,

where xb is the no-exploration blockade point given in (31), leads to

x1 = − v′1(xb)

v′′0(xb)
.

Finally, the exploration effort may be expanded to yield a∗(x) ≃ λγ−1(∆v0(x))γ−1 + o(λγ).
Figure 4 compares the asymptotic correction terms derived above to the ‘exact’ values (see

Section 3.3 for how these are iteratively approximated) and shows that they are quite accurate
even for moderate λ = 0.5.

Remark 3. A similar analysis shows that the monopoly value function v defined in (17) of Section
2.3 can be approximated by v(x) = w0(x)+λγv1(x)+ . . ., where w0 is the no-exploration monopoly
value function given in (5), and

v1(x) = |W(θ(x))|
(

(w0(δ))
γ

γr
+

∫ x

0

2F (η) dη

|W(θ(η))|(1 + W(θ(η)))

)

.

Here, F and θ are F (η) = 1
γ(4r)γ

(

[1 + W(e−2rδθ(η))]2 − [1 + W(θ(η))]2
)γ

and θ(x) = −e−2rx−1.

The optimal monopoly production rate is approximated by q∗(x) = 1+W(θ(x))
2 +λγq1(x)+. . ., where

q1(x) = −1

2
v′1(x) =

rv1(x) − F (x)

1 + W(θ(x))
.

For the monopoly problem, a singular perturbation analysis in the regime of small discovery
size at high-frequency is given in [HWCK94].

3.3 Computational Analysis

Consider again the ODEs in (25)-(26). These may be combined in the form

(q∗1)
2 − rv +

1

γ

(

(λ∆v − κ)+
)γ

= 0, q∗1(x) = max

(

1

3
(1 − 2v′(x) + c),

1

2
(1 − v′(x))

)

.
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1 − 2

3λγv′1 is essentially identical to q∗1 for x > 1.

Observe that numerically solving for v(x) is challenging due to the implicit boundary condition and
the presence of a “forward” delay term on the semi-infinite domain R+. We resolve this difficulty
by using an iterative scheme.

Let v0(x) = v0(x), the no exploration value function given in Proposition 3.2, and for n ≥ 1,
define inductively

(qn
1 (x))2 − rvn +

1

γ

(

(λ(vn−1(x + δ) − vn(x)) − κ)+
)γ

= 0, (37)

qn
1 (x) = max

(

1

3
(1 − 2(vn)′(x) + c),

1

2
(1 − (vn)′(x))

)

,

with boundary condition

vn(0) = sup
a≥0

λavn−1(δ) − C(a)

λa + r
. (38)

Observe that (37) is a standard first-order nonlinear ordinary differential equation with “source”
term vn−1(· + δ) and can be solved using standard tools, such as Runge-Kutta methods. Using L̃
to denote the differential-difference operator on the right-hand-side of (37), we have vn = L̃(vn−1).
We now expect that vn(x) → v(x), so that v is a fixed point of L̃. In fact, based on control
arguments this convergence is expected to be exponential in n uniformly in x. A justification is
given below for the monopoly case.

Figure 5 illustrates the numerical solution for three different values of the green production
costs c. We observe that while q∗1(x) is monotone decreasing in c, the effect on a∗(x) is ambiguous.
Further discussion is given in Section 3.3.2.
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Figure 5: Left panel: optimal production rate q∗1(x) (increasing) and optimal exploration level a∗(x) (decreas-
ing) of the exhaustible producer. Right panel: production rate q∗2(x) of the green producer. The parameters
are δ = 1, λ = 1, r = 0.1, C(a) = 0.1a + a2/2 and three different levels of c. Note the blockading region for
c = 0.6 and x > 3.4.

3.3.1 Convergence of Numerical Method for Monopoly Problem

In this subsection, v refers to the value function of the monopoly problem defined in (17) and
solution of (18). The inductive approximation is defined by

1

4

(

1 − (vn)′(x)
)2 − rvn(x) +

1

γ

{

(λ(vn−1(x + δ) − vn(x)) − κ)+
}γ

= 0,

with boundary condition (38).
Let us recall the following characterization for (37) in the monopoly setup of Section 2.3:

Lemma 3.1. Let σn be the n-th discovery epoch with σ0 = 0 and w0(x) be given by (5). Let

V n(x) := sup
q1,a

E

[
∫ σn

0
e−rt[(1 − q1(Xt))q1(Xt) − C(at)] dt + e−rσnw0(Xσn) | X0 = x

]

. (39)

Then we have vn(x) = V n(x) for all n ≥ 0 and there exists p < 1, such that

sup
x≥0

|vn(x) − v(x)| ≤ pn.

Sketch of Proof. Usual dynamic programming arguments and the nature of Markov feedback con-
trols imply that

V n(x) = sup
q1,a

E

[
∫ σ1

0
e−rt[(1 − q1(Xt))q1(Xt) − C(at)] + e−rσ1V n−1(Xσ1− + δ) | X0 = x

]

,

where σ1 is the first arrival time of (Nt). The form of the infinitesimal generator of the resulting
(X∗

t ) implies that V n satisfies (37). Similar to (20), the boundary conditions at x = 0 for (39) must
be

V n(0) = sup
a≥0

E

[
∫ σ1

0
−e−rtC(a) dt + e−rσ1V n−1(δ)

]

,
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leading to (38). It immediately follows that V n(x) is monotone increasing in x and bounded by
(4r)−1. Moreover, as before, the respective exploration controls must be bounded a(n)∗(x) ≤ ā.
Hence, E[σn] ≥ n(λā)−1 and therefore σn → ∞ uniformly. Consequently, the sequence V n converges
to

lim
n→∞

V n(x) = sup
q1,a

E

[
∫ ∞

0
e−rt[(1 − q1(Xt))q1(Xt) − C(at)] dt | X0 = x

]

= v(x),

and the error can be controlled exponentially via

sup
x≥0

|V n(x) − v(x)| ≤ E

[
∫ ∞

σn

e−rsq1(Xs)(1 − q1(Xs)) ds | X0 = x

]

≤ E

[

e−rσn

r
v(Xσn)

]

≤
(

λā

r + λā

)n 1

4r2
.

Finally, the first term in the sequence V n is the no-exploration solution V 0(x) ≡ w0(x) = v0(x)
and by induction we therefore obtain that V n = vn∀n.

As a corollary, we obtain that v is the smallest fixed point of the functional operator L̃. A similar
result in a related model was given in [FD99, Theorem 2] and the spirit goes back to [Dav93].

In the game setting, we analogously expect that vn is a game value corresponding to Nash
equilibrium on the restricted horizon [0, σn]. The full treatment of such a construction, including
proof of the convergence to a Nash equilibrium on the infinite horizon is beyond the scope of this
paper (note that in the general game setting, the saturation and blockading regions [xsat,∞) and
[xb,∞) will be also indexed by n). An example of such computation is shown in Figure 6 where
we see that the convergence is indeed very rapid (in particular, the difference ‖v10(x) − v25(x)‖∞
is negligible).
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Figure 6: Convergence of vn as n → ∞ for the axis game. We take δ = 1, λ = 0.1, r = 0.1, C(a) =
0.1a + a2/2 and c = 0.6.
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3.3.2 Blockading and Saturation Levels

It is of great interest to understand how the presence of the green producer alters the behavior of
the exhaustible player. As expected, increased competition will reduce the value of the reserves
and increase their marginal value, hence reducing production rates. Thus, v and q1 are increasing
in c (recall that c = 1 corresponds to the monopoly and c = 0 means the exhaustible producer is
permanently undercut by the equally cheap sustainable source).

However, the impact on the exploration rate a∗ is ambiguous, since while v is decreased, v′ is
generally increased. Numerical evidence (cf. Figure 5) shows that (i) for small values of c, increased
competition reduces the exploration effort for all x; (ii) moderate values of c increase exploration
efforts for moderate x and lower them for x close to zero; (iii) for c close to 1, exploration effort
is again reduced everywhere. Thus, the impact of competition has a humped shape in terms of c.
The above behavior is driven by the different market leaders in different scenarios. For small c, the
green producer is the effective leader in the market, causing significant losses for the exhaustible
producer who gives up and reduces efforts. For large c, the exhaustible producer is the effective
leader and the green producer only has a small marginal negative impact. However, for moderate
c, the exhaustible (resp. green) producer is the leader for large (resp. small) reserves levels. Thus,
when x is close to zero, the exhaustible producer is discouraged and lowers exploration; however,
when x is moderate, he is encouraged to put in extra effort to stay in front of the green producer
(formally the marginal value of reserves is so high as to justify higher exploration).

Strikingly, this behavior is also true of the saturation level xsat. This effect is illustrated in the
left panel of Figure 7 where we see that c 7→ xsat(c) is maximized around c = 0.55. Note that for
c > 0.6, xsat > xb, and so, compared to the monopoly case c = 1, the exhaustible producer will
start exploration earlier to stave off competition even before the green producer enters the market.
The curious shape of xsat(c) exhibits a “cusp-like” behavior around its maximum, though numerical
experiments suggest that xsat(c) is in fact not quite so sharp upon zooming in.

In the right panel of Figure 7, we show the impact of the start-up exploration costs κ on xsat and
xb. As expected, higher exploration costs discourage exploration, i.e. lower xsat. For κ large enough,
λ∆v(0) < κ and a∗(x) ≡ 0, so no exploration ever takes place. Conversely, higher exploration costs
benefit the green producer who can enter the game earlier, so that xb is increasing (moderately) in
κ. For κ large, xb ≃ 4.52 is given from (31).
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Figure 7: Left panel: xsat and xb as a function of green producer production costs c. Recall that for c < 0.5,
xb = +∞. Right panel: xsat and xb as a function of start-up exploration costs κ. We take δ = 1, λ = 1,
r = 0.1 and C(a) = κa + a2/2 with default values of c = 0.6, κ = 0.1.

21



Figure 8 shows a sample path for the evolution of the game solution over time. The system
state is described by (X∗

t ) in the top-left panel which drives the feedback controls q∗1(X
∗
t ), a∗(X∗

t )
and q∗2(X

∗
t ) in the other panels. In the given example, c = 0.65 and blockading occurs for X∗

t ≥
xb ≃ 1.65. Moreover, the saturation point is xsat = 5.02. The recurrent behavior of (X∗

t ) is clearly
visible, as the resource is repeatedly exhausted until a new discovery replenishes reserves and allows
to restart production. A string of discoveries leads to blockading of the green producer, see e.g.,
t ∈ [42, 47]. Higher reserves lower exploration rates and increase production. The bottom-right
panel in Figure 8 shows the trajectory of the market price P (t) = 1 − q∗1(Xt) − q∗2(Xt), where we
observe first-order discontinuities as (X∗

t ) crosses downwards the blockading point xb around t = 13
and t = 47.
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Figure 8: Trajectory of the game solution over time. Top left panel: reserves (X∗

t ) of the exhaustible player;
top right panel: exploration rate a∗(X∗

t ). Bottom left panel: production rate q∗1(X∗

t ) of the exhaustible player
(solid blue) and q∗2(X∗

t ) of the green player (dashed green); note intermittent blockading when X∗

t ≥ xb ≃
1.65. Bottom right panel: market price P (~q) = 1−q1−q2. We take δ = 1, λ = 1, r = 0.1, C(a) = 0.1a+a2/2
and c = 0.65.

3.4 Marginal Value of Reserves Dynamics

To highlight another key difference with the monopoly model, we now investigate the behavior of
marginal value of reserves v′ along trajectories of (X∗

t ). In the monopoly setting the marginal value
of additional reserves v′ has a natural interpretation as the scarcity value of the resource. We recall
the stochastic Hotelling theorem of [DP80] which studies the evolution of this value over time. Let

Dv′(x) := lim
h→0

E [v′(X∗
h) | X∗

0 = x] − v′(x)

h
, (40)

be the time-derivative of the shadow cost along trajectories of optimally managed reserves paths.
[DP80, Theorem 4] show that for the model of Section 2.3,

Dv′(x) = rv′(x) ∀x ∈ R+,
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in other words the expected growth rate of prices is equal to the discount rate r.
In the game setting we have the following

Proposition 3.4. Let D be as in (40). Then

Dv′(x) =























rv′(x) + q∗1(x)
∂

∂x
q∗2(x) if x < xb ∧ xsat;

3

4
rv′(x) xsat < x < xb;

rv′(x) x > xb.

(41)

Proof. Let S be the infinitesimal generator of the Markov process (X∗
t ). Then, for any function

f ∈ Dom(S),

Sf(x) = λa∗(x)∆f(x) − q∗1(x)f ′(x). (42)

Conversely, general theory gives the analytic characterization S ≡ D as the time-derivative along
(X∗

t ) in (40). Arguments similar to those in [DP80, Lemma 7] imply that v′ is continuous and
bounded. It follows that q∗1 is continuous and differentiable on R+ except at zero and xb. Similarly,
a∗ is bounded, continuous and differentiable everywhere except possibly at xsat. The implicit
function theorem then implies that v′′ exists a.e., and v′ is in the domain of the operator S.

Now starting with

rv(x) = q∗1(x)(1 − q∗1(x) − q∗2(x)) − q∗1(x)v′(x) − C(a∗(x)) + λa∗(x)∆v(x),

and differentiating we find

rv′(x) = −q∗1(x)v′′(x) + λa∗(x)∆v′(x) − ∂

∂x
q∗2(x) · q∗1(x)

+
∂

∂x
q∗1(x)

[

1 − 2q∗1(x) − q∗2(s) − v′(x)
]

+
∂

∂x
a∗(x)

[

−C′(a∗(x)) + λ∆v(x)
]

. (43)

The terms on line (43) are zero either by optimality (first-order-condition) of q∗1 and a∗ or because
q∗1(x) and/or a∗(x) are constant in the neighborhood of x. Simplifying we end up with

rv′(x) = −q∗1(x)(v′′(x) +
∂

∂x
q∗2(x)) + λa∗(x)∆v′(x). (44)

Comparing (42) and (44) we find

Sv′(x) = rv′(x) + q∗1(x)
∂

∂x
q∗2(x).

If player 2 is blockaded at x, q∗2(x) = 0, and we recover the classical Hotelling result of [DP80].
Otherwise, since q∗2 = 1

3(1 + v′ − 2c)+ we have ∂
∂xq∗2(x) = v′′(x)/3 for x < xb. If xsat < x < xb,

then a∗(x) = 0 while q∗2(x) > 0. In that case Sv′(x) = −q∗1(x)v′′(x), while rv′(x) = −4
3q∗1(x)v′′(x),

and we conclude Sv′(x) = 3
4rv′(x).

We conclude that in the presence of competition, shadow prices grow slower than at discount
rate r. In particular, above the saturation level xsat marginal value of reserves grows at rate 3r/4.
Below xsat, the competition effect depends on the product q∗1(x)v′′(x). We note that v′′ < 0 while
q∗1(0) = 0, so the overall shape of x 7→ q∗1(x)v′′(x) is humped, being zero at x = 0, small at x large,
and negative in the middle. The slowdown in the growth rate at x = xsat is clearly visible in the
bottom-right panel of Figure 8.

The classical Hotelling rule is also modified when competition from a green producer enters in
the manner of mean-field games. We refer to [GLL10] for the calculation in that context.
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4 Conclusion

We have studied the impact of exploration and discovery in models of exhaustible resources in
Cournot (quantity-setting) markets. In the single-player setting with binary exploration control,
we identified the critical reserves’ levels xQ, xon and xsat which summarize the exploration strat-
egy. The discrete nature of the control leads to non-trivial phenomena, including discontinuity in
q∗v at xsat and non-monotone x 7→ q∗v(x). In the competition between a producer of energy from
cheap non-renewable source, such as oil, and a green producer from an expensive but inexhaustible
source, such as solar, our analysis shows the complex interaction between competition and strategic
exploration. In particular, competition may induce earlier/higher exploration efforts; conversely
exploration increases blockading effects. Moreover, Hotelling’s classical result for exhaustible re-
sources is quite different in the context of oligopolistic competition as shown in P roposition 3.4.

Tackling a genuine multi-dimensional problem in the competition between two non-renewable
producers both of whom may explore remains a problem we are investigating. This involves a
system of nonlinear PDEs with non-local terms, and so is challenging numerically. The insight
from the reduced game problem presented here may be of some help in constructing appropriate
initial guesses for a numerical scheme.

A Proof of Proposition 2.1

We first prove that the value functions are uniformly Lipschitz.
Fix x and y > x. Let (q, a) be an ǫ-optimal admissible strategy starting in the exploration

regime and initial inventory y. Denote by q′t := qt1Xx
t >0, a

′
t ≡ at the (admissible) strategy for initial

inventory x. We use (Xy
t ) (resp. (Xx

t )) to denote the coupled inventory processes of these two
strategies with identical exploration times. Let σ0 = 0, and define for k ≥ 1, νk = inf{t > σk−1 :
Xx

t (q′) = 0}, and σk = inf{t > νk : Xy
t = Xy

t− + δ}. By construction, q′s = qs for s < ν1 and
Xy

ν1 = (y − x). For notational convenience, we denote for any strategy (q, a)

Ht1,t2(q, a) :=

∫ t2

t1

e−r(t−t1){(1 − qt)qt − Cat} dt −
∑

t1≤t≤t2:∆at 6=0

e−r(t−t1)K.

We now obtain

v(y) − v(x) ≤ v(y) −H0,∞(q′, a)

≤ ǫ + E

[

H0,ν1(q, a) + e−rν1Hν1,σ1(q, a) + e−rσ1Hσ1,∞(q, a)
]

− E

[

H0,ν1(q, a) + e−rν1Hν1,σ1(0, a) + e−rσ1Hσ1,∞(q′, a)
]

≤ ǫ + E[e−rν1

(y − x − Xy
σ1−

) + e−rσ1

(Hσ1,∞(q, a) −Hσ1,∞(q′, a))],

where the last line uses the fact that the price per unit is at most $1, and therefore total revenue
on [ν1, σ1) from (qt) is at most (Xy

ν1 − Xy
σ1−

) = y − x − Xy
σ1−

. Since Xy
σ1 − Xx

σ1 = Xy
σ1−

≤ y − x
we may repeat the argument and by induction on k find

v(y) − E[H0,∞(q′, a)] − ǫ ≤ E

[

(y − x − Xy
σ1−

) + e−rσ1

(Hσ1,∞(q, a) −Hσ1,∞(q′, a))
]

≤ E

[

(y − x − Xy
σ1−

) + e−r(ν2−σ1)(Xy
σ1−

− Xy
σ2−

) + e−rσ2

(Hσ2,∞(q, a) −Hσ2,∞(q′, a))
]

. . . ≤ E

[

y − x + e−rσk

(Hσk ,∞(q, a) −Hσk ,∞(q′, a))
]

.
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Now νk ≥ σk, the k-th arrival time of the Poisson process (Nt), and therefore νk → ∞ as k →
∞. Since E[H0,∞(q, a)] ≤ supx v(x) = (4r)−1 and using the dominated convergence theorem, we
conclude that v(y) − v(x) ≤ ǫ + (y − x) and the Lipschitz constant of v is ≤ 1.

We now prove a verification argument with respect to the QVI (9). Let (q, a) be a fixed
admissible strategy and let (v̌, w̌) be a smooth solution of (9). Denote by s1 the first jump-time
of a, i.e. the first time that the exploration regime is changed. Applying Îto’s formula to the a.e.
differentiable function e−rtv̌(x) we have

e−rs1

v̌(Xs1) = v̌(x) +

∫ s1

0

{

−qtv̌
′(Xt) + λ(v̌(Xt + δ) − v̌(Xt)) − rv̌(Xt)

}

dt

+

∫ s1

0
(v̌(Xt + δ) − v̌(Xt)) (dNt − λdt). (45)

Taking expectations, using the facts that the stochastic integral of the bounded process v̌(Xt +δ)−
v̌(Xt) with respect to the martingale Nt − λt is a true martingale, v̌(Xs1) ≥ w̌(Xs1)−K, and that
v̌ satisfies (9) we obtain

v̌(x) ≥ E

[

∫ s1

0
e−rt{(1 − qt)qt − C} dt − e−rs1

K | X0 = x
]

+ E

[

e−rs1

w̌(Xs1) | X0 = x
]

. (46)

Repeating the same argument for e−rtw̌(Xt) on the interval [s1, s2] we end up with

e−rs1

w̌(Xs1) ≥ E

[

∫ s2

s1

e−rt(1 − qt)qt dt + e−rs2

(v̌(Xs2) − K) | Xs1

]

, (47)

which by induction and the dominated convergence theorem (note that e−rsk → 0 by admissibility
of a) implies

v̌(x) ≥ E





∫ ∞

0
e−rt{(1 − qt)qt − Cat} dt −

∑

t:∆at 6=0

e−rtK | X0 = x



 .

Since (q, a) was arbitrary, v̌(x) ≥ v(x); conversely the production strategy q∗ and exploration
strategy a∗ ,

∑

k 1[s∗,2k,s∗,2k+1), with s∗,2k+1 = inf{t > s∗,2k : v̌(Xt) = w̌(Xt) − K} achieve
equality throughout (46)-(47). The above also shows that v̌ and w̌ satisfy the dynamic programming
equations

v̌ = L(w̌, 1), and w̌ = L(v̌, 0), (48)

with

L(f, a)(x) := sup
q,τ

E

[
∫ τ

0
e−rt{(1 − qt)qt − C1{a=1}} dt + e−rτ (f(Xτ ) − K) | X0 = x

]

,

where the supremum is over all stopping times τ adapted to the filtration of (Xt). Inequalities
(46)-(47) and arguments similar to those in [BL09] for a related piecewise-deterministic switching
problem imply that the value functions (v,w) are the smallest fixed point of L (in the sense of
(48)) bigger than w0. We conclude that (v,w) correspond to the smallest solution of (9) which
completes the proof.
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